Emptiness checks and Partial Orders

Alexandre Duret-Lutz

mars 2009

Alexandre Duret-Lutz Emptiness checks and Partial Orders 1/ 43

structure

q1a

nn

Alexandre Duret-Lutz

Emptiness checks and Partial Orders

2 /43

Formula to verify

G(dl — Fl’l).

dc dl A -n dp
Y o
T -n

A G(di—Fr)

Alexandre Duret-Lutz Emptiness checks and Partial Orders 3 /43

Synchronized product

Emptiness checks and Partial Orders

Today's special

© On-the-Fly Emptiness Checks for Generalized Biichi Automata
© Using Partial Orders to Reduce the State Space

Alexandre Duret-Lutz Emptiness checks and Partial Orders 5 /43

Part |

On-the-Fly Emptiness Checks for GBA

Jean-Michel Couvreur, Alexandre Duret-Lutz, Denis Poitrenaud
12th International SPIN Workshop on Model Checking of Software,
August 2005, San Francisco.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 6 /43

Biichi Automata

A (transition-based) Biichi automaton has:

@ A set of states, with a designated initial state,
@ A set of transitions between states,

@ A set of accepting transitions.

An infinite run of this automaton is accepting if it visits an accepting
transition infinitely often.

S S4
S1 S S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 7/ 43

Biichi Automata

A (transition-based) Biichi automaton has:

@ A set of states, with a designated initial state,
@ A set of transitions between states,

@ A set of accepting transitions.

An infinite run of this automaton is accepting if it visits an accepting
transition infinitely often.

S S4
S1 S S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 7/ 43

Emptiness Check

Emptiness Check = Does an automaton have no accepting run?

— Search for an accepting cycle reachable from the initial state.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 8 /43

Emptiness Checks History

nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '96
Gastin et al. '04
Schwoon & Esparza '04

Alexandre Duret-Lutz Emptiness checks and Partial Orders 9 /43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Nested DFS

Sy S4

S1 S2 S3
Found!
entries in | hash table size | search stack states
upper hash table in bits depth traversed
bounds: n | n(s+2) | n | 2n

n = number of states; s = bits per state.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 10 / 43

Generalized Biichi Automata

A Generalized (transition-based) Biichi automaton has:

@ A set of states, with a designated initial state,
@ A set of transitions between states,

@ A set of accepting sets of transitions.

An infinite run of this automaton is accepting if it visits a transition
from each accepting set infinitely often.

S S4
S1 S S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 11 / 43

Generalized Biichi Automata

A Generalized (transition-based) Biichi automaton has:

@ A set of states, with a designated initial state,
@ A set of transitions between states,

@ A set of accepting sets of transitions.

An infinite run of this automaton is accepting if it visits a transition
from each accepting set infinitely often.

S S4
S1 S S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 11 / 43

Degeneralization

A generalized automaton with
@ n states
@ m acceptance conditions

can be degeneralized into an automaton with
@ nm states at worst

@ 1 acceptance condition

Alexandre Duret-Lutz Emptiness checks and Partial Orders 12 / 43

Nested DFS on Generalized Biichi Automata

entries in | hash table size | search stack states
hash table in bits depth traversed
n | n (s +2) | n | 2n
n states,

s bits per state.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 13 / 43

Nested DFS on Generalized Biichi Automata

entries in | hash table size | search stack states
hash table in bits depth traversed
nm | nm(sy+2) | nm | 2nm

n states, m acceptance conditions,
sq bits per degeneralized state.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 13 / 43

Nested DFS on Generalized Biichi Automata

entries in | hash table size | search stack | states
hash table in bits depth traversed

nm nm(sy + 2) nm 2nm

n ‘ n(sg +2m) ‘ nm ‘ 2nm

n states, m acceptance conditions,
sq bits per degeneralized state, s, bits per generalized state (s, < s4).

Alexandre Duret-Lutz Emptiness checks and Partial Orders 13 / 43

Emptiness Checks History

nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '96
Gastin et al. '04
Schwoon & Esparza '04

Alexandre Duret-Lutz Emptiness checks and Partial Orders 14 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '96
Gastin et al. '04
Schwoon & Esparza '04

Alexandre Duret-Lutz Emptiness checks and Partial Orders 14 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04
Schwoon & Esparza '04

Alexandre Duret-Lutz Emptiness checks and Partial Orders 14 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 $2 S3
Found!
entries in | hash table size | search stack states
hash table in bits depth traversed
degen+NDFS n n(sg +2m) nm 2nm
gen. NDFS n n(sg + m) 2n n(m+ 1)
Alexandre Duret-Lutz Emptiness checks and Partial Orders 15 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04
Schwoon & Esparza '04

Alexandre Duret-Lutz Emptiness checks and Partial Orders 16 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04 i
Schwoon & Esparza '04—+Couvreur et al. '05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 16 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without

S1 S2 S3

Found!

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
with

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
with

S1 So S3

Found!
Generalizable with m counters per state in the blue search.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 17 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04 i
Schwoon & Esparza '04—+Couvreur et al. '05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 18 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04 i
Schwoon & Esparza '04—+Couvreur et al. '05
SCC | Lichtenstein & Pnueli '83 | Couvreur '99

Alexandre Duret-Lutz Emptiness checks and Partial Orders 18 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz

SCC-Based Emptiness Check

Alexandre Duret-Lutz

SCC-Based Emptiness Check

Alexandre Duret-Lutz

SCC-Based Emptiness Check

Alexandre Duret-Lutz

SCC-Based Emptiness Check

S
(@)
(54

O

Alexandre Duret-Lutz

SCC-Based Emptiness Check

S
(@)
(54

O

Alexandre Duret-Lutz

SCC-Based Emptiness Check

S
(@)
(54

O

Alexandre Duret-Lutz

SCC-Based Emptiness Check

Alexandre Duret-Lutz

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Found!
entries in | hash table size | search stack states
hash table in bits depth traversed
n | n(sg +1gn) | n | 2n

Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

SCC-Based Emptiness Check

Found!
entries in | hash table size | search stack states
hash table in bits depth traversed
n | n(sg +1gn) | n | 2n

Can be reduced to n if the search stack explicitly stores the states of

each component (requires more memory).
Alexandre Duret-Lutz Emptiness checks and Partial Orders 19 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04 i
Schwoon & Esparza '04—+Couvreur et al. '05
SCC | Lichtenstein & Pnueli '83 | Couvreur '99

Alexandre Duret-Lutz Emptiness checks and Partial Orders 20 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann'93
Holzmann et al. '96 | Tauriainen 03
Gastin et al. ‘04 i
Schwoon & Esparza '04—+Couvreur et al. '05
SCC | Lichtenstein & Pnueli '83 | Couvreur '99
Geldenhuys & Valmari '04 | Geldenhuys & Valmari'05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 20 / 43

Emptiness Checks History

degeneralized generalized
nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. '04 i
Schwoon & Esparza '04—+Couvreur et al. '05
SCC | Lichtenstein & Pnueli '83 | Couvreur '99

Geldenhuys & Valmari '04

(Geldenhuys & Valmari '05
Couvreur et al. 05

Alexandre Duret-Lutz

Emptiness checks and Partial Orders

20 / 43

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

-‘@..@ &
I

&

Alexandre Duret-Lutz Emptiness checks and Partial Orders 21 / 43

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 21 / 43

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

@ H2: H1 + consider the DFS in term of SCC when choosing a
SUCCESSOr.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 21 / 43

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

@ H2: H1 + consider the DFS in term of SCC when choosing a
SUCCESSOr.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 21 / 43

@ Upper bounds easy to have.

@ Objective : evaluate all these algorithms on the average, on
non-empty automata.

degeneralized generalized
nested DFS | Courcoubetis et al. '90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. 04 1
Schwoon & Esparza '04->Couvreur et al. '05
SCC | Lichtenstein & Pnueli '83 | Couvreur ‘99
Geldenhuys & Valmari '04 (Geldenhuys & Valmari'05
Couvreur et al. ‘05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 22 /43

@ Upper bounds easy to have.

@ Objective : evaluate all these algorithms on the average, on
non-empty automata.

degeneralized generalized
nested DFS | Courcoubetis et al. '90
Godefroid & Holzmann’93
Holzmann et al. '06 | Tauriainen 03
Gastin et al. 04 l
Schwoon & Esparza '04->Couvreur et al. '05
SCC | Lichtenstein & Pnueli '83 | Couvreur ‘99
Geldenhuys & Valmari '04 (Geldenhuys & Valmari'05
Couvreur et al. 05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 22 /43

nested DFS gauriainen .

ouvreur et al.

Schwoon & Esparza 02~
SCC | Geldenhuys & Valmari -

unique states visited
transitions visited
I search stack size I

SE04 Tau03 Couv05 Couv05 GV04

Couvreur et al. '05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 22 /43

Conclusions

@ generalized vs. non-generalized:
o generalized algorithms require less memory
@ generalized algorithms produce more meaningful
counterexamples
@ weak fairness expressible using generalized conditions
o non-generalized NDFSs produce counterexamples directly

@ NDFS vs. SCC algorithms:

o SCC algorithms check emptiness faster

o SCC algorithms scale to generalized conditions and fairness
conditions easily

o NDFSs require less memory

@ All these algorithms and the benchmark framework are
implemented in our model checking library:
http://spot.lip6.fr

Alexandre Duret-Lutz Emptiness checks and Partial Orders 23 /43

http://spot.lip6.fr

Part |

Partial Order Methods

Mostly based on Section 4 of:

Marko Rauhamaa

A comparative study of methods for efficient reachability analysis.
Helsinki University of Technology, Research Report A14, September
1990.

www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A14.ps

Alexandre Duret-Lutz Emptiness checks and Partial Orders 24 / 43

www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A14.ps

Kripke Structure to Simplify

Alexandre Duret-Lutz Emptiness checks and Partial Orders 25 / 43

Can't we simplify?

We want to verify G(d; — F ry).
On this formula, the following two executions are equivalent:

@ client C; sends a request @ client G, sends a request
o client C; sends a request @ client C; sends a request

@ other events... -
@ other events (in same order)

The order between the two requests does not make any difference.
Some notes:
@ (i's request has an influence on d; (observed by the formula),
@ (,’'s request has no influence on the formula (unobserved event),
@ the two events are independent (doing one will not prevent the
other)

Alexandre Duret-Lutz Emptiness checks and Partial Orders 26 / 43

Kripke Structure to Simplify

Alexandre Duret-Lutz Emptiness checks and Partial Orders 27 / 43

Kripke Structure to Simplify
N
B

hn
didy

e

nn

didp

e
$
3:-)

|7

Alexandre Duret-Lutz Emptiness checks and Partial Orders 27 / 43

Let's start (very) simple

% % >W >
T'T T

© O

di bl

t, t

Alexandre Duret-Lutz Emptiness checks and Partial Orders 28 / 43

Let's start (very) simple

t?tb t b
TTT .
© O O 010

dai bl 5]

ta

Alexandre Duret-Lutz Emptiness checks and Partial Orders 28 / 43

Let's start (very) simple

t?tb t b
TTT .
© O O 010

dai bl 5]

Y

011

ta

For any sequence M 2<% M’, there exists a sequence M 2225 M,
If we do not observe t., we can keep only the latter.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 28 / 43

Let's start (very) simple

238 1T
T t
O

O O 010 "”/m

dai bl 5]

For any sequence M 2<% M’, there exists a sequence M 2225 M,
If we do not observe t., we can keep only the latter.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 28 / 43

Let's start (very) simple

t?tb t
TTT
O O O 110

dai bl 5]

For any sequence M 2<% M, there exists a sequence M 2255 M’
If we do not observe t., we can keep only the latter. Of course if we
do not observe t, we can further simplify the graph.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 28 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

o Reachability of a state?

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

@ Reachability of a state? Not all, obviously

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

@ Reachability of a state? Not all, obviously
@ Deadlock detection?

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

@ Reachability of a state? Not all, obviously
@ Deadlock detection? Yes

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)
@ Reachability of a state? Not all, obviously
@ Deadlock detection? Yes
@ Verification of LTL formulae?
o Verification of LTL\ X formulae?

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

The Priority Method

@ A way to reduce state space with a priori knowledge.
@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.
@ This ordering is used whenever there is a choice between events.
@ The information is static.
@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

@ Reachability of a state? Not all, obviously
@ Deadlock detection? Yes

@ Verification of LTL formulae? Some

o Verification of LTL\ X formulae? Some

We need to formalize the concepts of dependent and observed
events, and introduce dynamic ordering.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 29 / 43

A Definition for Petri Nets

(S, T, W, M) where
@ S is the set of states,
@ T is the set of transitions,
@ W:(Sx T)U(T xS)— Nis the arc weight function,
@ My : S — N is the initial marking.
For x € S x T we denote ex = {y | W(y, x) > 0}.
For x € T x S we denote xe = {y | W(x,y) > 0}.
A marking is a S — N function.
A transition t € T is enabled at marking M (denoted M 5) if
Vs € ot, M(s) > W(s,t).
A transition t enabled at marking M can fire into marking M’
(denoted M = M) if Vs € S, M'(s) = M(s) — W(s, t) + W(t,s).
A marking M is dead if At € T, M 5.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 30/ 43

The Reachability Graph

The reachability graph of a Petri net (S, T, W, M) is a pair (V, E)
where
@ V (vertices) is a set of markings,
@ ECV x T xV (edges)
and the following hold
o MyeV,
o if MeVand M5 M then M' € V and (M, t, M) € E,
@ V and E contain no other elements.
Note that if M LN M’ and M t/—t> then M LEN M.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 31/ 43

Some Abbreviations

Foro=tty---t, € T we denote M Z is there exists My, M,

tn

"M,_; such that M & M, 2 My M, 2.

Similarly M Z, M’ if there additionally exists M’ such that
M2 My 2 My M,y 2 M

Alexandre Duret-Lutz Emptiness checks and Partial Orders 32 /43

The Idea behind Stubborn Sets

The Petri net is split in two parts: a black box and an environment,
such that the transitions of the two sets are independent.

In the following we assume that t is a black box transition while o is
a sequence of transitions from the environment.

Principle 1 If =M oand M 7, then -M 25,
In other words, firing transitions in the environment
cannot enable a disabled transition of the black box.
Principle 2 If M Loand M 7 then M 2% and M 1%
Transition from the environment and from the black box
can be interleaved as wished.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 33 /43

Application to Finding Dead Markings

P, If =M L and M %, then =M 5.
P, If ML and M %, then M 2% and M 2%

When looking for dead states, we can simplify the reachability graph
by firing any black box transitions (t) before environment transitions
(o).

Let there be an enabled transition r in the black box and a path 7
leading to a dead marking.

Then m must contain some transition t from the black box.
(Otherwise, by P;, 7 cannot use non enabled transitions of the black
box, and by P, the transition r would still be fireable on the dead
marking...)

P, allows us to move t to the front of .

Can be move t to the back of 77

Alexandre Duret-Lutz Emptiness checks and Partial Orders 34 /43

Application to Finding Dead Markings

P, If =M L and M %, then =M 5.
P, If ML and M %, then M 2% and M 2%

When looking for dead states, we can simplify the reachability graph
by firing any black box transitions (t) before environment transitions
(o).

Let there be an enabled transition r in the black box and a path 7
leading to a dead marking.

Then m must contain some transition t from the black box.
(Otherwise, by P;, 7 cannot use non enabled transitions of the black
box, and by P, the transition r would still be fireable on the dead
marking...)

P, allows us to move t to the front of .

Can be move t to the back of 77 Yes.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 34 /43

Looser Principles = Stubborn Sets

Again t is a transition from the black box (stubborn set Ty), and o
is a sequence of transitions from the environment (T \ Ty).

Principle 1* If M 25 then M %,
Transitions of the stubborn set can be moved before
those of the environment.

Principle 2* If M %, then M “%, for some fixed transition ' € Tu.
In other words the stubborn set is never empty and the
environment cannot disable its transitions.

When looking for dead states, we can still simplify the reachability
graph by firing transitions from the stubborn set before any other.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 35 /43

Dead Markings with these Definitions

P If M 25 then M 5.
Pi If M2, then M 25,

Let M 55 M’ be a transition sequence to a dead marking M'.
7 necessarily contain a transition from the stubborn set. (If it does

not, P implies that M’ Y, and M’ cannot be dead.)

Therefore m = otn’ and by P; we have M o M,

Can be move t to the back of 77

Alexandre Duret-Lutz Emptiness checks and Partial Orders 36 / 43

Dead Markings with these Definitions

P If M 25 then M 5.
Pi If M2, then M 25,

Let M 55 M’ be a transition sequence to a dead marking M'.
7 necessarily contain a transition from the stubborn set. (If it does
not, P} implies that M’ 5 and M’ cannot be dead.)

ton’

Therefore 7 = otn’ and by P; we have M — M'.

Can be move t to the back of #7 No: some transitions of 7’ are
allowed to disable t.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 36 / 43

Exemple Stubborn Set

N
77
00

> 000 | > 100

t.| L, t

0-1 ———1-1| °
tp ty

ta? tp
T
@)

a a

Alexandre Duret-Lutz Emptiness checks and Partial Orders 37/ 43

Exemple Stubborn Set

dp bo Co Ny t, N
> 000 | > 100
t-| L, t
? ?\? 0-1 —4——|1-1| °
T'T'T “’ tb
Y Y

O O O [010}——[110]

ai bl (5]

Ex:
Stubborn set for marking 000: Togo = {t,, tp}.
Stubborn set any other marking s: T, = T.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 37/ 43

Exemple Stubborn Set

b
70 o @ ~[000 ~[100

AN
JRURD L
© O O [010}——[110]

ai bl (5]

Ex:
Stubborn set for marking 000: Togo = {t,, tp}.
Stubborn set any other marking s: T, = T.

Was it OK to set Togo = {t,}7
Tooo = {tp}? Tooo = {tb, tc}7?

Emptiness checks and Partial Orders 37/ 43

Alexandre Duret-Lutz

Exemple Stubborn Set

b
70 o @ ~[000 ~[100

AN
JRURD L
© O O [010}——[110]

ai bl (5]

Ex:
Stubborn set for marking 000: Togo = {t,, tp}.
Stubborn set any other marking s: T, = T.

Was it OK to set Togo = {t,}7 Yes.
Tooo = {tp}? Tooo = {t, tc}7?

Emptiness checks and Partial Orders 37/ 43

Alexandre Duret-Lutz

Exemple Stubborn Set

b
70 o @ ~[000 ~[100

AN
JRURD L
© O O [010}——[110]

ai bl (5]

Ex:
Stubborn set for marking 000: Togo = {t,, tp}.
Stubborn set any other marking s: T, = T.

Was it OK to set Togo = {t,}7 Yes.
Togo = {tb}? No. Togo = {tb, tc}?

Emptiness checks and Partial Orders 37/ 43

Alexandre Duret-Lutz

Exemple Stubborn Set

b
70 o @ ~[000 ~[100

AN
JRURD L
© O O [010}——[110]

ai bl (5]

Ex:
Stubborn set for marking 000: Togo = {t,, tp}.
Stubborn set any other marking s: T, = T.

Was it OK to set Togo = {t,}7 Yes.
Tooo = {tp}? No. Tooo = {tp, tc}? Yes.

Emptiness checks and Partial Orders 37/ 43

Alexandre Duret-Lutz

Computing Stubborn Sets

An abbreviation: A(t,s) = W(t,s) — W(s,t).

One way to compute a stubborn set for a non-dead marking M:

© Pick a transition t enabled in M (i.e. M =) and set Ty, = {t}.
@ For any transition t in (and later added to) Ty:

If M = Add to Ty any transition that can disable ¢.
If =M 5 Pick a place s € ot so that M(s) < A(t, s).
Add to Ty all transitions r so that A(r,s) > 0.

The set of all enabled transitions is always a valid stubborn set, so we
should never try to build a larger set.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 38 /43

Zéﬁ{%
et

O-1

Alexandre Duret-Lutz Emptiness checks and Partial Orders 39 /43

lgnoring problem

Some words about about verifying infinite behaviors.

A C

A
t, %\(;Db/lx_l te Ii‘(;d/l,l_l

B D
Tac = {ta} and Tg = {tp} implies that {¢., t;} are never fired.

We also need to deal with properties.

Alexandre Duret-Lutz Emptiness checks and Partial Orders 40 / 43

Client/Server using Synchronized Automata

Client C Server S Canal B

Synchronization rule for system (C, C,S, B, B, B, B):

Alexandre Duret-Lutz

State Space

qia
N\ 221 S/

X X ==

Alexandre Duret-Lutz Emptiness checks and Partial Orders 42 / 43

Kripke Structure to Simplify

Alexandre Duret-Lutz Emptiness checks and Partial Orders 43 / 43

Kripke Structure to Simplify
N
B

hn
didy

e

nn

didp

e
$
3:-)

|7

Alexandre Duret-Lutz Emptiness checks and Partial Orders 43 / 43

	Title
	Recall...
	On-the-Fly Emptiness Checks for GBA
	Büchi Automata
	NDFS
	Generalized Büchi Automata
	Generalized NDFS
	SCC
	Benchmarks
	Conclusion

	Partial Order Methods
	Introduction
	Definitions
	Computing Stubborn Sets
	Ignoring problem
	Client/Server Example

