An Introduction to Model Checking

Alexandre Duret-Lutz

23 August 2010
IT Jodhpur

http://www.lrde.epita.fr/~adl/ens/mc/iitj.pdf

Alexandre Duret-Lutz An Introduction to Model Checking 1/33

http://www.lrde.epita.fr/~adl/ens/mc/iitj.pdf

Formal Verification

tests? :
system properties

not exhaustive!

Alexandre Duret-Lutz An Introduction to Model Checking 2 /33

Formal Verification

system properties

model of the system model of the properties

Alexandre Duret-Lutz An Introduction to Model Checking 2 /33

Formal Verification

system properties

simulation? .
model of the system model of the properties

not exhaustive!

Alexandre Duret-Lutz An Introduction to Model Checking 2 /33

Formal Verification

system properties

formal .
model of the system ¢ » model of the properties

verification

Alexandre Duret-Lutz An Introduction to Model Checking 2 /33

Formal Verification

system properties
, formal :
model of the system & ——— model of the properties
verification
I3 4
b 4
I3 4
IS 4
> 4
N 4
'S 4
'S 4
theorem proving model checking

Alexandre Duret-Lutz An Introduction to Model Checking 2 /33

Theorem Proving

© Describe the system in a way that allows reasoning

© Prove property by logical reasoning

This can be entirely manual, or using the help of a theorem prover
(e.g. Coq) that is not fully automatic.

Problem: it is hard to produce a counterexample when a theorem is
false.

Research work in the area: new proof systems, study of the expressive
power of various logics...

Alexandre Duret-Lutz An Introduction to Model Checking 3/33

Model checking

An automatic approach to formal verification.
An exhaustive verification of all behaviors of a model.

The catch: the model has to be abstract enough (i.e. not too
detailed) to allow its complete exploration.

Alexandre Duret-Lutz An Introduction to Model Checking 4 /33

Example: an Algorithm for Mutual Exclusion

Global variables: reqp and req,.

Process P (infinite loop) Process Q (infinite loop)
1. regp <1 1. reqgg <1

2. wait(reqg = 0) 2. wait(reqp = 0)

3. Critical Section 3. Critical Section

4. reqp <0 4. reqp < 0

Initial state: P =1, @ =1, reqp =0, reqy = 0.

Properties to check:
© At any time, there is at most one process in Critical Section.

© Any process requesting entrance to the CS will eventually enter
it.

© The order of entrances to the CS should follow the order of
requests.

Alexandre Duret-Lutz An Introduction to Model Checking 5 /33

Example: State Space or Accessibility Graph

P=1,reqp =0

Q=1reqq=0

Alexandre Duret-Lutz An Introduction to Model Checking 6 /33

Example: State Space or Accessibility Graph

P=1,reqp =0

—
Q=1reqq=0

@

P=2reqp =1

Q=1reqp=0

l

P=3,reqp =1

Q=1reqe =0

\

P=4reqp =1

Q=1reqe =0

Alexandre Duret-Lutz An Introduction to Model Checking 6 /33

Example: State Space or Accessibility Graph
ey

P=1,reqp =0
Q=2reqqg =1

P=1,reqp =0
Q=3,reqq =1

P=1,reqp =0
Q=4,reqg =1

P=2reqp =1

Q=1reqp=0

l

P=3,reqp =1

Q=1reqe =0

\

P=4reqp =1

Q=1reqe =0

Alexandre Duret-Lutz

An Introduction to Model Checking

6/ 33

Example: State Space or Accessibility Graph
ey

P=1,reqp =0
Q=2reqqg =1

P=1,reqp =0
Q=3,reqq =1

P=1,reqp =0
Q=4,reqg =1

L

|

|

P=2reqp =1

Q=1reqp=0

P=2reqp =1

Q=2reqpg =1

P=2reqp =1
Q=3,reqg =1

P=2reqp =1
Q=4,reqqg =1

l N

P=3,reqp =1

Q=1reqe =0

P=3,reqp =1

Q=2reqq =1

N

L/

P=4reqp =1

Q=1reqe =0

P=4,reqp =1

Q=2reqq =1

Alexandre Duret-Lutz

An Introduction to Model Checking

6/ 33

Property 1

At any time, there is at most one process in CS.
Translation: there is no state with P = 3 and Q = 3.
It is true.

To check this property we need to explore the entire state space once.
We only need to know the set of states, not how they are connected.

Alexandre Duret-Lutz An Introduction to Model Checking 7 /33

Property 2

Any process requesting entrance to CS will eventually enter it.

Translation: any execution that visits a state with P = 2 should later
visit a state with P = 3; likewise for @ =2 and Q = 3.

It is false.

The state

P=2reqp =1
Q=2reqqg =1

has no successor (it is a deadlock).

To check this property, we have to know the entire graph (states
alone are not enough).

Alexandre Duret-Lutz

An Introduction to Model Checking 8 /33

Property 3

The order of entrances into the CS follow the order of requests.

Translation: any execution path that sees a state with
P =2 A Q = 1 should not visit any state with @ = 3 before visiting
a state with P = 3 (4 symmetric property for Q).

It is true if we ignore the deadlock.

Same kind of verification as property 2.

Alexandre Duret-Lutz An Introduction to Model Checking 9 /33

A Formalization

@ Represent the system using a finite automaton.
@ Represent the property using a temporal logic formula.

@ To compare these two objects, convert the temporal logic
formula into an automaton.

@ Some work on the two automata will tell us if they are
“compatible”.

Alexandre Duret-Lutz An Introduction to Model Checking 10 / 33

Propositional Logic: the Present

Propositional logic formulas can be use characterize one instant.

r: red light on
y: yellow light on
g: green light on

fAyAg:g,f/\ﬁyAﬁg:',ﬁfAﬁy/\g:!, '

How can we say that a precedes ' ? '

How can we say that the system is not always @ ?

= we need to make time apparent in the formula

Alexandre Duret-Lutz An Introduction to Model Checking 11 / 33

Linear-time Temporal Logic (LTL) Operators

Let f and g be two propositional logic formulas:

Present f @—Q O—> é
Net X O -O—O—C

Alexandre Duret-Lutz An Introduction to Model Checking 12 / 33

Linear-time Temporal Logic (LTL) Operators

Let f and g be two propositional logic formulas:

Present f @—Q O—> é

Next Xf

o~ o—0—
obally G ¢ (R FRE OHEORORERN
Finlly Ff OO —O—O~F -0

Alexandre Duret-Lutz An Introduction to Model Checking 12 / 33

Linear-time Temporal Logic (LTL) Operators

Let f and g be two propositional logic formulas:

Present f O—> é

Net X7 O~ O—O—C
Globally Gf e 0 e e (
Finally Ff

QL0
Until w (F W6)0—0
IR0~

T

it

Releases f R g

Lutz An Introducti 12 / 33

LTL: Examples

Next X f fis true at next instant
Globally Gf f it true at all instants
Finally Ff f will be true eventually (now or in the future)
Until fUg f stays true until g becomes true

~G(rA—y A—g): the system is not always

G((-rAy AN—g) = X(rA—y A—g)): a always imm. flw'd by '

GF(-rA—-yAg): the systems is infinitely often

These formulas can be translated into automata.

Alexandre Duret-Lutz An Introduction to Model Checking 13 / 33

TGBA: Generalized Biichi Automata

A Transition-based Generalized Biichi Automata has:
@ a set of states, with a designated initial state,

@ a set of transitions between these states, labeled by propositional
logic formulas,

@ a set of sets of transitions, called acceptance sets.
An infinite path in this automaton is accepted if it visits infinitely
often a transition for each acceptance sets.

pPAq

pVgq

p
O
RO

Alexandre Duret-Lutz An Introduction to Model Checking 14 / 33

Example of TGBA for G(d — Fr)

rv -d T

Alexandre Duret-Lutz An Introduction to Model Checking 15 / 33

Product between a System and a TGBA

—~(@)—(%)
(=)

® a\/b‘ ?—'a

Alexandre Duret-Lutz An Introduction to Model Checking 16 / 33

Product between a System and a TGBA

—~(@)—(%) *P
o Y

O—0O
~O—
o

Alexandre Duret-Lutz An Introduction to Model Checking 16 / 33

Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Ampc) = A-p
Z(An) N Z(A-y)

State—space automaton
Au

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample

Alexandre Duret-Lutz An Introduction to Model Checking 17 / 33

Tableau Rules for Propositional Logic

formula set 15t child 2" child

ru{-T} ru{L}

ru{-_} ru{T}

ru{-—f} ru{f}

ru{f g} ru{f, g}

ru{fvg} ru{f} ru{g}
ru{=(fng)}t| TuU{-f} ru{-g}
ru{=(fveg)}t | FTu{-f g}

Alexandre Duret-Lutz An Introduction to Model Checking

Tableau for = with ¢ =~(-AvB) v (~(AAr C)V (B A C))

{~(=(=AV B) V (~(AAC)V (BAC))}
|
(

{==(=AV B),~(=(AANC)V (BAC))}

{~AV B, ~(~(AA C)V (B A C))}

{—\A\/B —\—\(A C) (BAC)}

l
A
l
A
l
{=AV B,ANC,~(BAC)}
{ﬁAvB7A,lC -(BAC)}
\

{(-A,A,C,~(BAC)} {B,AC,~(BAC)}

{B,A,C,-B} {B,A,C,~C}

Alexandre Duret-Lutz An Introduction to Model Checking

LTL and Automata

Xa

aUb

aUb=bVv(anX(aUb))

Alexandre Duret-Lutz An Introduction to Model Checking

Tableau Rules for Propositional Logic

formula set 15t child 2" child

ru{-T} ru{L}

ru{-_} ru{T}

ru{-—f} ru{f}

ru{f g} ru{f, g}

ru{fvg} ru{f} ru{g}
ru{=(fng)}t| TuU{-f} ru{-g}
ru{=(fveg)}t | FTu{-f g}

Alexandre Duret-Lutz An Introduction to Model Checking

Tableau Rules for Propositional Logic

formula set 15t child 2" child
ru{-T} ru{L}

ru{-_L} ru{T}

ru{-—f} ru{f}

ru{f g} ru{f, g}

ru{fvg} ru{f} ru{g}
Fru{-(frng)t| TU{-f} ru{-g}
Fru{-(fveg)} | TU{~f, ~g}

ru{-Xfr} ru{xX-r}

ru{fUg} ru{g} ru{f,X(fUg),Pg}
ru{-(fUg)} |[TU{~f,~g} Tu{-g X(fUg)}

P g is a promise that g will be fulfilled

Alexandre Duret-Lutz An Introduction to Model Checking

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1%t child 2n child
ru{fnang}|Tu{f,g}

ru{fvg}| ru{f} ru{g}
ru{fUg}| rTuf{gt TU{f,X(fUg),Pg}

{(Xa) A (bU-a)}

Alexandre Duret-Lutz An Introduction to Model Checking 22 /33

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1% child 27 child
ru{fnang}|Tu{f,g}

ru{fvg}| ru{f} ru{g}
ru{fUg}| ru{gt TuU{f,X(fUg),Pg}

{(Xa) A (bU-a)}

{Xa,bU—a}

N

{Xa, ma} {Xa, b,X(bU-a), P-a}

Alexandre Duret-Lutz An Introduction to Model Checking 22 /33

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1% child 27 child
ru{fnang}|Tu{f,g}

ru{fvg}| ru{f} ru{g}
ru{fUg}| ru{gt TuU{f,X(fUg),Pg}

{(Xa) A (bU-a)}

{Xa,bU—a}

N

{Xa, ma} {Xa, b,X(bU-a), P-a}

{a}

Alexandre Duret-Lutz An Introduction to Model Checking 22 /33

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1% child 27 child
ru{fnang}|Tu{f,g}

ru{fvg}| ru{f} ru{g}
ru{fUg}| ru{gt TuU{f,X(fUg),Pg}

{(Xa) A (bU-a)}

{Xa,bU—a}

N

{Xa, ma} {Xa, b,X(bU-a), P-a}

{

C

}

-~y <—

Alexandre Duret-Lutz An Introduction to Model Checking 22 /33

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1%t child 2n child
ru{fnang}|Tu{f,g}
ru{fvg}| ru{f} ru{g}
{Xa, bU-a} ru{fUg}t| ruf{gt TU{f,X(fUg),Pg}

N

{Xa, ma} {Xa, b,X(bU-a), P-a}

{(Xa) A (bU-a)}

{!} {a,bU —a}
} RN
@ {a,—a} {a,b,X(bU-a), P—a}

Alexandre Duret-Lutz An Introduction to Model Checking 22 /33

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1%t child 2n child
ru{fnang}|Tu{f,g}
ru{fvg}| ru{f} ru{g}
{Xa,bU-a} ru{fUg}| ruf{g} TU{f,X(fUg),Pg}

N

{Xa, ma} {Xa, b,X(bU-a), P-a}

{(Xa) A (bU-a)}

!
{a} {a,bU —a}
}

0

e AN

{a,—a} {a,b,X(bU-a), P—a}

{b U ﬁa}

N

{—-a} {b,X(bU-a), P-a}

Alexandre Duret-Lutz An Introduction to Model Checking

Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1%t child 2n child
ru{fnang}|Tu{f,g}
ru{fvg}| ru{f} ru{g}
{Xa,bU-a} ru{fUg}| ruf{g} TU{f,X(fUg),Pg}

N

{Xa, ma} {Xa, b,X(bU-a), P-a}

{(Xa) A (bU-a)}

!
{a} {a,bU —a}
}

0

e AN

{a,—a} {a,b,X(bU-a), P—a}

{b U ﬁa}

)

{—a} {b,X(bU-a), P-a}

Alexandre Duret-Lutz An Introduction to Model Checking

(Xa) A (bU —a) into TGBA

{(Xa) A (PU—a)} -
! = N
{X 4, bU\-a}
{Xa,Fay {Xa, b\X(bU-a), Paa} a
7

|

{a} {a, bU —a}

y 0N

{la,b,X(bU —a), P=a}

C@ {a,-a} %
\\\\\\\ /ﬁUQQ\

{{za} {b.X(bU-a), P=a}

Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Ampc) = A-p
Z(An) N Z(A-y)

State—space automaton
Au

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample

Alexandre Duret-Lutz An Introduction to Model Checking 24 / 33

Ex.: clients/server with synchronized automata

Client C

Server S

Channel B

Synchronization rules for the system (C, C, S, B, B, B, B):

(1)

(s,.,..,.,.,a,

/\/\/\/\/\/\/\
i

. S, .,a,

If a client sends a request, will he always get

Alexandre Duret-Lutz

An Introduction to Model Checking

~— ~ ~— ~—— ~—— ~— ~— ~——

an answer?

State space for this example

q14
\ 221 /

X X ——

Alexandre Duret-Lutz An Introduction to Model Checking 26 / 33

Atomic properties

We will write properties regarding sending and receiving messages:
Let AP = {ay, a», r1, rn} with:

@ a;: an answer is on its way between S and (;

@ ap: an answer is on its way between S and G,

@ r;: a request is on its way between C; and S

@ rp. a request is on its way between C, and S
The property “if a client sends a request, he will get an answer” can

be rewritten as “Vi € {1,2} an execution that visits a state where r;
is true will visit a state where a; is true.”

Alexandre Duret-Lutz An Introduction to Model Checking 27 / 33

Kripke Structure for this example

Alexandre Duret-Lutz An Introduction to Model Checking 28 /33

Exploring the Kripke Structure

“an execution that visits a state where r; is true will visit a state
where a; is true.” In LTL: G(r; — F ;).
(by symmetry on the model, let's deal only with i = 1).

We are looking for a counterexample: an execution that visits a state
where r; is true and which will never verify a; from then on. In LTL:
- G(I’l — Fal) = F(r1 NG _\31)

Alexandre Duret-Lutz An Introduction to Model Checking 29 / 33

Exploring the Kripke Structure

“an execution that visits a state where r; is true will visit a state
where a; is true.” In LTL: G(r; — F ;).
(by symmetry on the model, let's deal only with i = 1).

We are looking for a counterexample: an execution that visits a state
where r; is true and which will never verify a; from then on. In LTL:
- G(I’l — Fal) = F(r1 NG _\31)

Such a counterexample can be represented by a (transition-based)
Biichi automaton:

dac r A —ay ao
ﬁ ?
T —ap

Where accepting runs must visit transitions with e infinitely often.

Alexandre Duret-Lutz An Introduction to Model Checking 29 / 33

Synchronized Product

An Introduction to Model Checking

Emptiness check

Alexandre Duret-Lutz

An Introduction to Model Checking

Roots:

DFS:

31/ 33

Emptiness check

Roots: DFS:

=&

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

Roots: DFS:

(=))8

L @EO®

(%2}
i}
(]
¢ &R

-~
O
(D]

-~
O
2]
(%]
(D]

=

i)
o
L

Emptiness check

= Roots: DFS:
S Sy g
()
[@)
()
©
S1 So 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

Roots: DFS:
O
Sg Sq4 @
&)
(22)
©
S1 So 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

Roots: DFS:
O
S Sy
o
%)
O
S1 So 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

Roots: DFS:

=&

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

Roots: DFS:

Alexandre Duret-Lutz An Introduction to Model Checking

Emptiness check

Roots: DFS:

Alexandre Duret-Lutz An Introduction to Model Checking

Emptiness check

Roots: DFS:

Alexandre Duret-Lutz An Introduction to Model Checking

Emptiness check

Roots: DFS:

51 52 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

Roots: DFS:

51 52 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Emptiness check

51

Alexandre Duret-Lutz

52

53

An Introduction to Model Checking

Roots:

DFS:
()

31/ 33

Emptiness check

- po= ~ Roots: DFS:
S5
(50
(=)
—t() &)
51 So S3

Found!

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33

Automata Theoretic Approach to Model Checking

High-level model LTL formula

M 13

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Ampc) = A-p
Z(An) N Z(A-y)

State—space automaton
Au

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample

Alexandre Duret-Lutz An Introduction to Model Checking

32 / 33

Conclusion

@ Biichi automata can be used to represent sets (finite or infinite)
of infinite behaviors. Some operations are easy to perform on
these sets: union, intersection, and emptiness check. Some are
harder (e.g. complementation, universality check)

@ By reducing the verification problem to some operations between
automata, we actually obtained an efficient verification
procedure.

o Bottleneck: translating a formula of size n can lead to a TGBA
of size 2°(") . The size of the product of two automata is
bounded by the product of the sizes, so it is important to have
small automata on both sides. Emptiness check is linear in the
size of the product.

For CSE students: the automata seen in ToC are simpler because
they recognize finite words. Yet they allow similar operations and

applications.
Alexandre Duret-Lutz An Introduction to Model Checking 33 /33

	Title
	Example: a (Broken) Algorithm for Mutual Exclusion

	Introduction to LTL
	Propositional Logic: the Present
	LTL: Linear-time Temporal Logic

	Automata-theoretic Approach
	Translating LTL Formulas to Automata
	Tableau
	Operators X and U

	Emptiness check

