Theory of Computation
 (CS340)

Closed book exam. Duration: 1 hour

13 September 2010

Exercise 1

1. Construct a non-deterministic finite automaton A whose language over $\Sigma=\{a, b\}$ satisfies the following two constraints:

- All words of $\mathscr{L}(A)$ have a length that is divisible by 3 .
- All words of $\mathscr{L}(A)$ start with the letter a and end with the letter b.

Please justify your construction.

2. Give a regular grammar that produces $\mathscr{L}(A)$.

Exercise 2

Consider the regular expression $\left(a^{\star} b\right)^{\star} a$ defined over $\Sigma=\{a, b\}$.

1. Construct a DFA that recognizes $\mathscr{L}\left(\left(a^{\star} b\right)^{\star} a\right)$
2. Explain why there cannot exist a 2 -state DFA that recognizes the same language.
3. Construct a regular expression for the complement language. (Please show the steps of Brzozowski and McCluskey's algorithm after each elimination of a state.)

Exercise 3

1. Prove that the language $L_{1}=\left\{a^{n} b^{m} c^{n} \mid n \in \mathbb{N}, m \in \mathbb{N}\right\}$ is not regular.
2. Is is possible to find two regular languages L_{2} and L_{3} such that $L_{2} \subseteq L_{1} \subseteq L_{3}$?

Exercise 4

Give context-free grammars for the following three languages defined over $\Sigma=\{a, b\}$.

1. $L_{4}=\left\{a^{3 i} b^{i} \mid i \in \mathbb{N}\right\}$,
2. $L_{5}=\left\{a^{m} b^{n} \mid \forall m, n\right.$ such that $\left.m \geq n \geq 0\right\}$,
3. $L_{6}=\left\{u \in \Sigma^{\star} \mid\right.$ the number of a in u is equal to the number of b in $\left.u\right\}$.
