
Asymptotic Notations
O(g(n)) = { f (n) | ∃c ∈ R+?, ∃n0 ∈N, ∀n ≥ n0, 0 ≤ f (n) ≤ cg(n)}
Ω(g(n)) = { f (n) | ∃c ∈ R+?, ∃n0 ∈N, ∀n ≥ n0, 0 ≤ cg(n) ≤ f (n)}
Θ(g(n)) = { f (n) | ∃c1 ∈ R+?, ∃c2 ∈ R+?, ∃n0 ∈N, ∀n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}

lim
n→∞

f (n)
g(n)

= ∞ ⇐⇒ g(n) ∈ O( f (n)) et f (n) 6∈ O(g(n)) f (n) ∈ O(g(n)) ⇐⇒ g(n) ∈ Ω( f (n))

lim
n→∞

f (n)
g(n)

= 0 ⇐⇒ f (n) ∈ O(g(n)) et g(n) 6∈ O( f (n)) f (n) ∈ Θ(g(n)) ⇐⇒
{

f (n) ∈ Ω(g(n))
g(n) ∈ Ω( f (n))

lim
n→∞

f (n)
g(n)

= c ∈ R+? ⇐⇒ f (n) ∈ Θ(g(n))

Order of Growth
constant Θ(1)

logarithmic Θ(log n)
polylogarith. Θ((log n)c) c > 1

Θ(
√

n)
linear Θ(n)

Θ(n log n)

quadratic Θ(n2)

Θ(nc) c > 2
exponential Θ(cn) c > 1

factorial Θ(n!)
Θ(nn)

Useful identities
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= Θ(log n)

n! =
√

2πn
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General Theorem for Recurrence Equations
Given T(n) = aT(n/b) + f (n) with a ≥ 1, b > 1

• If f (n) = O(nlogb a−ε) for some ε > 0, then T(n) = Θ(nlogb a).
• If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a log n).
• If f (n) = Ω(nlogb a+ε) for some ε > 0, and if a f (n/b) ≤ c f (n) for

some c < 1 and for all n large enough, then T(n) = Θ( f (n)).

(Note: it is possible that none of the 3 cases apply.)

Various definitions
The complexity of a problem is that of the best

algorithm that solves it.

A stable sort keeps the relative order of equal
elements.

In place sorts use O(log n) auxiliary memory.

Trees

leaves ( f )

internal nodes (ni)
x

depth of x
height of the tree (h)

(nodes n = ni + f )

For any binary tree:
n ≤ 2h+1 − 1 h ≥ dlog2(n + 1)− 1e = blog2 nc si n > 0

f ≤ 2h h ≥ dlog2 f e si f > 0
f = ni + 1 (if the tree is complete = all internal nodes have 2 children)

In a complete binary tree a leave is either at depth blog2(n + 1)− 1c
or at depth dlog2(n + 1)− 1e = blog2 nc. For these trees h = blog2 nc.
A perfect tree (= complete, with all leaves from last level filled on the
left) can be stored in an array.

a

b e

c d f

a b e c d f

1 2 3 4 5 6 7 8

Indices are related with:
Father(y) = by/2c

LeftChild(y) = y× 2
RightChild(y) = y× 2 + 1

Probabilistic reminders
Expected value of a random variable X: It’s its mean.

E[X] = ∑
x

Pr{X = x}

Variance: Var[X] = E[(X− E[X])2] = E[X2]− E2[X]

Binomial distribution: Throw n balls to r baskets, with
equal chances to land in each basket (p = 1/r).
If Xi is the number of balls in basket i. We have
Pr{Xi = k} = (n

k)pk(1− p)n−k. Also E[Xi] = np and
Var[Xi] = np(1− p).
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Binary Heaps
A binary heap is a perfect tree with the heap property: a node’s label is greater than that of its children.

In the following operations, perfect trees
are more efficiently stored as arrays.

Insertion: add a node to the end of
the heap, swap it with its father as
long as it is not in correct order,
moving up to the root.
Tinsert = O(log n)

18

12 11

6 10 9 4
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?

?
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13 11

6 12 9 4

2 3 8 10

Deleting the root: replace the
root with last node; swap it
with the greatest child
as long as it is greater,
moving down.
Trem = O(log n)

18

13 11

6 12 9 4

2 3 8 10
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Construction: interpret the
array as an incorrect heap,
then fix it up going up
from the leaves (seen
as correct heaps) to
q the root.
Tbuild = Θ(n)

8

10 3

12 2 11 18

4 9 6
? ?

?

8

10 18

12 6 11 3

4 9 2
?

?

8

12 18

10 6 11 3

4 9 2

?

?

?

Red-Black Trees
RBT are binary search trees where: (1) a node is red or black , (2) root and leaves (NIL) are black, (3) chil-
dren of red nodes are black, and (4) from any node all paths descending to a leave have the name number
of black nodes (= the black height). These constrains keep the tree self-balanced with a height in Θ(log n).

Insertion of a value: insert a node as red at the position it would have in a binary search tree. If the fa-
ther is red, consider the following three cases in order.

Case 1: If father and uncle of cur-
rent node are both red, invert colors
of father uncle, and grandfather.
Repeat this transformation from the
grandfather if its father is red too.

Case 2: If the father is red, the un-
cle is black, and the current node is
not in the axe father–grandfather, a
rotation will align the current node,
its father and its grandfather.

Case 3: If the father is red, the un-
cle is black, and the current node is
aligned with its father and grand-
father, a rotation and a color inver-
sion will restore the RBT properties.

(In all cases Greek
letters denote sub-
trees with identical
black height.)

C

A D

Bα

β γ

δ ε

C

A D

Bα

β γ

δ ε

invert the colors
of A, C & D (case 1)

C

A δ

Bα

β γ

C

B δ

A γ

α β

B

A C

α β γ δ

rotate
(case 2)

rotate + inv. col. of B & C
(case 3)


