
Data Structures and Algorithms

Tutorial 2: Shuffling an Array

Naive Shuffle
Consider the following algorithm to Shuffle an array: draw elements randomly from the original
array A, and mark taken elements using an array C so we don’t take them away. To chose an element,
just call RANDOM to generate a new index as long as the corresponding element has already been
taken. We will assume that calls to RANDOM use a constant time to return values following a uniform
distribution.

Input: an array A
Output: a shuffled copy of A

NAIVESHUFFLE(A)
1 n← length(A)
1 for i← 1 to n do C[i]← 0
2 for i← 1 to n do
3 do
4 j←RANDOM(1, n)
5 until C[j] = 0
6 C[j]← 1
7 B[i]← A[j]
8 return B

Questions:

1. Explain why this algorithm may not terminate.

2. Among the cases where the algorithm do terminate, what is the run-time complexity of the best
case scenario to shuffle an array of size n with this algorithm?

3. Let ti be a random variable (or stochastic variable) denoting the number of calls to RANDOM during
the i-th iteration.

(a) The probability that the second iteration makes only one call to RANDOM is

Pr{t2 = 1} = n− 1
n

because there are n− 1 possible free values to choose from the n. What is the probability
Pr{ti+1 = k + 1} to make k + 1 calls to RANDOM (that means k unlucky random calls
followed by 1 good call) after i values have already been taken?

(b) Deduce the expected value E[ti+1 − 1].

(c) Finally give the order (using Θ notation) of the average number of calls to RANDOM:
∑n

i=1 E[ti].

4. Among all scenarios what is the probability of getting a best case?

1



The Modern Fisher-Yates Shuffle
This shuffle is also known as the Knuth Shuffle.

Input: an array A
Output: the array A shuffled in place

FISHERYATESSHUFFLE(A)
1 n← length(A)
2 for i← 1 to n− 1 do
3 j←RANDOM(i, n)
4 A[i]↔ A[j]

Questions:

1. Explain why this algorithm always terminates.

2. What is the run-time complexity of this algorithm?

3. How can we justify that this algorithm is unbiased? (i.e., That it can generate all permutation
with equal chance.)

Inside-Out Fisher-Yates Shuffle
Sometimes you do not want an array to be shuffle in place. This version of the algorithm will shuffle
the array as it is being copied.

Input: an array A
Output: a shuffled copy of A

INSIDEOUTFISHERYATESSHUFFLE(A)
1 n← length(A)
2 B[1]← A[1]
3 for i← 2 to n do
4 j←RANDOM(1, i)
5 B[i]← B[j]
6 B[j]← A[j]
7 return B

Questions:

1. Is this algorithm is unbiased?

2. What is its run-time complexity?

3. Such a shuffle could also be done by copying A on B and then calling FISHERYATESSHUT-
TLE(B). What would be the complexity of doing that?

4. Why would we prefer INSIDEOUTFISHERYATESSHUFFLE over copy+FISHERYATESSHUTTLE?

2


