
Data Structures and Algorithms

Alexandre Duret-Lutz & Anupam Gupta

adl@lrde.epita.fr, anupamg@iitk.ac.in

September 9, 2010

ADL & AG Data Structures and Algorithms 1 / 133

Introduction

Objective
To acquire an �algorithmic thinking� to solve problems.

Means
Practical culture:

learning basic data structures

learning classical algorithms for common problems

learning design strategies for algorithms

Theoretical culture:

learning to reason about algorithms (proving that an algorithm

does what it is designed to do, analyzing its complexity, ...)

ADL & AG Data Structures and Algorithms 2 / 133

Plan for the course

First half of the semester (we me):

Week 1 (this week): introducing concepts by studying how
real-life algorithms can be adapted to computers,

Weeks 2�3 De�ning the complexity of algorithms, and introducing
tools to compute complexity.

Weeks 2�4 Many algorithms to sort data.

Weeks 5�6 Data structures.

mid semester exams

Second half of the semester (with Anupam Gupta):

Common design strategies for algorithms

Graph algorithms

ADL & AG Data Structures and Algorithms 3 / 133

Resources

Lecture notes for this course (this document) in
http://www.lrde.epita.fr/~adl/ens/iitj/eso211/.

Introduction to Algorithms (3rd edition), by
Thomas Cormen, Charles Leiserson, Ronald Rivest, and
Cli�ord Stein.

You can �nd many web pages, and books dedicated to the
topics discussed here.

ADL & AG Data Structures and Algorithms 4 / 133

Looking up a word in a dictionary (1/3)

We can think of many algorithms:

1 You have never seen a dictionary in your life and do not known
how it is organized.
Algo 1: Read the pages one by one until you �nd the word.
Note: you can read the pages in any order as long as you read
them all. (You may want to tear the pages you have read if you
use a random order.)

2 You know a dictionary is alphabetically sorted.
Algo 2: Open the dictionary in the middle. Look at the �rst
word of the right page, and using the order on words tear the
half of the dictionary that cannot contain the words you are
looking. Repeat until you are left with one page..

3 You have an idea of the statistical distribution of words in the
dictionary. Algo 3: If your word starts with D, you may want to
open the dictionary near the beginning.

ADL & AG Data Structures and Algorithms 5 / 133

Looking up a word in a dictionary (2/3)

We obviously expect �Algo 1� to be slower than �Algo 2� itself
slower than �Algo 3�.

Algo 1 works even if the dictionary is not sorted: data can be
arranged in any way.

Algo 2 & 3 are faster because the data is organized in a way
that helps: the words of the dictionary are sorted. In general is it
always good to organize items in a way that ease operations on
these items.1

Algo 3 requires further knowledge on the data. Without this
knowledge, you can make a educated guess on the distribution
(e.g. uniform), because it is likely to speedup the search anyway.
Such an approximation is called a heuristic.

1For another example: think of the way a library is organized in order to make
the following three operations e�cient: search a book in the library, remove a
book from the library, and insert it back.

ADL & AG Data Structures and Algorithms 6 / 133

Looking up a word in a dictionary (3/3)

Can we compare the e�ciency of these three algorithms?

We can give a dictionary to three people, and ask them to look
up the same word using each a di�erent algorithm.

This is only one test case: it does not mean anything.

For instance if we ask the three people to lookup for the word

�A�, Algo 1 will terminate �rst since this is the �rst word of the

dictionary.

Should we conclude that Algo 1 is better than the other two

algorithms?

Can we de�ne a best case and a worst case for each algorithm?

Can we evaluate the speed of an algorithm independently of the
people executing it (some people are faster than others, but that
should not in�uence our algorithm comparison).

Can we de�ne an average case?

ADL & AG Data Structures and Algorithms 7 / 133

Searching for a track on a music tape

A dictionary can be open anywhere: it takes the same time.

A music tape (or audio cassette) works di�erently: if you are
asked to play the fourth track, you �rst have to fast forward the
tape to the start of that track (it costs some time) and then you
can actually play that track.

If a dictionary was recorded on the tape: you would not naturally
consider the use Algo 2 or 3, because of the time it take to seek
to the middle to tape, read a word, then seek elsewhere, etc.

If the dictionary �ll the whole tape, can you compute the
distance of the tape we will have to fast-forward or rewind in the
worst case during the execution of Algo 2?

In computer terms, we say that a dictionary has a random access

(i.e. immediate access to arbitrary locations) while a tape (without
rewind and fast-forward) only has sequential access: elements can
only be accessed in a prede�ned order.

ADL & AG Data Structures and Algorithms 8 / 133

Searching a card in a deck of cards

You are given a (shu�ed) deck of cards, and asked to remove the
Jack of spades.

Algo 1 still works.

Algo 2 & 3 require you to sort the deck of cards before you
actually search for the card. Is it worth it? Maybe we can sort
the card so quickly than sorting plus searching with Algo 2 or 3
will still be faster than Algo 1 alone. Can you make an argument
why it is impossible ?
We will use this kind of arguments to prove lower bounds on
the complexity of algorithms.

Here is a challenging exercise (for which we shall study the answer
latter): You are given a huge pile of 256 exam papers that have
already been graded. Your job is the �nd the median grade, i.e., the
paper that would be in the middle of the pile if that pile was sorted.
Can you do that in a way that is faster than sorting the pile?

ADL & AG Data Structures and Algorithms 9 / 133

Sorting cards (1/2)

Can you describe an algorithm to sort a hand of cards?
Here are two:

insertion sort stack the unsorted cards in front of you, then pick
the cards one by one and place it at the right place into your
hand. It also work if you place the unsorted cards in one side
of your hand and the sorted cards at the other side.

selection sort put all the unsorted cards in your hand, remove
the smallest one, and place it on a stack in front of you.
Repeat until you have stacked all the cards in order.

Would you use same sorting algorithms to sort an entire pack of
cards? Why not?
Here is a possible algorithm: make a �rst pass on the pack to
build 4 stacks, one for each suit. Sort each stack as if it was a
hand.

ADL & AG Data Structures and Algorithms 10 / 133

Sorting cards (2/2)

We use a di�erent algorithm because the number of card is too
large for our hands.

But it is also the case that sorting a hand of cards using the
algorithm we use to sort a pack of cards would be slower.

On a computer we might have similar tradeo�s:

Sometimes we have so much data to process it will not �t in

memory: we need to devise way to process the data in smaller

chunks.

It is often the case that an algorithm that is e�cient for

processing a lot of data, will be less e�cient on a smaller

number of data. Using another algorithm when the number of

item is small is a common implementation trick.

ADL & AG Data Structures and Algorithms 11 / 133

Counting people in the room (1/2)

Here are two algorithms:

Algo A: Look at each person in order, and increment a counter in
your head.
This assumes that is easy to de�ne the order (for instance if
everybody is seated in the room).

Algo B: This algorithm requires participation from everybody and
goes as follows:

1 Everybody stand up and remember the number 1
2 If you are standing up and are not alone, �nd somebody else

standing up, and add your numbers. One of you two should
now seat down.

3 Repeat step 2 until you are standing up alone. Then shout
your number, this is the number of people in the room.

ADL & AG Data Structures and Algorithms 12 / 133

Counting people in the room (2/2)

We apparently have another good-for-large/bad-for-small
tradeo� here: Algo B will be a lot faster than Algo A with a lot
of people. Algo A will be faster with only a handful of people.

Algo B is an example of parallel algorithm: there are several
units of execution (the people) working at the same time, while
Algo A is a sequential algorithm with only one unit of execution.

If you imagine Algo B running in waves, where half of the
people standing up seat down during each wave, you should see
a similarity with Algo 2 for dictionary lookup (discarding half of
the dictionary at each step). Can you tell how many waves it
will take to count a room of n people?

ADL & AG Data Structures and Algorithms 13 / 133

Random Access Machines

To study algorithm, we will work on an idealized computer: a
Random Access Machine (or RAM).
A RAM has

a unique processing unit that executes instructions sequentially

random access to the memory (in constant time)

in�nite memory

To measure the time complexity of an algorithm, we will study the
time it takes to execute. We can do that by counting the number of
instructions executed.

We can also measure the space complexity of an algorithm by
studying the size of the memory it requires to work.

(We will mostly focus on time complexity in this course.)

ADL & AG Data Structures and Algorithms 14 / 133

Pseudo Code

To describe algorithms, we will use some pseudo-code.

Pseudo code is midway between English and actual source code.

It use conventions from computer languages (like using loops,
functions) but without obeying syntax rules; the goal is to
provide a compact and high-level description of the algorithm.

It may include some mathematical expressions or natural
language descriptions of some operations.

ADL & AG Data Structures and Algorithms 15 / 133

Dictionary Lookup: Data Structure

How to represent the dictionary in memory in order to access
each word easily?

Problem: words in dictionary do not have constant size.

A �rst solution: Concatenate all words in memory, using a special
symbol to separate words.

a$aback$abandon$...$zucchini$zweiback

Here the separating symbol is $, but on a C/C++ implementation
you would likely use the string terminator \0.

Is this representation suitable for our three dictionary lookup
algorithms?

ADL & AG Data Structures and Algorithms 16 / 133

Dictionary Lookup: Pseudo-Code for Algo 1

Input: an array D of characters, of size s, in which words are
delimited by `$'; a word w to search.
Output: an index i ∈ {0, . . . , s − 1} such that D[i] is the start of a
word equal to w , or −1 if w 6∈ D.
DictionaryLookup(D, s,w) :
1 pos ← 0
2 while pos < D do
3 end ← pos
4 repeat end ← end + 1 until end > s or D[end] =`$'
5 if w = D[pos..end] then
6 return pos
7 pos ← end + 1
8 done
9 return −1

ADL & AG Data Structures and Algorithms 17 / 133

Dictionary Lookup: Sentinel Value

A typical trick to get away with out-of-bounds checks such as ens > s
is to add a sentinel value at the end of the array. Here, if we replace
a$aback$abandon$...$zucchini$zweiback

by the following encoding
a$aback$abandon$...$zucchini$zweiback$

then we can simplify
repeat end ← end + 1 until end > s or D[end] =`$'

into
repeat end ← end + 1 until D[end] =`$

because we know that we can always �nd a `$' after a word.

ADL & AG Data Structures and Algorithms 18 / 133

Dictionary Lookup: Indirection

Can we adapt Algo 2 to this kind of encoding of a dictionary?

Problem: because words have di�erent sizes we cannot �nd the
middle word easily. We can only easily �nd the middle character.
Example: Consider acarchance$schoolteacher and search
for a. You will only eliminate one word at a time.

An idea: build an index table for all the words. I.e., an array that
gives the starting position of each word.

This second array may contain indices, or it may contain directly
pointers to the actual words in the dictionary. We will now
assume the latter and \0 termination.

ADL & AG Data Structures and Algorithms 19 / 133

Dictionary Lookup: Linear Search

Input: an array A of (pointers to) strings, the size s of A, and a
string w to search.
Output: an index i ∈ {0, . . . , s − 1} such that D[i] is the start of a
string equal to w , or −1 if w 6∈ D.
LinearSearch(A, s,w) :
1 for pos ← 0 to s − 1 do
2 if w = D[pos] then
3 return pos
4 done
5 return −1

This algorithm is not restricted to strings: it will work with any
kind of data.

Can you give an upper bound on the number of iterations of the
loop if w 6∈ A? (easy!)

ADL & AG Data Structures and Algorithms 20 / 133

Dictionary Lookup: Linear Search Speedup

How to speedup the detection of w 6∈ A if A is sorted?

Input: a sorted array A of (pointers to) strings, the size s of A, and a
string w to search.
Output: an index i ∈ {0, . . . , s − 1} such that D[i] is the start of a
string equal to w , or −1 if w 6∈ D.
LinearSearchSorted(A, s,w) :
1 for pos ← 0 to s − 1 do
2 if w = D[pos] then
3 return pos
4 if w < D[pos] then
5 return −1
6 done
7 return −1

Can you see how to use a sentinel value to remove the last line?
Can you give an upper bound on the number of iterations of the
loop if w 6∈ A?
This algorithm can work on any type of data that is ordered (i.e.
supports the < operator).

ADL & AG Data Structures and Algorithms 21 / 133

Dictionary Lookup: Binary Search

Input: a sorted array A[l ..r] of strings, a string v to lookup
Output: an index i ∈ {l , . . . , r} such that A[i] = v or −1 if
v 6∈ A[l ..r].

BinarySearch(A, l , r , v) :
1 while l ≤ r do
2 m← b(l + r)/2c
3 if v = A[m] then
4 return m
5 else
6 if v < A[m] then
7 r ← m − 1
8 else
9 l ← m + 1
10 done
11 return −1

ADL & AG Data Structures and Algorithms 22 / 133

Notes on Binary Search

There are two ways to exit this algorithm: either at line 4 (if v is
found) or at line 11 (if v is not found).

How can we prove that it will exit the loop if v is not found ?

Can you give an upper bound on the number of iterations if the
loop if v 6∈ A[l ..r] ?

This algorithm works on any type of data that is ordered.

ADL & AG Data Structures and Algorithms 23 / 133

Compare iterative and recursive BinarySearch

BinarySearch(A, l , r , v):
while l ≤ r do

m← b(l + r)/2c
if v = A[m] then

return m
else

if v < A[m] then
r ← m − 1

else
l ← m + 1

done
return −1

BinarySearch(A, l , r , v):
if l ≤ r then

m← b(l + r)/2c
if v = A[m] then

return m
else

if v < A[m] then
return BinarySearch(A, l ,m − 1, v)

else
return BinarySearch(A,m + 1, r , v)

else
return −1

ADL & AG Data Structures and Algorithms 24 / 133

Representing a Hand of Cards

How can we best represent a hand of cards?
We assume the order of the cards in the hand matters.

An array?

accessing the ith card is fast

swapping two cards is easy

moving one card to another place require to shift all cards

in-between (costly)

A linked list2?

accessing the ith card is slow

swapping two cars is easy (if you have pointers to them)

moving a card to another place is e�cient if you know the

destination

2http://en.wikipedia.org/wiki/Linked_list
ADL & AG Data Structures and Algorithms 25 / 133

Insertion Sort on an Array

Input: an array A of items (e.g. cards) to sort
Output: the array A sorted in increasing order
InsertionSortArray(A)

cost occ.

1 for j ← 2 to length(A) do

c1 n

2 key ← A[j]

c2 n − 1

3 i ← j − 1

c3 n − 1

4 while i > 0 and A[i] > key do

c4
∑n

j=2 tj

5 A[i + 1]← A[i]

c5
∑n

j=2(tj − 1)

6 i ← i − 1

c6
∑n

j=2(tj − 1)

7 A[i + 1]← key

c7 n − 1

ADL & AG Data Structures and Algorithms 26 / 133

Insertion Sort on a Linked List

Input: a linked list L of items to sort

Output: the list L sorted in increasing order
InsertionSortList(L)
1 if L = ∅ then return L

2 res ← L; L← L.next; res.next ← ∅
3 while L 6= ∅
4 tmp ← L.next
5 if res.data > L.data then

6 L.next ← res; res ← L

7 else

8 dst ← res

9 while dst.next 6= ∅ and dst.next.data ≥ L.data do

10 dst ← dst.next
11 L.next ← dst.next; dst.next ← L

12 L← tmp

13 return res

ADL & AG Data Structures and Algorithms 27 / 133

Insertion Sort: Array vs. List

Note how the two data structures command slightly di�erent
algorithms even though the basic idea is the same.

From distance the two algorithms do the same thing:

Consider all items from left to right.

For each item, �nd its place in the previous items and insert it

there.

Finding the place can be done using a search from left to right,
or from right to left.

A Singly Linked List forbids a search from right to left, so we

have to work from left to right.

Inserting in a array requires to shift all elements at the right of

the insertion, so it is more e�cient to shift these elements as we

search from right to left.

ADL & AG Data Structures and Algorithms 28 / 133

Measuring complexity

Let us show how we can measure the time complexity of an algorithm.

What we want is to see how the algorithm scales as the input
grows larger.
In other words, the time complexity is a function T (n) where n
is the size of the input.

We measure time formally by counting executed instructions.

Di�erent instructions may have di�erent costs (=run time), so
we will have to weight them.
Actual cost of an instruction in pseudo-code is dependent on

the programmer who translated pseudo-code to a programming

language

the compiler who translated to programming language into

machine code

the CPU who is executing the machine code

Eventually, we will abstract from these �implementation details�
factors

Let's do that for InsertionSort.
ADL & AG Data Structures and Algorithms 29 / 133

Insertion Sort on an Array

Input: an array A of items (e.g. cards) to sort
Output: the array A sorted in increasing order
InsertionSortArray(A) cost occ.
1 for j ← 2 to length(A) do c1 n
2 key ← A[j] c2 n − 1
3 i ← j − 1 c3 n − 1
4 while i > 0 and A[i] > key do c4

∑n
j=2 tj

5 A[i + 1]← A[i] c5
∑n

j=2(tj − 1)

6 i ← i − 1 c6
∑n

j=2(tj − 1)

7 A[i + 1]← key c7 n − 1

T (n) = c1n + c2(n − 1) + c3(n − 1)

+ c4

n∑

j=2

tj + c5

n∑

j=2

(tj − 1) + c6

n∑

j=2

(tj − 1) + c7(n − 1)

What are the best cases? worst cases?
ADL & AG Data Structures and Algorithms 30 / 133

InsertionSort: Best and Worst cases

Best case: the array is sorted. tj = 1.

T (n) = c1n+c2(n−1)+c3(n−1)+c4(n−1)+c7(n−1)

This is a linear function of the form an + b.

Worst case: the array is reversed. tj = j .

Recall that
∑n

j=2 j = n(n+1)
2
− 1 and∑n

j=2(j − 1) = n(n−1)
2

.

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

(
n(n + 1)

2
− 1

)

+ c5
n(n − 1)

2
+ c6

n(n − 1)

2
+ c7(n − 1)

This is a quadratic function of the form an2 + bn + c .

ADL & AG Data Structures and Algorithms 31 / 133

InsertSort: Average case

The best case gives an upper bound for the complexity

The worst case gives a lower bound for the complexity

The general case is obviously in between

We can also do average case analysis:
Assume the array contains n randomly chosen numbers
(following a uniform distribution). For a key picked at line 2, we
expect half of the values of the array to be greater than key , and
half less than key . Therefore tj = t

2
.

We have
∑n

j=2
t
2

= n(n+1)−2
4

and
∑n

j=2
t
2
− 1 = n(n−3)+2

4

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4
n(n + 1)− 2

4

+ c5
n(n − 3) + 2

4
+ c6

n(n − 3) + 2

4
+ c7(n − 1)

This is again a quadratic function of the form an2 + bn + c .
ADL & AG Data Structures and Algorithms 32 / 133

Function Comparison

0 5 10 15 20

10

20

30

40

n/2

n

2n
n ln nn log2n

n log10 n

n2n3en

√
n

ln n

ADL & AG Data Structures and Algorithms 33 / 133

In practice

Assuming 106 operations per second.

n log2 n n n log2 n n2 n3 2n

102 6.6 µs 0.1 ms 0.6 ms 10 ms 1 s 4 · 106 y
103 9.9 µs 1 ms 10 ms 1 s 16.6 min
104 13.3 µs 10 ms 0.1 s 1.6 min 11.6 d
105 16.6 µs 0.1 s 1.6 s 2.7 h 347 y
106 19.9 µs 1 s 19.9 s 11.6 d 106 y
107 23.3 µs 10 s 3.9 min 3.17 y
108 26.6 µs 1.6 min 44.3 min 317 y
109 29.9 µs 16.6min 8.3 h 31709 y

ADL & AG Data Structures and Algorithms 34 / 133

Machine Independence

In our formulas for T (n), coe�cients c1, c2, . . . , c7 are
machine-dependent (and compiler-dependent, and
programmer-dependent).

We would like to:

ignore machine-dependent constants,

study to growth of T (n) when n→∞.

=⇒ Let's perform an asymptotic analysis of the run-time complexity.

ADL & AG Data Structures and Algorithms 35 / 133

Asymptotic Equivalence of Functions

Θ(g(n)) = {f (n) | ∃c1 ∈ R+?, ∃c2 ∈ R+?,∃n0 ∈ N,
∀n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}

By convention (and abuse) we write �f (n) = Θ(g(n))� instead of
�f (n) ∈ Θ(g(n))�.

If a2 > 0, we have a2n
2 + a1n + a0 = Θ(n2).

For instance let c1 =
a2
2

and c2 = 3a2
2
, then show that

a2
2
≤ a2 +

a1
n

+
a0
n2︸ ︷︷ ︸

→0 when n→∞

≤ 3a2
2

ADL & AG Data Structures and Algorithms 36 / 133

Asymptotic Complexity of Insertion Sort

Best case

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4(n − 1) + c7(n − 1)

= Θ(n)

Worst case

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

(
n(n + 1)

2
− 1

)

+ c5
n(n − 1)

2
+ c6

n(n − 1)

2
+ c7(n − 1) = Θ(n2)

Average case

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4
n(n + 1)− 2

4

+ c5
n(n − 3) + 2

4
+ c6

n(n − 3) + 2

4
+ c7(n − 1) = Θ(n2)

ADL & AG Data Structures and Algorithms 37 / 133

Let us Simplify the Calculations

One way to simplify the calculation is to pick one fundamental
operation (or one familly of operations) for the problem and count
only its number of executions.
The choice is good if the total number of operations is proportional
to the count of fundamental operations executed.

Examples:

problem fundamental operation
addition of binary numbers all binary operations
matrix multiplication scalar multiplication
sorting an array comparisons of elements

ADL & AG Data Structures and Algorithms 38 / 133

Simpli�ed Calculations

InsertionSortArray(A) cost occ.
1 for j ← 2 to length(A) do c1 n
2 key ← A[j] c2 n − 1
3 i ← j − 1 c3 n − 1
4 while i > 0 and A[i] > key do c4

∑n
j=2 tj

5 A[i + 1]← A[i] c5
∑n

j=2(tj − 1)

6 i ← i − 1 c6
∑n

j=2(tj − 1)

7 A[i + 1]← key c7 n − 1

ADL & AG Data Structures and Algorithms 39 / 133

Simpli�ed Calculations

InsertionSortArray(A)

cost

occ.
1 for j ← 2 to length(A) do

c1 n

2 key ← A[j]

c2 n − 1

3 i ← j − 1

c3 n − 1

4 while i > 0 and A[i] > key do

c4

∑n
j=2 tj

5 A[i + 1]← A[i]

c5
∑n

j=2(tj − 1)

6 i ← i − 1

c6
∑n

j=2(tj − 1)

7 A[i + 1]← key

c7 n − 1

ADL & AG Data Structures and Algorithms 39 / 133

Asymptotic Complexity of Insertion Sort

Best case

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4(n − 1) + c7(n − 1)

= Θ(n)

Worst case

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

(
n(n + 1)

2
− 1

)

+ c5
n(n − 1)

2
+ c6

n(n − 1)

2
+ c7(n − 1) = Θ(n2)

Average case

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4
n(n + 1)− 2

4

+ c5
n(n − 3) + 2

4
+ c6

n(n − 3) + 2

4
+ c7(n − 1) = Θ(n2)

ADL & AG Data Structures and Algorithms 40 / 133

Asymptotic Complexity of Insertion Sort

Best case

T (n) =

c1n + c2(n − 1) + c3(n − 1) + c4(

n − 1

) + c7(n − 1)

= Θ(n)

Worst case

T (n) =

c1n + c2(n − 1) + c3(n − 1) + c4

(

n(n + 1)

2
− 1

)

+ c5
n(n − 1)

2
+ c6

n(n − 1)

2
+ c7(n − 1)

= Θ(n2)

Average case

T (n) =

c1n + c2(n − 1) + c3(n − 1) + c4

n(n + 1)− 2

4

+ c5
n(n − 3) + 2

4
+ c6

n(n − 3) + 2

4
+ c7(n − 1)

= Θ(n2)

ADL & AG Data Structures and Algorithms 40 / 133

Asymptotic Higher and Lower Bounds

O(g(n)) = {f (n) | ∃c ∈ R+?,∃n0 ∈ N,
∀n ≥ n0, 0 ≤ f (n) ≤ cg(n)}

Ω(g(n)) = {f (n) | ∃c ∈ R+?,∃n0 ∈ N,
∀n ≥ n0, 0 ≤ cg(n) ≤ f (n)}

Note that f (n) = Θ(g(n)) ⇐⇒ f (n) = O(g(n)) et f (n) = Ω(g(n)).

In other words Θ(g(n)) = O(g(n)) ∩ Ω(g(n)).

Since Θ(n) ⊆ O(n2) and Θ(n2) ⊆ O(n2), we can say that the
run-time complexity of Insertion Sort for n elements is in O(n2).

ADL & AG Data Structures and Algorithms 41 / 133

Properties

If lim
n→∞

g(n)

f (n)
= c > 0 then g(n) = Θ(f (n)).

If lim
n→∞

g(n)

f (n)
= 0 then g(n) = O(f (n)) and f (n) 6= O(g(n)).

If lim
n→∞

g(n)

f (n)
=∞ then f (n) = O(f (n)) and g(n) 6= O(f (n)).

f (n) = O(g(n)) i� g(n) = Ω(f (n)).

If f1(n) = Θ(g1(n)), f2(n) = Θ(g2(n)), and k is constant, we have:

f1(n)× f2(n) = Θ(g1(n)× g2(n))

f1(n) + f2(n) = Θ(g1(n) + g2(n))

k × f1(n) = Θ(g1(n))

The above rules are also true for O and Ω.

ADL & AG Data Structures and Algorithms 42 / 133

Exercises

Find two functions f and g such that f (n) 6= O(g(n)) and
g(n) 6= O(f (n)).
We say that the two functions are incomparable using O.

Show that Θ(f (n) + g(n)) = Θ(max(f (n), g(n))).

If f (n) = Θ(g(n)), do we have 2f (n) = Θ(2g(n))?

Let us de�ne the following (partial) order:

Θ(f (n)) ≤ Θ(g(n)) si f = O(g(n))

Θ(f (n)) < Θ(g(n)) si f = O(g(n)) et g 6∈ O(f (n))

Order the sets Θ(. . .) containing the following functions:
n, 2n, n log n, ln n, n + 7n5, log n,

√
n, en, 2n−1, n2, n2 + log n,

log log n, n3, (log n)2, n!, n3/2.

ADL & AG Data Structures and Algorithms 43 / 133

Complexity Analysis with Asymptotic Notations

Consider a general input of size n, and count the occurrences of each
instruction using asymptotic notations.

InsertionSortArray(A)
1 for j ← 2 to length(A) do Θ(n)+
2 do key ← A[j] Θ(n)+
3 i ← j − 1 Θ(n)+
4 while i > 0 and A[i] > key do O(n2)+
5 do A[i + 1]← A[i] O(n2)+
6 i ← i − 1 O(n2)+
7 A[i + 1]← key Θ(n)

O(n2)

ADL & AG Data Structures and Algorithms 44 / 133

Selection Sort

Idea: Find minimum of A[1..n] then swap it with A[1]. Find minimum
of A[2..n] then swap it with A[2]. Etc. A[1..k] is sorted after k
iterations.

SelectionSort(A)
1 for i from 1 to n do Θ(n)
2 min← i Θ(n)
3 for j from i to n do Θ(n2)
4 if A[j] < A[min] then min← j Θ(n2)
5 A[min]↔ A[i] Θ(n)

Θ(n2)

It is worse than InsertionSort which is in O(n2) but not in Ω(n2).

ADL & AG Data Structures and Algorithms 45 / 133

Merge Sort

Input: an array A of integers, two indices l , r
Output: array A, with it subarray A[l ..r] sorted in increasing order

MergeSort(A, l , r) T (1) T (n)
1 if l < r then Θ(1) Θ(1)
2 m← b(l + r)/2c Θ(1)
3 MergeSort(A, l ,m) T (bn/2c)
3 MergeSort(A,m + 1, r) T (dn/2e)
4 Merge(A, l ,m, r) Θ(n)

Using n = r − l + 1, we can express T (n) using a recursive equation:

T (n) =

{
Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

Exercise: Write pseudo-code for Merge and prove its Θ(n)
complexity.

ADL & AG Data Structures and Algorithms 46 / 133

Merge

Input: an array A, three indices l , m, r such that A[l ..m] and A[m + 1..r] are
sorted
Output: array A, with it subarray A[l ..r] sorted
Merge(A, l ,m, r)

i ← l ; j ← m + 1; k ← l Θ(1)
while i ≥ m and j ≥ r do O(n)

if A[i] ≥ A[j] then O(n)
B[k]← A[i]; k ← k + 1; i ← i + 1 O(n)

else O(n)
B[k]← A[j]; k ← k + 1; j ← j + 1 O(n)

if i ≥ m then Θ(1)
B[k ..r]← A[i ..m] O(n)

else O(1)
B[k ..r]← A[j ..r] O(n)

A[l ..r]← B[l ..r] Θ(n)
return A Θ(1)

Θ(n)
ADL & AG Data Structures and Algorithms 47 / 133

Call Tree for MergeSort

Let us solve T (n) = 2T (n/2) + cn graphically, for a constant c > 0.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

Θ(1)

h
=
blo

g
n
c

n leaves

cn

cn

cn

Θ(n)

We have T (n) = Θ(n log n).

ADL & AG Data Structures and Algorithms 48 / 133

Solving Recursions by Unfolding

As second way to solve T (n) = 2T (n/2) + cn is by unfolding.

T (n) = cn + 2T (n/2)

= cn + 2(cn/2) + 4T (n/4) = 2cn + 4T (n/4)

= 2cn + 4(cn/4) + 8T (n/8) = 3cn + 8T (n/8)

...

= kcn + 2kT (n/2k)

We can continue unfolding until we reach T (1) = Θ(1). This
happens when 2k = n. Substituting k = log2 n, we get:

T (n) = cn log2 n + n × T (1)

= Θ(n log n) + Θ(n)

= Θ(n log n)

ADL & AG Data Structures and Algorithms 49 / 133

General Theorem for Recurrence Equations

Let

T (n) =

{
Θ(1) si n ≤ n0

aT (n/b) + f (n) si n > n0

with a ≥ 1, b > 1, n0 ∈ N.
Then

if f (n) = O(nlogb a−ε) for some ε > 0, then T (n) = Θ(nlogb a).

if f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

if f (n) = Ω(nlogb a+ε) for some ε > 0, and if af (n/b) ≤ cf (n)
for some constant c < 1 and all large enough values of n, then
T (n) = Θ(f (n)).

Beware, there are holes in this theorem: a function f (n) may belong
to none of the three cases. The ε constrains functions f (n) to be
polynomially smaller or greater than nlogb a.

ADL & AG Data Structures and Algorithms 50 / 133

Applications of the Theorem

T (n) = 2T (n/2) + Θ(n)
a = b = 2, nlogb a = n. We have T (n) = Θ(n log n).

T (n) = 4T (n/2) +
√
n

a = 4, b = 2, nlogb a = n2. ε = 1 and
√
n = O(n2−1), we thus

have T (n) = Θ(n2)

T (n) = 3T (n/3) + n2

a = 3, b = 3, nlogb a = n. ε = 1 and n2 = Ω(n1+1), furthermore
3(n/3)2 ≤ cn2 for c = 1/3, consequently T (n) = Θ(n2).

T (n) = 4T (n/2) + n2/ log n
a = 4, b = 2, nlogb a = n2. We cannot �nd a ε > 0 such that
n2/ log n = O(n2−ε). Indeed, n2/ log n ≤ cn2−ε implies
nε ≤ c log n. The theorem cannot apply.

ADL & AG Data Structures and Algorithms 51 / 133

Perfect Tree

A perfect tree is a complete binary tree in which leaves from the
deepest level are all grouped on the left (if that level is not complete).

ADL & AG Data Structures and Algorithms 52 / 133

Binary Heap

A binary heap is a perfect tree with the heap property: each node is
greater than or equal to each of its children.

18

12 11

6 10 9 4

2 3 8

Any perfect tree can be e�ciently stored as an array. This is how we
will store binary heaps too.
18 12 11 6 10 9 4 2 3 8

ADL & AG Data Structures and Algorithms 53 / 133

Properties of a binary heap

18

12 11

6 10 9 4

2 3 8

A = 18 12 11 6 10 9 4 2 3 8

Index 1 in the array corresponds to the root of the tree

Parent(i) = bi/2c (if i > 0)

LeftChild(i) = 2i (if it exists)

RightChild(i) = 2i + 1 (if it exists)

Heap property: ∀i > 0, A[Father(i)] ≥ A[i].

ADL & AG Data Structures and Algorithms 54 / 133

Operation on Binary Heaps (1): Heapify

Input: array A, and two indexes i and m such that A[LeftChild(i)] and
A[RightChild(i)] are roots of heaps in A[1..m],
Output: the array A such that A[i] is the root of a heap.

Heapify(A, i ,m)
1 l ←LeftChild(i)
2 r ←RightChild(i)
3 if l ≤ m and A[l] > A[i]
4 then largest ← l
5 else largest ← i
6 if r ≤ m and A[r] > A[largest]
7 then largest ← r
8 if largest 6= i then
9 A[i]↔ A[largest]
10 Heapify(A, largest,m)

T (n) ≤ T (2n/3) + Θ(1) with n the
size of the subtree rooted at i , and
2n/3 the maximum number of
nodes of the subtree recursively
explored.

We deduce T (n) = O(log n)

We can also write T (h) = O(h)
with h the height of the tree rooted
at i .

ADL & AG Data Structures and Algorithms 55 / 133

Operations on Heaps: BuildHeap

Input: an array A
Output: the array A organized as a heap.

BuildHeap(A)
1 for i ← blength(A)/2c down to 1 do
2 Heapify(A, i , length(A))

The elements between length(A)/2 + 1 and the end of the array are
the leaves: they are already heaps. We �x the rest of the array in a
bottom-up way.

Intuitively if n = length(A), T (n) = Θ(n)︸︷︷︸
the loop

O(log n)︸ ︷︷ ︸
Heapify

= O(n log n).

In fact the time spent in Heapify depends on the size of the subtree
considered, not the entire tree. The complexity is better.

ADL & AG Data Structures and Algorithms 56 / 133

Complexity of BuildHeap

Let us calculate T (n) for BuildHeap more precisely.

The height of a complete binary tree of n nodes is blog nc.
The number of subtrees of height h in a heap is at most dn/2h+1e.
The complexity of Heapify on a subtree of height h is est O(h).

We get:

T (n) =

blog nc∑

h=0

⌈ n

2h+1

⌉
O(h) = O


n

blog nc∑

h=0

h

2h+1


 = O


n

blog nc∑

h=0

h

2h




Since
∞∑

k=0

kxk =
x

(1− x)2
, we have

∞∑

h=0

h

2h
=

1/2

(1− 1/2)2
= 2.

Finally T (n) = O(n).

ADL & AG Data Structures and Algorithms 57 / 133

Heap Sort

HeapSort(A)
1 BuildHeap(A)
2 for i ← length(A) down to 2 do
3 A[1]↔ A[i]
4 Heapify(A, 1, i − 1)

The complexity is easy to express:

T (n) = O(n)︸︷︷︸
BuildHeap

+O(n︸︷︷︸
loop

log n︸︷︷︸
Heapify

) = O(n log n)

ADL & AG Data Structures and Algorithms 58 / 133

Quick Sort

Origin
Sir Charles Antony Richard Hoare, 1962.

General idea
Partition the array in two parts, such that elements from the �rst
part are smaller than elements from the second. Sort both parts
recursively.

How to partition?
Pick a value and use it as pivot. Using successive swaps, arrange
the array in two blocs such that

elements at the beginning are less or equal to the pivot
elements at the end are greater than or equal to the pivot

Our choice: the pivot is the �rst element.

ADL & AG Data Structures and Algorithms 59 / 133

Quick Sort: algorithm

Input: an array A, and two
indices l and r
Output: the array A with
A[l ..r] sorted in increasing order

QuickSort(A, l , r)
1 if l < r then
2 p ← Partition(A, l , r)
3 QuickSort(A, l , p)
4 QuickSort(A, p + 1, r)

Input: an array A, two indices l and r
Output: an index p, the array A
arranged so that
A[l ..p] ≤ A[p + 1..r].

Partition(A, l , r)
1 x ← A[l]; i ← l − 1; j ← r + 1
2 repeat forever
3 do i ← i + 1 until A[i] ≥ x
4 do j ← j − 1 until A[j] ≤ x
5 if i < j then
6 A[i]↔ A[j]
7 else
8 return j

TPartition(n) = Θ(n) of n = r − l + 1.

ADL & AG Data Structures and Algorithms 60 / 133

Complexity of QuickSort

Unfavorable case
The choice of pivot is unlucky and yields a unbalanced partition.
This happens if the input is already sorted (in any way).

T (n) = Θ(n) + Θ(1) + T (n − 1)

= T (n − 1) + Θ(n)

= Θ(n2)

Best case
The partition always splits the array in the middle.

T (n) = Θ(n) + 2T (n/2)

Same equation as MergeSort. We know the answer is
T (n) = Θ(n log n).

ADL & AG Data Structures and Algorithms 61 / 133

Intuition for Average Complexity

Let's assume an imbalance by a constant ratio: �1/10 : 9/10�

T (n) = T
(n

10

)
+ T

(
9n

10

)
+ Θ(n)

Draw the call tree. The smallest branch has height
log10 n = Θ(log n): the complexity of the call tree limited to this
level is Θ(n log n). We deduce that T (n) = Ω(n log n). The
longest branch has height log10/9 n and the complexity at each level
is ≤ n. We get that T (n) ≤ n log10/9 n = O(n log n).

Finally T (n) = Θ(n log n).

Any partition using a constant ratio implies T (n) = Θ(n log n).

ADL & AG Data Structures and Algorithms 62 / 133

Calculation of the Average Complexity (1)

Let us assume a uniform distribution on the possible partitions.
The partition cuts A[1..n] in A[1..i] and A[i + 1..n] with n − 1
possible choices for i .

T (n) =
1

n − 1

n−1∑

i=1

(T (i) + T (n − i)) + Θ(n) =
2

n − 1

n−1∑

i=1

T (i) + cn

Furthermore:

T (n − 1) =
2

n − 2

n−2∑

i=1

T (i) + c(n − 1)

Let's try to make T (n − 1) appear in T (n):

T (n) =
2(n − 2)

(n − 1)(n − 2)

(
T (n − 1) +

n−2∑

i=1

T (i)

)
+ c(n − 1 + 1)

ADL & AG Data Structures and Algorithms 63 / 133

Calculation of the Average Complexity (2)

T (n) =
2(n − 2)

(n − 1)(n − 2)

(
T (n − 1) +

n−2∑

i=1

T (i)

)
+ c(n − 1 + 1)

=
2

n − 1
T (n − 1) +

n − 2

n − 1
T (n − 1) + c(n − 1)

(
1− n − 2

n − 1

)
+ c

=
n

n − 1
T (n − 1) + 2c

Divide left and right by n:

T (n)

n
=

T (n − 1)

n − 1
+

2c

n

ADL & AG Data Structures and Algorithms 64 / 133

Calculation of the Average Complexity (3)

T (n)

n
=

T (n − 1)

n − 1
+

2c

n

Let's introduce Y (n) = T (n)
n

Y (n) = Y (n − 1) +
2c

n
= 2c

n∑

i=1

1

i

T (n) = 2cn
n∑

i=1

1

i

Using Euler's formula
∑n

i=1
1
i

= ln n + γ + o(1) = Θ(log n) we get

T (n) = Θ(n)Θ(log n) = Θ(n log n)

ADL & AG Data Structures and Algorithms 65 / 133

Questions

What happens of all the elements of the array have the same
value?

It seems that a random array will be sorted more e�ciently than
a sorted array. How can we modify QuickSort to ensure that it
will have the same (averge) complexity on random arrays and
sorted arrays?

ADL & AG Data Structures and Algorithms 66 / 133

Stochastic QuickSort

A simple Idea: choose the pivot randomly in the array.

RandomizedPartition(A, l , r)
1 x ← A[Random(l , r)]; i ← l − 1; j ← r + 1
2 repeat forever
4 do j ← j − 1 until A[j] ≤ x
3 do i ← i + 1 until A[i] ≥ x
5 if i < j then
6 A[i]↔ A[j]
7 else
8 return j

The e�ect is as if we had randomized the array before calling
QuickSort.

Pro: no particular input is known to always provoke the worst case.
Cons: Random() is a slow function. Calling it so much (how many
time is it called?) is a sure way to slow-down your implementation.

ADL & AG Data Structures and Algorithms 67 / 133

Another idea: median pivot

(The median of 2k + 1 values is the (k + 1)st largest value.)

Idea: use as pivot the median of some values of the arrays (not all
values, it would take too long to �nd the median).

For instance use the median of the �rst three value, or better (why?)
the median of A[l], A[b l+r

2
c] and A[r].

ADL & AG Data Structures and Algorithms 68 / 133

Conclusion on Quick Sort

We have T (n) = O(n2) in general but T (n) = Θ(n log n) on the
average.

In practice Quick Sort is faster than the other sorting algorithms
presented so far (assuming n is not ridiculously small).

For a smaller n, Insertion Sort is a better choice.

The qsort() implementation in GNU Libc (and others) use
these tricks:

Use median-of-3 pivot (extremities and middle).

Switch to Insertion Sort if the array has ≤ 4 elements.

Order the two recursive calls such that the �rst one sees the

smallest subarray, and the latter one (which is a tail recursion)

use the largest subarray.

Do not actually perform recursive calls: tail recursion can be

replaced by a loop, and the �rst call to QuickSort requires an

explicit stack.

ADL & AG Data Structures and Algorithms 69 / 133

Introspective Sort

Origin
David Musser, 1997
Used in SGI's Standard Template Library. (std::sort)

Interest
Modi�cation of Quick Sort so that T (n) = Θ(n log n) always.

Idea
Detect when the values to sort are causing trouble to Quick Sort,
and use a Heap Sort in this case.

In practice
We bound the number of recursive calls to O(log n).
Musser suggests 2blog nc.

ADL & AG Data Structures and Algorithms 70 / 133

Introspective Sort: Algorithm

IntroSort(A, l , r)
1 IntroSort'(A, l , r , 2blog(r − l + 1)c)

IntroSort'(A, l , r , depth_limit)
1 if depth_limit = 0 then
2 HeapSort(A, l , r)
3 return
4 else
5 depth_limit ← depth_limit − 1
6 p ← Partition(A, l , r)
7 IntroSort'(A, l , p, depth_limit)
8 IntroSort'(A, p + 1, r , depth_limit)

This is a nifty implementation trick that you cannot think of without
studying the complexity of your algorithms.

ADL & AG Data Structures and Algorithms 71 / 133

Sorting as a Problem

Input: A sequence of n numbers 〈a1, a2, . . . an〉
Output: A permutation 〈a′1, a′2, . . . a′n〉 of the input sequence such
that a′1 ≤ a′2 ≤ · · · ≤ a′n.

These numbers might be attached to other data. For instance they
might be a �eld in a record, and we want to sorts to records
according to this �eld (called the key for the purpose of sorting).

The structure used to represent A is usually an array. (We have also
looked at InsertionSort on a list.)

For now, we have only looked at �comparison sorts�, i.e. algorithms
that perform comparisons to order the elements.

ADL & AG Data Structures and Algorithms 72 / 133

In place and Stable Sorting Algorithm

In Place Sort
A sorting algorithm is in place if the number of memory it requires
in addition to the input is independent of n, or at most Θ(log n).
Especially you are not allowed to use a temporary array of size n in
an in place sort, since that would require Θ(n) memory.

Stable Sort
A sorting algorithm is stable if the order of equal elements is
preserved. This matters when the key used for sorting is part of a
larger structure (with other data attached), and several sorts are
chained using di�erent �elds as key.

ADL & AG Data Structures and Algorithms 73 / 133

Summary of Sorting Algorithms Studied so far

complexity average in place? stable?
insertion sort O(n2) Θ(n2) yes yes
selection sort Θ(n2) yes no
merge sort Θ(n log n) no yes
heap sort O(n log n)1 yes no
quick sort O(n2) Θ(n log n) yes2 no
intro sort Θ(n log n) yes2 no

1The complexity is in fact Θ(n log n), but we have not proved it.
2The number of temporary variables used locally by QuickSort and Partition is

constant, but because of the recursive calls we are actually creating several copies
of them (as many copies as the depth of the call tree). QuickSort requires
O(log n) extra memory when ordering the partition so that the largest part is
handled by the tail recursion (it requires O(n) memory if you do not use such a
trick).

ADL & AG Data Structures and Algorithms 74 / 133

Complexity of a problem

De�nition
The complexity C (n) of a problem P is the complexity if the best
algorithm that solves P .

Consequences

If an algorithm A solves P in O(f (n)), then C (n) = O(f (n)).
If we can prove that all algorithms that solve P have a
complexity in Ω(g(n)), then C (n) = Ω(g(n)).
If these two bounds are equivalents (i.e., f (n) = Θ(g(n)))
then C (n) = Θ(f (n)) = Θ(g(n)), and this is the complexity
of the problem.

For now, we have proved that �sorting n numbers� is in O(n log n).

That does not mean it is impossible to do better

It is always possible to do worse :-)

ADL & AG Data Structures and Algorithms 75 / 133

Lower Bound for Worst Case of Comparison Sort

Recall the problem
Input: A sequence of n numbers 〈a1, a2, . . . an〉
Output: A permutation 〈a′1, a′2, . . . a′n〉 of the input sequence such
that a′1 ≤ a′2 ≤ · · · ≤ a′n.

Argumentation
Sorts can be represented by a binary tree (decision tree). Internal
nodes are comparisons between two elements: the left child
represent a negative answer and the right child a positive answer.
Leaves of the tree represent a permutation to apply to sort the
array.

There exists n! possible permutations of 〈a1, a2, . . . an〉. Our binary
tree of n! leaves, should therefore have a height of at least dlog n!e.
Using Stirling's formula3 we obtain that Ω(log(n!)) = Ω(n log n).

The worst case of any comparison sort uses Ω(n log n) comparisons.
3
n! =

√
2πn(n/e)n(1 + Θ(1/n))

ADL & AG Data Structures and Algorithms 76 / 133

Counting Sort

Characteristics
Stable sort, not in place.
May be used only if the keys belong to a small interval. Here we
assume they are in {1, . . . , k}.

Algorithm
CountingSort(A,B , k)
1 for i ← 1 to k do C [i]← 0 Θ(k)
2 for i ← 1 to length(A) do C [A[j]]← C [A[j]] + 1 Θ(n)
3 for i ← 1 to k do C [i]← C [i] + C [i − 1] Θ(k)
4 for i ← length(A) down to 1 do Θ(n)
5 B[C [A[i]]]← A[i] Θ(n)
6 C [A[i]]← C [A[i]]− 1 Θ(n)

Θ(n) + Θ(k)
Complexity
If k = O(n), then T (n) = Θ(n).

ADL & AG Data Structures and Algorithms 77 / 133

Bucket Sort

Characteristics
Unstable sort, not in place. Assume the elements are uniformly
distributed. Here we assume they are in the interval [0, 1[.

Algorithm
BucketSort(A)
1 n← length(A) Θ(n)
2 for i ← 1 to n do Θ(n)
3 insert A[i] into the list B[bn · A[i]c] Θ(n)
4 for i ← 0 to n − 1 do Θ(n)

5 sort B[i] with InsertionSort
∑n−1

i=0O(n2i)
6 concatenate B[0], B[1], . . ., B[n − 1] together in order Θ(n)

Complexity
It depends on the size ni of the buckets B[i] do sort.

ADL & AG Data Structures and Algorithms 78 / 133

Complexity of Bucket Sort

Best case
If each B[i] has size ni = 1, the n calls to InsertionSort at line 5 all
cost Θ(1).
The complexity is Θ(n).

Worst case
If (1) all elements land in the same bucket, and (2) this bucket
happens to be sorted in reverse order (worst case of InsertionSort)
then line 5 costs Θ(n2).
The �nal complexity is Θ(n2).

Average case
What is ni on the average? i.e. E [ni]
What is n2i on the average? i.e. E [n2i]
We eventually want to compute

∑n−1
i=0 O(E [n2i]).

ADL & AG Data Structures and Algorithms 79 / 133

Binomial Distribution Reminder

Expected value of a random variable

It is its mean: E[X] =
∑

x

xPr{X = x}

Variance
Var[X] = E[(X − E[X])2] = E[X 2]− E

2[X]

Binomial Distribution
Throw n balls in r baskets, and assume balls have equal chances to
land in each basket (p = 1/r). Let Xi denote the number of balls
in basket i . We have Pr{Xi = k} =

(
n
k

)
pk(1− p)n−k . It can be

shown that E [Xi] = np and Var[Xi] = np(1− p).

ADL & AG Data Structures and Algorithms 80 / 133

Probabilistic Study of Bucket Sort

Let ni denote the size of a bucket to sort with Insertion Sort.

If the value to sort are uniformly distributed, they have equal chances
to land in each bucket. It is like throwing n balls into n baskets (i.e.
p = 1/n).

Therefore E [ni] = np = 1 and Var[ni] = np(1− p) = 1− 1

n
.

Insertion Sort of n elements takes O(n2), so for all B[i] we have

n−1∑

i=0

O(E [n2i]) = O

(
n−1∑

i=0

E[n2i]

)
= O

(
n−1∑

i=0

(
E
2[ni] + Var[ni]

)
)

= O

(
n−1∑

i=0

(
1 + 1− 1

n

))
= O(n)

Finally T (n) = O(n) + Θ(n) = Θ(n) on the average.
ADL & AG Data Structures and Algorithms 81 / 133

Data structures

You know of a couple of data structures, i.e., ways to organize
data in memory to ease certain operations.

Array

Singly linked list

When you programmed last year, you probably used C++ container
classes like std::vector (an array that can change its size) and list
std::list (a doubly linked list).

As we saw with the dictionary lookup example, we can often choose
between several data structures. The di�erence is in the operations
they allow to perform, and the complexity of these operations.

ADL & AG Data Structures and Algorithms 82 / 133

Abstract Data Type

An abstract data type is a mathematical speci�cation of a data set,
and of a set of operations you can apply to this set. It is a contract
that a data structure has to implement.

For instance the stack abstract data type that represents an ordered
set allowing two operation

push adds an item to the set in Θ(1),

pop removes and returns the last item added to the set in Θ(1).

Such a abstract data type can be implemented using a singly linked
list or array (Question: how would you implement these operations so
that the complexity constraints are honored?)

Algorithms may be described using abstract data types, since such an
abstractions precisely specify the expected behavior. The choice of
the data structure used to implement the abstract data type can be
delayed until the algorithm is actually implemented.

ADL & AG Data Structures and Algorithms 83 / 133

Some Data Structures to Represent a Set of Data

Sequences:

array, vector

linked list (singly-, doubly-)

stack
queue

priority queue.

double entry queue (a.k.a deque)

Associative array, search structures

hash table

self-balancing binary search tree

skip list

You pick a data structure according to the operations you need to
execute on your data and the complexity of these operations for this
data structures.

ADL & AG Data Structures and Algorithms 84 / 133

Some Operations on Sequences

v ←Access(S ,k) Return the kth element.

p ←Search(S ,v) Return a pointer (or index) to an element of S
whose value is v .

Insert(S ,x) Add element x to S .

Delete(S ,p) Delete the element of S that is at position (pointer or
index) p.

v ←Minimum(S) Return the minimum of S .

v ←Maximum(S) Return the maximum of S .

p′ ←Successor(S ,p) Return the position of the successor of (= the
smallest value greater than) the element at position p in S .

p′ ←Predecessor(S ,p) Guess.

These are just some operations we will study for all data structures
we present. Of course more operations exist (like sort, union, split,
...) and would deserve to be studied too.

ADL & AG Data Structures and Algorithms 85 / 133

Arrays

No need to present arrays

unsorted sorted
operation array array

v ←Access(S , k) Θ(1) Θ(1)
p ←Search(S , v) O(n) O(log n)

Insert(S , x) Θ(1) O(n)
Delete(S , p) Θ(1)4 O(n)

v ←Minimum(S) Θ(n) Θ(1)
v ←Maximum(S) Θ(n) Θ(1)

p′ ←Successor(S , p) Θ(n) Θ(1)
p′ ←Predecessor(S , p) Θ(n) Θ(1)

4Since the order does not matter, we can replace the element that is deleted
by the last element of the array.

ADL & AG Data Structures and Algorithms 86 / 133

Dynamic Arrays (1/2)

Array whose size can vary.

In C, we need to call realloc() when there is not enough unused
entries left for insertion. In C++, std::vector will perform
realloc() by itself. Reallocating an array requires Θ(n) time, since
it has to be copied. Inserting in an array, usually is a Θ(1) operation,
becomes Θ(n) if a reallocation is required.

You do not want to reallocate an array just to add one entry, because
insertion would then cost Θ(n) every time. What is a suitable
reallocation scheme?

We can study the amortized complexity of an insertion in a
sequence of insertions.

ADL & AG Data Structures and Algorithms 87 / 133

Dynamic Arrays (2/2)

Let us consider the case of an insertion that leads to reallocation,
with two di�erent ways to enlarge the array:

Add k new entries. There will be a reallocation every k insertions, so
the average cost of the last k insertions is

(k − 1)Θ(1) + 1Θ(n)

k
= Θ(n)

Double the size. Since the last reallocation there have been n/2− 1
insertions in Θ(1) followed by one insertion in Θ(n). The average
cost of the last n/2 insertions is

(n/2− 1)Θ(1) + 1Θ(n)

n/2
=

Θ(n) + Θ(n)

n
= Θ(1)

We say that insertion is in amortized Θ(1) when the operation is
usually in Θ(1), and the slow cases are infrequent enough so that
their cost can be amortized on the fast cases.

ADL & AG Data Structures and Algorithms 88 / 133

Lists

We distinguish between singly linked lists (where only the next item is
known) and doubly linked lists (where a predecessor is also known).

S.L.L. D.L.L.
operation unsorted sorted unsorted sorted

v ←Access(S , k) O(n) O(n) O(n) O(n)
p ←Search(S , v) O(n) O(n) O(n) O(n)

Insert(S , x) Θ(1) O(n) Θ(1) O(n)
Delete(S , p) O(n)1 O(n)1 Θ(1) Θ(1)

v ←Minimum(S) Θ(n) Θ(1) Θ(n) Θ(1)
v ←Maximum(S) Θ(n) Θ(1) Θ(n) Θ(1)

p′ ←Successor(S , p) Θ(n) Θ(1) Θ(n) Θ(1)
p′ ←Predecessor(S , p) Θ(n) O(n) Θ(n) Θ(1)

1In practice the deletion can be in Θ(1) if you know the previous element
somehow.

ADL & AG Data Structures and Algorithms 89 / 133

Stack and Queues

Stack Sequence in which insertions and deletions are always done at
the same end. Insert() and Delete() are usually called Push() and
Pop(). LIFO = Last In First Out

Usually implemented on top of an array or singly linked list.

Queue Sequence in which insertions and deletions are done at
opposite ends. Insert() and Delete() are usually called Push() and
Pop(). FIFO = First In First Out

Usually implemented on top of a singly linked list with tail
pointer. Insert at tail in Θ(1), delete at head with Θ(1).

Double ended queue (deque) Insertion and deletion can be done at
both ends.

Can be implemented using a doubly linked list. Insertion and
deletion in Θ(1).

ADL & AG Data Structures and Algorithms 90 / 133

Bounded Queues and Circular Arrays

If the size of a queue (simple or double ended) is bounded it can be
implemented e�ciently using a �circular array�.

3 7 2 85 1

tail head

In that case, access to the kth element can be done in Θ(1) instead
of Θ(n) with a list.

Access(S , k) = A[(head + k − 1) mod n]

The counterpart is that, Insert() and Erase() at position r become
O(min(r , n − r)) instead of O(1).

How can we extend this circular scheme to unbounded queues?

ADL & AG Data Structures and Algorithms 91 / 133

Unbounded Queues and Circular Arrays

How to add an entry to a circular array that is full?

1st idea Augment the size of the array. In practice: new memory
allocation then copy. The insertion becomes in Θ(n) when it
happens. Complexity stays in amortized Θ(1) with proper growth.

2nd idea Make a dynamic circular array of dynamic arrays that have
constant size. Only the arrays at both ends are not full.

• • •
tailhead

3 7 25 1

tail head

8 2 5 3 9 0

tail head

4 9 4 2

tailhead

It is again amortized Θ(1) because we sometimes (but less often)
have to reallocate the master array. This is the implementation of
the std::deque container in C++.

ADL & AG Data Structures and Algorithms 92 / 133

Priority Queues

The element removed from a priority queue is always the greatest.
Some say �Largest In, First Out� (but do not mistake with �LIFO =
Last In First Out�).

If the priority queue is done with a sorted list, then Push() is in
O(n) and Pop() in Θ(1).

If the priority queue is done with a heap, then Push() is in
O(log n) and Pop() in O(log n).

(To Pop() a heap: like in Heap Sort you remove the �rst value
of the heap, replace it by the last, and call Heapify to �x the
heap structure.)

Can you explain how to do Push() on a heap?

ADL & AG Data Structures and Algorithms 93 / 133

Push for Heap

Input: An array A[1..m] with heap property, a value v to insert,
Output: An array A[1..m + 1] with heap property and containing v .

HeapPush(A,m, v)
1 i ← m + 1
2 A[i]← v
3 while i > 1 and A[Parent(i)] < A[i] do
4 A[Parent(i)]↔ A[i]
5 i ← Parent(i)

In the worst case the number of operations is proportional to the
height of the heap, so T (n) = O(log n).

ADL & AG Data Structures and Algorithms 94 / 133

Associative Array

An associative array (or dictionary or map) is an abstract data type
that can be seen as a generalization of arrays for non-consecutive
indices. Because these indices may not be integers, we call these
keys. (These keys can be associated to auxiliary data as in sorting
algorithms.)

Typical operations:

Adding

Deleting

Searching (by key).

Updating (of auxiliary data).

In the sequel we shall not show the auxiliary data for simplicity, but
you have to assume that they follow the key every time it is copied
(but they are not used during comparisons).

ADL & AG Data Structures and Algorithms 95 / 133

Hash Table

Goal: represent a set F of items (the keys), let's say a subset of a
domain K. We want to quickly test membership to this subset.

If K = N, we can use an array to represent F . Assuming 0-based
array we then have n ∈ F i� A[n] 6= 0.
However if max(F) is big this array will take a lot of place even if |F|
is small.
Furthermore, this scheme won't work if K does not represent integers.

Idea: for any F ⊆ K, let's �nd a function f : K 7→ {0, . . . ,m} so we
can then test set-membership as follows: x ∈ F i� A[f (x)] 6= 0.
f has to be injective for this test to be correct (and such function f
can exist only if m − 1 ≥ |K|).
These membership tests are in Θ(1) if f is simple.

ADL & AG Data Structures and Algorithms 96 / 133

Injectivity in K or F
Given F = {"chat", "chien", "oie", "poule"} to map to
{0, . . . , 30}. Let's take the function f (mot) = (mot[2]−'a').

This functions distinguishes words of F by their third
letter.
f (chat) = 0
f (chien) = 8
f (oie) = 4
f (poule) = 20
It is not injective in K:
f (loup) = 20
A solution is to represent the key in the array. Then
x ∈ F i� A[f (x)] = x .
If m ≥ |F| we can �nd an injective function in F .

i A[i]
0 chat

1 /
2 /
3 /
4 oie
... /
8 chien
... /
20 poule
... /

ADL & AG Data Structures and Algorithms 97 / 133

Dearth of Injective Functions

Such injective function f can hardly be found by luck.

Let F be a set of n = 30 items that we want to represent in an array
of m = 40 entries.

There are 4030 ≈ 1048 functions from F to {0, . . . ,m − 1}. Among
these functions, only 40 · 39 · · · 11 = 40!/10! ≈ 2.1041 are injective.
We therefore have one against 5 million chances to pick an injective
function at random.

Another typical example of the dearth of injective functions is the
birthday problem: with 23 people, the probability that two people are
born on the same day is more than 1/2. Still the birthday function
o�ers 365 possible choices!

http://en.wikipedia.org/wiki/Birthday_problem

ADL & AG Data Structures and Algorithms 98 / 133

GPerf

When the set F is known beforehand, it is possible to �nd
(algorithmically) a function f that maps F to {0, . . . ,m} with
m − 1 ≥ F and without collision. Such a function is called a perfect
hashing function, and it is minimal if m − 1 = |F|.

The purpose of the tool GNU gperf is to �nd such functions. It
inputs a list of words to recognize, a value m, and produces a C �le
containing a function f and an array A with the words supplied at the
right place (i.e. such that A[f (w)] = w for any word w).

Other tools exist for the same task, e.g. CMPH (C Minimal Perfect
Hashing Library).

ADL & AG Data Structures and Algorithms 99 / 133

Hashing with Chaining

When a perfect hashing function is not available (either m is too
small, or F is always updated) two elements can be hashed to the
same index and we have to deal with a collision.

As with bucket sort, the easiest way is to keep
the list of possible values for each index in the
array.

E.g. F = {"chat", "chien", "oie", "poule",
"loup"}.
Then x ∈ F i� Search(A[f (x)], x) 6= 0.
This membership test is no longer Θ(1)
because you have to search the list. In the
worst case the size of this list is n = |F|. In the
best case you hope for n/m items on the list.

i A[i]
0 chat

1 /
2 /
3 /
4 oie
... /
8 chien
... /
20 poule, loup
... /

ADL & AG Data Structures and Algorithms 100 / 133

Chaining with Uniform Hashing

Uniform hashing is when you assume that f spreads keys uniformly in
{0, . . . ,m − 1}. (You have to make some hypotheses about the
distribution law in order to compute average complexity.)

For uniform hashing, search is in Θ(1 + n/m).

If you can arrange for the array size m to be proportional to the
number of keys n, then n/m = O(1) and search is in Θ(1).

Insertion is then also in amortized Θ(1) and deletion in Θ(1).
Reallocating the array requires to change the hashing function (since
m is changing) and to move all elements around to their new place.

ADL & AG Data Structures and Algorithms 101 / 133

Hashing Function Example: Division

f (x) = x mod m
Avoid a power of two such as m = 256 because it amounts to
ignoring the 8 lower bits of x , often those that change the most. A
common suggestion for m is a prime numbers away from powers of
two.
For instance to represent 3000 items with an average of 2 items per
list, you may choose m = 1543.
In an implementation of hashing table using this methode, you
usually �nd an hard-coded list of prime numbers to use. For instance
if you plan to double the size of the array during reallocation, you
may use the following prime number list for the successive values of
m: 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157,
98317, 196613, 393241, etc.

C++'s std::hash_map class uses this list and a hashing function
f (x) = g(x) mod m where g is given by user (to convert anything
to an integer) and m is a prime number from this list.ADL & AG Data Structures and Algorithms 102 / 133

Open Addressing

A compact hashtable encoding where all items are stored in the array,
without list nor pointers. Collisions are handled without chaining, but
you have to probe several locations until you �nd the right one.

In open adressing the hashing function f (x , i) takes a value x and an
iteration number i .

To insert x in the table �rst check if A[f (x , 0)] is free, otherwise try
A[f (x , 1)], then A[f (x , 2)], etc. We say we probe di�erent positions.
Function f should be such that f (x , i) covers the entire range
{0, . . . ,m − 1} when i covers {0, . . . ,m}. The order should depend
on key x .

Searching can be done in the same way until the value or an empty
entry is found.

Beware while deleting: why cannot you empty the entry?

ADL & AG Data Structures and Algorithms 103 / 133

Hashing Functions for Open Addressing

Linear probe h(x , i) = (h′(x) + i) mod m
Problem: a sequence of occupied entries tends to grows, making
the search longer.

Quadratic proble h(x , i) = (h′(x) + c1i + c2i
2) mod m

It is better, but here again the �rst probe determines the entire
sequence: h(x , 0) = h(x ′, 0) =⇒ h(x , i) = h(x ′, i).

Double hachage h(x , i) = (h1(x) + ih2(x)) mod m
This time h(x , 0) = h(x ′, 0) ; (x , i) = h(x ′, i).

ADL & AG Data Structures and Algorithms 104 / 133

Search Complexity in Open Addressing

The number of probes during an unsuccessful search is 1/(1− n/m)
assuming uniform hashing (i.e., all probe sequence over {1, . . . ,m}
are assumed to appear with the same probability).

Insertion also requires 1/(1− n/m) probes on this average.

If n/m is constant, we conclude that insertion, search, and deletion
are in Θ(1). In practice, m is of course not changed as often as n.

The point of open addressing is to get rid of pointers. This saves
memory, allowing to store larger table. The counterpart is that it is
slightly slower.

ADL & AG Data Structures and Algorithms 105 / 133

Critical Size of Hash Tables

The birthday problem tells us that if a hash table can represent N
entries, the number of elements to insert to get collisions with
probability p is

n(p,N) ≈
√
2N ln

(
1

1− p

)

Let us just remember a simpli�ed form:

n(0.5,N) ≈ 1.177
√
N = Θ(

√
N)

In other words, after
√
N values in a hash table, there is 1/2 chances

that there is a collision somewhere in the table.

ADL & AG Data Structures and Algorithms 106 / 133

Binary Search Trees

A binary tree whose nodes are labelled is a search tree if for any node
r labelled by v , all labels from the left subtree are ≤ v and all labels
from the right subtree are ≥ v .

7

4 9

6 8 10

4

6

8

7 9

10

All BST are not balanced. The complexity of search is O(h) where h
is the height of the tree. Finding minimum and maximum is also
O(h).

ADL & AG Data Structures and Algorithms 107 / 133

In�x Order

Traversing the tree in in�x order makes it possible to visit all keys in
increasing order.
In�xPrint(T , z)
1 if LeftChild(z) 6= NIL then
2 In�xPrint(T , LeftChild(z))
3 print key(z)
4 if RightChild(z) 6= NIL then
5 In�xPrint(T ,RightChild(z))

Pre�xPrint(T , z)
1 print key(z)
2 if LeftChild(z) 6= NIL then
3 In�xPrint(T , LeftChild(z))
4 if RightChild(z) 6= NIL then
5 In�xPrint(T ,RightChild(z))

Su�xPrint(T , z)
1 if LeftChild(z) 6= NIL then
2 In�xPrint(T , LeftChild(z))
3 if RightChild(z) 6= NIL then
4 In�xPrint(T ,RightChild(z))
5 print key(z)

ADL & AG Data Structures and Algorithms 108 / 133

Insertion in BST is Easy

Input: a BST T and a node z to insert
Output: the BST T updated to include z

TreeInsert(T , z)
1 y ← NIL

2 x ← Root(T)
3 while x 6= NIL do

4 y ← x

5 if key(z) < key(x)
6 then x ← LeftChild(x)
7 else x ← RightChild(x)
8 Parent(z)← y

9 if y = NIL then

10 Root(T)← z

11 else

12 if key(z) < key(y)
13 then LeftChild(y)← z

14 else RightChild(y)← z

T (h) = O(h)

ADL & AG Data Structures and Algorithms 109 / 133

Deletion (1/2)

Three cases to consider:

Deleting a leave is easy.

Deleting a node with one child: easy too.

Deleting a node with two children is harder: we should replace
the node by its successor, i.e. the minimum of the right tree
(that has to be deleted).

ADL & AG Data Structures and Algorithms 110 / 133

Deletion (2/2)

TreeDelete(T , z)
1 x ← NIL

2 if LeftChild(z) = NIL or RightChild(z) = NIL

3 then y ← z
4 else y ← TreeSuccessor(z)
5 if LeftChild(y) 6= NIL

6 then x ← LeftChild(y)
7 else x ← RightChild(y)
8 if x 6= NIL then Parent(x)← Parent(y)
9 if Parent(y) = NIL then
10 Root(T)← x
11 else
12 if y = LeftChild(Parent(y))
13 then LeftChild(Parent(y))← x
14 else RightChild(Parent(y))← x
15 if y 6= z then key(z)← key(y)

ADL & AG Data Structures and Algorithms 111 / 133

Complexity of BST Operations

Insert, Delete, Search, Predecessor, Successor, Minimum and
Maximum all run in O(h) and

blog nc︸ ︷︷ ︸
balanced

≤ h ≤ n︸︷︷︸
unbalanced

So all these algorithms are in O(n)...

However it can be shown that the average height of a randomly
constructed BST is in Θ(log n).

It would be best to modify these Insert() and Delete() operations so
that they preserve the balancing of the tree. Such a tree is called a
self-balancing tree.

ADL & AG Data Structures and Algorithms 112 / 133

Read-Black Trees

RBT are self-balancing trees in which each node has a bit indicating
its color: red or black. Some constraints on colors ensure that the
longest branch of the tree is at most twice longer that the smallest
branch. (This is balanced enough to ensure h = Θ(log n))

Here are the constraints:

A node is either black or red

Root and leaves (NIL) are black

The two children of a red node are black

All paths leaving a node down to a leave have the same number
of black nodes

The black height of a node x , denoted bh(x) is the number of black
nodes between x (excluded) and a leave in its descendants (included).

ADL & AG Data Structures and Algorithms 113 / 133

Example of RBT

NIL NIL NIL NIL NIL NIL

NIL 5 8 11

2 10 NIL NIL

7 20

12

ADL & AG Data Structures and Algorithms 114 / 133

Property

An RBT with n internal nodes has a height of at most b2 log(n + 1)c.

If you ignore red nodes in the tree, each black node has between
2 and 4 black children, and all branches have the same height h′.

The height for the complete tree is h ≤ 2h′ because there
cannot be more red nodes than black nodes on a branch.

The number of leaves on the tree is n + 1.
Therefore

n+1 ≥ 2h
′

=⇒ log(n+1) ≥ h′ ≥ h/2 =⇒ h ≤ 2 log(n+1)

Furthermore the minimal size of a branch is log(n + 1) (half the
height). Consequently, Search, Minimum, Maximum, Successor and
Predecessor are all in Θ(log n). It is not as obvious for Insert et
Delete.

ADL & AG Data Structures and Algorithms 115 / 133

Rotations

Insertion with TreeInsert do not preserve RBT properties. We can
�x this by changing the colors, and performing local rotations in the
tree.

p

y

x γ

βα

p

x

y

γβ

α

RightRotate

LeftRotate

These rotations can be applied to any BST: they preserve the in�x
order.

ADL & AG Data Structures and Algorithms 116 / 133

Left Rotation

LeftRotate(T , x)
1 y ← RightChild(x)
2 β ← LeftChild(y)
3 RightChild(x)← β
4 if β 6= NIL then Parent(β)← x
5 p ← Parent(x)
6 Parent(y)← p
7 if p = NIL

8 then Root(T)← y
9 else if x = LeftChild(p)
10 then LeftChild(p)← y
11 else RightChild(p)← y
12 LeftChild(y)← x
13 Parent(x)← y

T (n) = Θ(1)

ADL & AG Data Structures and Algorithms 117 / 133

Insertion in a RBT

Insert the node in the tree as if it was a BST, and give it the red
color. The property �the two children of a red node are black�
might be violated.

Fix the violation by recoloring the parents, and moving the
problem up until it can be �xed by one or two rotations.

ADL & AG Data Structures and Algorithms 118 / 133

Insertion of 9

5 8 11

9

2 10

7 20

12

12

2010

117

2 8

95

10

127

28

5 9

11 20

ADL & AG Data Structures and Algorithms 119 / 133

Insertion of 9

5 8 11

9

2 10

7 20

12

12

2010

117

2 8

95

10

127

28

5 9

11 20

ADL & AG Data Structures and Algorithms 119 / 133

Insertion of 9

5 8 11

9

2

7 20

12

12

2010

117

2 8

95

10

127

28

5 9

11 20

ADL & AG Data Structures and Algorithms 119 / 133

Insertion of 9

5 8 11

9

2

7 20

1212

2010

117

2 8

95

10

127

28

5 9

11 20

ADL & AG Data Structures and Algorithms 119 / 133

Three Cases to Handle: Case 1

Father and uncle are both red.
(In all cases, Greek letter represent subtrees with the same back
height.)

C

A D

Bα

β γ

δ ε

C

A D

Bα

β γ

δ ε

invert colors

of A, C and D

Continue from grandfather if the grand-grandfather is red.

ADL & AG Data Structures and Algorithms 120 / 133

Three Cases to Handle: Case 3

The father is red, the uncle is black, and the current node is not
aligned with the axe father�grandfather.

C

A δ

Bα

β γ

C

B δ

A γ

α β

rotation

A rotation can align son, father, and grandfather. The problem isn't
�xed, but it has been transformed into �case 3�.

ADL & AG Data Structures and Algorithms 121 / 133

Three Cases to Handle: Case 3

The father is red, the uncle is black, and the current node is aligned
with the axe father�grandfather.

C

B δ

A γ

α β

B

A C

α β γ δ

rotation +

invert B and C

After this correction the tree is �xed and follows the RBT constraints.

ADL & AG Data Structures and Algorithms 122 / 133

Complexity of Insertion

Add the (red) node with TreeInsert. Θ(h)

Apply case 1 at most h/2 times. O(h)

Apply case 2 at most once. O(1)

Apply case 3 at most once. O(1)

Finally we did Θ(h) = Θ(log n) operations.

ADL & AG Data Structures and Algorithms 123 / 133

RBTreeInsert
RBTreeInsert(T , z)
1 TreeInsert(T , z)
2 Color(z)← red

3 while Color(Parent(z)) = red do

4 if Parent(z) = LeftChild(Parent(Parent(z))) then

5 uncle ← RightChild(Parent(Parent(z)))
6 if Color(uncle) = red then





case 1

7 Color(Parent(z))← black

8 Color(uncle)← black

9 z ← Parent(Parent(z))
10 Color(z)← red

11 else if z = RightChild(Parent(z)) then


 case 212 z ← Parent(z)

13 LeftRotate(T , z)
14 else





case 3
15 Color(Parent(z))← black

16 Color(Parent(Parent(z)))← red

17 RightRotate(T ,Parent(Parent(z)))
18 else like �then�, but swap �Left� and �Right�

19 Color(Root(T))← black

ADL & AG Data Structures and Algorithms 124 / 133

RBT: Deleting

RBTreeDelete() can also be done in Θ(log n).
If the node to delete is red, TreeDelete can be used.
If it is black, the tree will have to be �xed in a way similar to
insertion (but with 4 cases to consider instead of 3).

ADL & AG Data Structures and Algorithms 125 / 133

Conclusion on RBT

Red-Black Trees can execute all the following operations in Θ(log n):

Insert

Delete

Minimum

Maximim

Successor

Predecessor

Furthermore Search is in O(log n).

On advantage over hash table is that the elements are sorted in the
structure: it is possible to output them in order with Θ(n) operations.

This data structure is used by std::map in C++.

ADL & AG Data Structures and Algorithms 126 / 133

Skip list

A generalization of the sorted list.

A probabilistic structure, with the same average complexity as RBT
(i.e. Θ(log n) on the average for all operations), and easier to
implement.

Example skip list with two levels:

1
2 3

4
5

6
7 8

9
•
• • •

•
• •

•
• • •

First locate the interval of the element you are looking for in the �rst
list, than go down one level to re�ne the search.

ADL & AG Data Structures and Algorithms 127 / 133

Two-Level Skip list

Where should we connect the two levels ?

We want regular spacing, but with wich stride?
Let t1 and t2 denote the sizes of both lists. Searching an element in
the skip list is in O(t1 + t2/t1). This sum is minimal when the two
terms are equal: t1 = t2/t1 in other words t1 =

√
t2.

1
2 3

4
5 6

7
8 9

•
• • •

•
• • • • •

√
n

√
n

√
n

√
n

n

The cost of searching is then proportional to 2
√
n = O(

√
n).

ADL & AG Data Structures and Algorithms 128 / 133

Skip List With More Levels

2 lists: 2 · √n
3 lists: 3 · 3

√
n

k lists: k · k
√
n

log n lists: log n · log n
√
n = log n · e 1

log n
ln n = log n · e ln 2 = 2 log n

1

2
3

4
5

6
7

8

9

•
•
•
• •

•
• •

•
•
• •

•
• •

Above example is an ideal skip list: searchs are always in Θ(log n).

How to perform an insertion?

ADL & AG Data Structures and Algorithms 129 / 133

Insertion in a skip list

To insert x in a skip list.

Make a search to �nd the place to insert x (in the lower level)

Insert x in the lower list (level 0).

With probability 1/2, add x to the above list (level 1).

If x was added to level 1, add it to level 2 with probability 1/2.

Repeat until destiny says to stop, or you reach the top list.

Eventually x appears

at level 0 with probability 1

at level 1 with probability 1/2

at level 2 with probability 1/4

at level k with probability 2−k

ADL & AG Data Structures and Algorithms 130 / 133

Analysis of the Complexity of Search (1/2)

We evaluate the cost of Search by counting the moves backwards
from the end: from level 0 we have to go back to level k , moving left
if you cannot move up.

Let C (k) denote the cost of moving up k levels, and let p = 1/2 be
the probability that there is a level above the current node.
Two cases may occur:

with probability p we go up one level, and there are k − 1 levels
left to climb (cost: 1 + C (k − 1) moves)

with probability 1− p we cannot move up: we move left once
and there are still k levels to climb (cost: 1 + C (k) moves)

We can thus write:

C (0) = 0

C (k) = (1− p)(1 + C (k)) + p(1 + C (k − 1))

ADL & AG Data Structures and Algorithms 131 / 133

Analysis of the Complexity of Search (2/2)

C (0) = 0

C (k) = 1/p + C (k − 1) = k/p

This is an upper bound for moving up n levels, because if we reach
the head of the list before reaching the top-level the probability to
move up becomes 1.

Let L(n) denote the height of a skip list of n items. The cost to
move to the last level is C (L(n)− 1).

In our case, L(n) = log n. Thus we have

T (n) = O

(
(log n)− 1

p

)
= O(log n)

ADL & AG Data Structures and Algorithms 132 / 133

Complexity of Search Data Structures

hash
operation table RBT skip list

p ←Search(S , v) Θ(1) avg. O(log n) O(log n) avg.
Insert(S , x) Θ(1) am. Θ(log n) O(log n) avg.
Delete(S , p) Θ(1) am. Θ(log n) Θ(1)

v ←Minimum(S) Θ(n) Θ(log n) Θ(1)
v ←Maximum(S) Θ(n) Θ(log n) Θ(1)

p′ ←Successor(S , p) Θ(n) Θ(log n) Θ(1)
p′ ←Predecessor(S , p) Θ(n) Θ(log n) O(log n) avg. or Θ(1)

am. = amortized; avg. = on average.

ADL & AG Data Structures and Algorithms 133 / 133

