Theory of Computation

Closed book exam. Duration: 1 hour

13 September 2010

Exercise 1

- 1. Construct a non-deterministic finite automaton *A* whose language over $\Sigma = \{a, b\}$ satisfies the following two constraints:
 - All words of $\mathscr{L}(A)$ have a length that is divisible by 3.
 - All words of $\mathscr{L}(A)$ start with the letter *a* and end with the letter *b*.

Please justify your construction.

2. Give a regular grammar that produces $\mathscr{L}(A)$.

Exercise 2

Consider the regular expression $(a^*b)^*a$ defined over $\Sigma = \{a, b\}$.

- 1. Construct a DFA that recognizes $\mathscr{L}((a^*b)^*a)$
- 2. Explain why there cannot exist a 2-state DFA that recognizes the same language.
- 3. Construct a regular expression for the **complement** language. (Please show the steps of Brzozowski and McCluskey's algorithm after each elimination of a state.)

Exercise 3

- 1. Prove that the language $L_1 = \{a^n b^m c^n \mid n \in \mathbb{N}, m \in \mathbb{N}\}$ is not regular.
- 2. Is is possible to find two **regular** languages L_2 and L_3 such that $L_2 \subseteq L_1 \subseteq L_3$?

Exercise 4

Give context-free grammars for the following three languages defined over $\Sigma = \{a, b\}$.

- 1. $L_4 = \{a^{3i}b^i \mid i \in \mathbb{N}\},\$
- 2. $L_5 = \{a^m b^n \mid \forall m, n \text{ such that } m \ge n \ge 0\},\$
- 3. $L_6 = \{u \in \Sigma^* \mid \text{the number of } a \text{ in } u \text{ is equal to the number of } b \text{ in } u\}.$