Asymptotic Notations

$$
\begin{aligned}
\mathrm{O}(g(n)) & =\left\{f(n) \mid \exists c \in \mathbb{R}^{+\star}, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}, 0 \leq f(n) \leq c g(n)\right\} \\
\Omega(g(n)) & =\left\{f(n) \mid \exists c \in \mathbb{R}^{+\star}, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}, 0 \leq c g(n) \leq f(n)\right\} \\
\Theta(g(n)) & =\left\{f(n) \mid \exists c_{1} \in \mathbb{R}^{+\star}, \exists c_{2} \in \mathbb{R}^{+\star}, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\} \\
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty & \Longleftrightarrow g(n) \in \mathrm{O}(f(n)) \text { et } f(n) \notin \mathrm{O}(g(n)) \quad f(n) \in \mathrm{O}(g(n)) \Longleftrightarrow g(n) \in \Omega(f(n)) \\
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \Longleftrightarrow f(n) \in \mathrm{O}(g(n)) \text { et } g(n) \notin \mathrm{O}(f(n)) \quad f(n) \in \Theta(g(n)) \Longleftrightarrow\left\{\begin{array}{l}
f(n) \in \Omega(g(n)) \\
g(n) \in \Omega(f(n))
\end{array}\right. \\
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c & \in \mathbb{R}^{+\star} \Longleftrightarrow f(n) \in \Theta(g(n))
\end{aligned}
$$

Order of Growth

constant	$\Theta(1)$	
logarithmic polylogarith.	$\Theta(\log n)$	
	$\Theta\left((\log n)^{c}\right)$	$c>1$
	$\Theta(\sqrt{n})$	
linear	$\Theta(n)$	
	$\Theta(n \log n)$	
quadratic	$\Theta\left(n^{2}\right)$	
	$\Theta\left(n^{c}\right)$	$c>2$
exponential factorial	$\Theta\left(c^{n}\right)$	$c>1$
	$\Theta(n!)$	
	$\Theta\left(n^{n}\right)$	

Useful identities

$$
\sum_{k=0}^{n} k=\frac{n(n+1)}{2}
$$

For any binary tree:

$$
\begin{array}{ll}
n \leq 2^{h+1}-1 & h \geq\left\lceil\log _{2}(n+1)-1\right\rceil=\left\lfloor\log _{2} n\right\rfloor \text { si } n>0 \\
f \leq 2^{h} & h \geq\left\lceil\log _{2} f\right\rceil \text { si } f>0
\end{array}
$$

$$
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1} \quad \text { si } x \neq 1
$$

$$
f=n i+1 \text { (if the tree is complete }=\text { all internal nodes have } 2 \text { children })
$$

In a complete binary tree a leave is either at depth $\left\lfloor\log _{2}(n+1)-1\right\rfloor$

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} \quad \text { si }|x|<1
$$ or at depth $\left\lceil\log _{2}(n+1)-1\right\rceil=\left\lfloor\log _{2} n\right\rfloor$. For these trees $h=\left\lfloor\log _{2} n\right\rfloor$.

A perfect tree (= complete, with all leaves from last level filled on the

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}} \quad \text { si }|x|<1
$$ left) can be stored in an array.

$$
\sum_{k=1}^{n} \frac{1}{k}=\Theta(\log n)
$$

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Indices are related with:
$\operatorname{Father}(y)=\lfloor y / 2\rfloor$
LeftChild $(y)=y \times 2$
$\operatorname{RightChild}(y)=y \times 2+1$

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right)
$$

Probabilistic reminders

Expected value of a random variable X : It's its mean. $\mathrm{E}[X]=\sum_{x} \operatorname{Pr}\{X=x\}$

Variance: $\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}^{2}[X]$
Binomial distribution: Throw n balls to r baskets, with equal chances to land in each basket ($p=1 / r$). If X_{i} is the number of balls in basket i. We have $\operatorname{Pr}\left\{X_{i}=k\right\}=\binom{n}{k} p^{k}(1-p)^{n-k}$. Also $E\left[X_{i}\right]=n p$ and $\operatorname{Var}\left[X_{i}\right]=n p(1-p)$.

Binary Heaps

A binary heap is a perfect tree with the heap property: a node's label is greater than that of its children.
In the following operations, perfect trees are more efficiently stored as arrays.

Insertion: add a node to the end of the heap, swap it with its father as long as it is not in correct order,
 moving up to the root.
$T_{\text {insert }}=\mathrm{O}(\log n)$
Deleting the root: replace the root with last node; swap it with the greatest child as long as it is greater, moving down.
$T_{\text {rem }}=\mathrm{O}(\log n)$

Construction: interpret the array as an incorrect heap, from the leaves (seen as correct heaps) to q the root. $T_{\text {build }}=\Theta(n)$

!

Red-Black Trees

RBT are binary search trees where: (1) a node is red or black, (2) root and leaves (NIL) are black, (3) chitdren of red nodes are black, and (4) from any node all paths descending to a leave have the name number of black nodes (= the black height). These constrains keep the tree self-balanced with a height in $\Theta(\log n)$.
Insertion of a value: insert a node as red at the position it would have in a binary search tree. If the fathen is red, consider the following three cases in order.
Case 1: If father and uncle of current node are both red, invert colors of father uncle, and grandfather.
Repeat this transformation from the grandfather if its father is red too.
Case 2: If the father is red, the unle is black, and the current node is not in the axe father-grandfather, a rotation will align the current node, its father and its grandfather.
Case 3: If the father is red, the unle is black, and the current node is aligned with its father and grandfather, a rotation and a color inversion will restore the RBT properties.

