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Theorem Proving

© Describe the system in a way that allows reasoning

© Prove property by logical reasoning

This can be entirely manual, or using the help of a theorem prover
(e.g. Coq) that is not fully automatic.

Problem: it is hard to produce a counterexample when a theorem is
false.

Research work in the area: new proof systems, study of the expressive
power of various logics...
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Model checking

An automatic approach to formal verification.
An exhaustive verification of all behaviors of a model.

The catch: the model has to be abstract enough (i.e. not too
detailed) to allow its complete exploration.
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Example: an Algorithm for Mutual Exclusion

Global variables: reqp and req,.

Process P (infinite loop) Process Q (infinite loop)
1. regp <1 1. reqgg <1

2. wait(reqg = 0) 2. wait(reqp = 0)

3. Critical Section 3. Critical Section

4. reqp <0 4. reqp < 0

Initial state: P =1, @ =1, reqp =0, reqy = 0.

Properties to check:
© At any time, there is at most one process in Critical Section.

© Any process requesting entrance to the CS will eventually enter
it.

© The order of entrances to the CS should follow the order of
requests.
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Example: State Space or Accessibility Graph

P=1,reqp =0

Q=1reqq=0
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Property 1

At any time, there is at most one process in CS.
Translation: there is no state with P = 3 and Q = 3.
It is true.

To check this property we need to explore the entire state space once.
We only need to know the set of states, not how they are connected.
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Property 2

Any process requesting entrance to CS will eventually enter it.

Translation: any execution that visits a state with P = 2 should later
visit a state with P = 3; likewise for @ =2 and Q = 3.

It is false.

The state

P=2reqp =1
Q=2reqqg =1

has no successor (it is a deadlock).

To check this property, we have to know the entire graph (states
alone are not enough).
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Property 3

The order of entrances into the CS follow the order of requests.

Translation: any execution path that sees a state with
P =2 A Q = 1 should not visit any state with @ = 3 before visiting
a state with P = 3 (4 symmetric property for Q).

It is true if we ignore the deadlock.

Same kind of verification as property 2.
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A Formalization

@ Represent the system using a finite automaton.
@ Represent the property using a temporal logic formula.

@ To compare these two objects, convert the temporal logic
formula into an automaton.

@ Some work on the two automata will tell us if they are
“compatible”.
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Propositional Logic: the Present

Propositional logic formulas can be use characterize one instant.

r: red light on
y: yellow light on
g: green light on

fAyAg:g,f/\ﬁyAﬁg:',ﬁfAﬁy/\g:!, '

How can we say that a precedes ' ? '

How can we say that the system is not always @ ?

= we need to make time apparent in the formula
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Linear-time Temporal Logic (LTL) Operators

Let f and g be two propositional logic formulas:

Present f @—Q O—> é
Net X O -O—O—C
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Linear-time Temporal Logic (LTL) Operators

Let f and g be two propositional logic formulas:

Present f O—> é

Net X7 O~ O—O—C
Globally Gf e 0 e e (
Finally Ff
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Until w (F W6 )0—0
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LTL: Examples

Next X f  fis true at next instant
Globally Gf  f it true at all instants
Finally Ff f will be true eventually (now or in the future)
Until fUg f stays true until g becomes true

~G(rA—y A—g): the system is not always

G((-rAy AN—g) = X(rA—y A—g)): a always imm. flw'd by '

GF(-rA—-yAg): the systems is infinitely often

These formulas can be translated into automata.
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TGBA: Generalized Biichi Automata

A Transition-based Generalized Biichi Automata has:
@ a set of states, with a designated initial state,

@ a set of transitions between these states, labeled by propositional
logic formulas,

@ a set of sets of transitions, called acceptance sets.
An infinite path in this automaton is accepted if it visits infinitely
often a transition for each acceptance sets.

pPAq

pVgq

p
O
RO
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Example of TGBA for G(d — Fr)

rv -d T
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Product between a System and a TGBA

—~(@)—(%)
(=)

® a\/b‘ ?—'a
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Product between a System and a TGBA
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Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Ampc) = A-p
Z(An) N Z(A-y)

State—space automaton
Au

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample
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Tableau Rules for Propositional Logic

formula set 15t child 2" child

ru{-T} ru{L}

ru{-_} ru{T}

ru{-—f} ru{f}

ru{f g} ru{f, g}

ru{fvg} ru{f} ru{g}
ru{=(fng)}t| TuU{-f} ru{-g}
ru{=(fveg)}t | FTu{-f g}
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Tableau for = with ¢ =~(-AvB) v (~(AAr C)V (B A C))

{~(=(=AV B) V (~(AAC)V (BAC))}
|
(

{==(=AV B),~(=(AANC)V (BAC))}

{~AV B, ~(~(AA C)V (B A C))}

{—\A\/B —\—\(A C) (BAC)}

l
A
l
A
l
{=AV B,ANC,~(BAC)}
{ﬁAvB7A,lC -(BAC)}
\

{(-A,A,C,~(BAC)} {B,AC,~(BAC)}

{B,A,C,-B} {B,A,C,~C}
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LTL and Automata

Xa

aUb

aUb=bVv(anX(aUb))
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Tableau Rules for Propositional Logic

formula set 15t child 2" child
ru{-T} ru{L}

ru{-_L} ru{T}

ru{-—f} ru{f}

ru{f g} ru{f, g}

ru{fvg} ru{f} ru{g}
Fru{-(frng)t| TU{-f} ru{-g}
Fru{-(fveg)} | TU{~f, ~g}

ru{-Xfr} ru{xX-r}

ru{fUg} ru{g} ru{f,X(fUg),Pg}
ru{-(fUg)} |[TU{~f,~g} Tu{-g X(fUg)}

P g is a promise that g will be fulfilled
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Tableau for (X a) A (b U —a)

Régles de tableau

formula set | 1%t child 2n child
ru{fnang}|Tu{f,g}

ru{fvg}| ru{f} ru{g}
ru{fUg}| rTuf{gt TU{f,X(fUg),Pg}

{(Xa) A (bU-a)}
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(Xa) A (bU —a) into TGBA

{(Xa) A (PU—a)} -
! = N
{X 4, bU\-a}
{Xa,Fay {Xa, b\X(bU-a), Paa} a
7

|

{a} {a, bU —a}

y 0N

{la,b,X(bU —a), P=a}

C@ {a,-a} %
\\\\\\\ /ﬁUQQ\

{{za} {b.X(bU-a), P=a}




Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Ampc) = A-p
Z(An) N Z(A-y)

State—space automaton
Au

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample
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Ex.: clients/server with synchronized automata

Client C

Server S

Channel B

Synchronization rules for the system (C, C, S, B, B, B, B):

(1)

(s,.,..,.,.,a,

/\/\/\/\/\/\/\
i

. S, .,a,

If a client sends a request, will he always get

Alexandre Duret-Lutz
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State space for this example

q14
\ 221 /

X X ——
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Atomic properties

We will write properties regarding sending and receiving messages:
Let AP = {ay, a», r1, rn} with:

@ a;: an answer is on its way between S and (;

@ ap: an answer is on its way between S and G,

@ r;: a request is on its way between C; and S

@ rp. a request is on its way between C, and S
The property “if a client sends a request, he will get an answer” can

be rewritten as “Vi € {1,2} an execution that visits a state where r;
is true will visit a state where a; is true.”
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Kripke Structure for this example
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Exploring the Kripke Structure

“an execution that visits a state where r; is true will visit a state
where a; is true.” In LTL: G(r; — F ;).
(by symmetry on the model, let's deal only with i = 1).

We are looking for a counterexample: an execution that visits a state
where r; is true and which will never verify a; from then on. In LTL:
- G(I’l — Fal) = F(r1 NG _\31)
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Exploring the Kripke Structure

“an execution that visits a state where r; is true will visit a state
where a; is true.” In LTL: G(r; — F ;).
(by symmetry on the model, let's deal only with i = 1).

We are looking for a counterexample: an execution that visits a state
where r; is true and which will never verify a; from then on. In LTL:
- G(I’l — Fal) = F(r1 NG _\31)

Such a counterexample can be represented by a (transition-based)
Biichi automaton:

dac r A —ay ao
ﬁ ?
T —ap

Where accepting runs must visit transitions with e infinitely often.
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Synchronized Product
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Emptiness check
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Emptiness check
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Emptiness check
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Emptiness check

Roots: DFS:

51 52 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33



Emptiness check

Roots: DFS:

51 52 53

Alexandre Duret-Lutz An Introduction to Model Checking 31/ 33



Emptiness check

51

Alexandre Duret-Lutz

52
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Emptiness check

- po= ~ Roots: DFS:
S5
(50
(=)
—t( ) &)
51 So S3

Found!
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Automata Theoretic Approach to Model Checking

High-level model LTL formula

M 13

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Ampc) = A-p
Z(An) N Z(A-y)

State—space automaton
Au

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample
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Conclusion

@ Biichi automata can be used to represent sets (finite or infinite)
of infinite behaviors. Some operations are easy to perform on
these sets: union, intersection, and emptiness check. Some are
harder (e.g. complementation, universality check)

@ By reducing the verification problem to some operations between
automata, we actually obtained an efficient verification
procedure.

o Bottleneck: translating a formula of size n can lead to a TGBA
of size 2°(") . The size of the product of two automata is
bounded by the product of the sizes, so it is important to have
small automata on both sides. Emptiness check is linear in the
size of the product.

For CSE students: the automata seen in ToC are simpler because
they recognize finite words. Yet they allow similar operations and

applications.
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