(© 2010 Alexandre DURET-LUTZ <adl@lrde.epita. fr>. License: Creative Commons [by-nc-sa]

(Asymptotic Notations
O(g(n)) ={f(n) | 3c e R™, Ing € N, Vn > ny, 0 < f(n) < cg(n)}
Q(g(n)) ={f(n) | Je € R™, Ing € N, Vn > np, 0 < cg(n) < f(n)}
O(g(n)) ={f(n) | Jey e R™*, e € R™, Ing € N, Vi > np, 0 < c19(n) < f(n) < cag(n)}
, n
tim L0 — oo g(n) € O(f(n) et (n) # Olg(m)) f(n) € Olg(n)) <= g(n) € ()
. f(n) f(n) € O(g(n))
lim —< =0 <= f(n) € O(g(n)) et g(n) € O(f(n n) € O(gn)) <
: f(Tl) —+*
lim =ceR™ < f(n) € Og(n
L n—o0 g(n) f() (g<)))
e Y . p
Order of Growth General Theorem for Recurrence Equations
constant | ©(1) Given T(n) =aT(n/b)+ f(n) witha>1,b>1
logarithmic | ©(log 1) o If f(n) = O(n'8 =€) for some & > 0, then T(n) = O(n'°8: 7).
polylogarith. @((logn)c) c>1 o If f(n) = @(nlogb“), then T(n) — @(nlogbalogn),
O(v/n) o If f(n) = Q(n'°87+¢) for some e > 0, and if af(n/b) < cf(n) for
linear | ©() some ¢ < 1 and for all n large enough, then T(n) = O(f(n)).
O(nlogn) L (Note: it is possible that none of the 3 cases apply.))
4)
quadratic | ©(n?)
O(n°) c>2 Trees
exponential | ©(c") c>1 internal nodes (ni) “f==2/"_
. ‘ depth of x
factorial ®(ni> height of the tree (h) & J P
L O(n") (nodes n = ni + f)) leaves (f)
e : o
Useful identities For any binary tree:
Zn:k:n(n+1) n<2tl 1 h > [log,(n+1)—1] = |log,n] sin >0
=0 2 f<ot h> [log, f]sif>0
n £ f = ni+ 1(if the tree is complete = all internal nodes have 2 children)
Z Kk = six #1 o
=0 x—1 In a complete binary tree a leave is either at depth |log,(n+1) — 1|
o 1 . or at depth [log,(n +1) — 1] = [log, n]. For these trees h = |log, n|.
Z X = 1—x sifx] <1 A perfect tree (= complete, with all leaves from last level filled on the
f:o left) can be stored in an array.
X . a . 1
Z kxk = si |x] <1 Indices are related with:
1—x)2 AN N
S 4 \/e [alblelc[a[f[[] Father(y) = [y/2]
y © = ©(logn) C/ \Cl . 234 5 6 7 g LeftChild(y) =y x2
k=1 RightChild(y) =y x2+1
| — \/27 " 1+0 1 N 7 1. 4 .
= vam () (1+0 (5) Probabilistic reminders

Y

Various definitions

The complexity of a problem is that of the best
algorithm that solves it.

A stable sort keeps the relative order of equal
elements.

In place sorts use O(logn) auxiliary memory.

Expected value of a random variable X: It’s its mean.
E[X] =) Pr{X =x}
X

Variance: Var[X] = E[(X — E[X])?] = E[X?] — E?[X]

Binomial distribution: Throw #n balls to r baskets, with
equal chances to land in each basket (p 1/7).
If X; is the number of balls in basket i. We have
Pr{X; =k} = (})p*(1 — p)"~*. Also E[X;] = np and

Var[Xi] = np(1—p).)

-

Binary Heaps
A binary heap is a perfect tree with the heap property: a node’s label is greater than that of its children.

In the following operations, perfect trees
are more efficiently stored as arrays.

Insertion: add a node to the end of ? @ _— @ @

the heap, swap it with its father as

long as it is not in correct order, e , 0 ° G @ e °

moving up to the root.
Tinsert = O(log 11)

Deleting the root: replace the
root with last node; swap it
with the greatest child
as long as it is greater,
moving down

Trem.:O(logn.) ee e @ ga G @ ee
@)

Construction: interpret the 78
array as an incorrect heap, ~-
then fix it up going up | 10\ @
from the leaves (seen o

/ \

. ?

as correct heaps) to ,’ N . @ ‘ @ Q

q the root. 12 @ e @ e
Touila = (1) @@@ @@ @@

L 4

N N\

Red-Black Trees

RBT are binary search trees where: (1) a node is or , (2) root and leaves (NIL) are black, (3) chil-
dren of red nodes are black, and (4) from any node all paths descending to a leave have the name number
of black nodes (= the black height). These constrains keep the tree self-balanced with a height in ©(logn).

Insertion of a value: insert a node as red at the position it would have in a binary search tree. If the fa-
ther is red, consider the following three cases in order.

Case 1: If father and uncle of cur- é invert the colorg
rent node are both red, invert colors

’ of A, C & D (case'1)
of father uncle, and grandfather.
Repeat this transformation from the

grandfather if its father is red too.

(In all cases Greek
letters denote sub-
trees with identical
black height.)

Case 2: If the father is red, the un- !
cle is black, and the current node is
not in the axe father—grandfather, a
rotation will align the current node,
its father and its grandfather.

rotate rotate + inv. col. of B & C

(case 2) (case 3) V4

Case 3: If the father is red, the un-
cle is black, and the current node is
aligned with its father and grand-
father, a rotation and a color inver-
sion will restore the RBT properties.

- J

