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Formula to verifyG(d1 → F r1).
⊤

d1 ∧ ¬r1
¬r1qC qD

A¬G(d1→F r1)
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Today's spe
ial
1 On-the-Fly Emptiness Che
ks for Generalized Bü
hi Automata2 Using Partial Orders to Redu
e the State Spa
e
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Part IOn-the-Fly Emptiness Che
ks for GBA
Jean-Mi
hel Couvreur, Alexandre Duret-Lutz, Denis Poitrenaud12th International SPIN Workshop on Model Che
king of Software,August 2005, San Fran
is
o.
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Bü
hi AutomataA (transition-based) Bü
hi automaton has:A set of states, with a designated initial state,A set of transitions between states,A set of a

epting transitions.An in�nite run of this automaton is a

epting if it visits an a

eptingtransition in�nitely often.
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Emptiness Che
k
Emptiness Che
k = Does an automaton have no a

epting run?
=⇒ Sear
h for an a

epting 
y
le rea
hable from the initial state.
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Emptiness Che
ks History
nested DFS Cour
oubetis et al. '90Godefroid & Holzmann'93Holzmann et al. '96Gastin et al. '04S
hwoon & Esparza '04
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Nested DFS
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Nested DFS
s1 s2 s3
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Found!

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 10 / 43



Nested DFS
s1 s2 s3

s4s5
Found!entries in hash table size sear
h sta
k statesupper hash table in bits depth traversedbounds: n n(s + 2) n 2nn = number of states; s = bits per state.Alexandre Duret-Lutz Emptiness 
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Generalized Bü
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Degeneralization
A generalized automaton withn statesm a

eptan
e 
onditions
an be degeneralized into an automaton withnm states at worst1 a

eptan
e 
ondition
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Nested DFS on Generalized Bü
hi Automata
entries in hash table size sear
h sta
k stateshash table in bits depth traversedn n (s + 2) n 2nn states,s bits per state.

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 13 / 43



Nested DFS on Generalized Bü
hi Automata
entries in hash table size sear
h sta
k stateshash table in bits depth traversednm nm(sd + 2) nm 2nmn states, m a

eptan
e 
onditions,sd bits per degeneralized state.

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 13 / 43



Nested DFS on Generalized Bü
hi Automata
entries in hash table size sear
h sta
k stateshash table in bits depth traversednm nm(sd + 2) nm 2nmn n(sg + 2m) nm 2nmn states, m a

eptan
e 
onditions,sd bits per degeneralized state, sg bits per generalized state (sg ≤ sd).

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 13 / 43



Emptiness Che
ks History
nested DFS Cour
oubetis et al. '90Godefroid & Holzmann'93Holzmann et al. '96Gastin et al. '04S
hwoon & Esparza '04

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 14 / 43



Emptiness Che
ks History
degeneralized generalizednested DFS Cour
oubetis et al. '90Godefroid & Holzmann'93Holzmann et al. '96Gastin et al. '04S
hwoon & Esparza '04

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 14 / 43



Emptiness Che
ks History
degeneralized generalizednested DFS Cour
oubetis et al. '90Godefroid & Holzmann'93Holzmann et al. '96Gastin et al. '04S
hwoon & Esparza '04 Tauriainen '03

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 14 / 43



Generalized Nested DFS (Tauriainen'03)
s1 s2 s3
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Our Generalized NDFSMerge more re
ent optimizations of Gastin et al. ('04) andS
hwoon & Esparza ('04) into Taurainen's algorithm.Introdu
e another optimization: weighted blue sta
k.
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Con
lusionsgeneralized vs. non-generalized:generalized algorithms require less memorygeneralized algorithms produ
e more meaningful
ounterexamplesweak fairness expressible using generalized 
onditionsnon-generalized NDFSs produ
e 
ounterexamples dire
tlyNDFS vs. SCC algorithms:SCC algorithms 
he
k emptiness fasterSCC algorithms s
ale to generalized 
onditions and fairness
onditions easilyNDFSs require less memoryAll these algorithms and the ben
hmark framework areimplemented in our model 
he
king library:http://spot.lip6.frAlexandre Duret-Lutz Emptiness 
he
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Part IIPartial Order MethodsMostly based on Se
tion 4 of:Marko RauhamaaA 
omparative study of methods for e�
ient rea
hability analysis.Helsinki University of Te
hnology, Resear
h Report A14, September1990.www.t
s.hut.fi/Publi
ations/bibdb/HUT-TCS-A14.psAlexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 24 / 43
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Kripke Stru
ture to Simplifyr̄1r̄2d̄1d̄2r̄1r̄2d1d̄2 r̄1r̄2d̄1d2r̄1r̄2d̄1d̄2 r̄1r̄2d1d2 r̄1r̄2d̄1d̄2r1r̄2d̄1d̄2 r̄1r̄2d̄1d2 r̄1r̄2d1d̄2 r̄1r2d̄1d̄2r1r̄2d̄1d2 r̄1r2d1d̄2r1r̄2d̄1d̄2 r̄1r2d̄1d̄2r1r2d̄1d̄2Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 25 / 43



Can't we simplify?We want to verify G(d1 → F r1).On this formula, the following two exe
utions are equivalent:
lient C1 sends a request
lient C2 sends a requestother events... 
lient C2 sends a request
lient C1 sends a requestother events (in same order)The order between the two requests does not make any di�eren
e.Some notes:C1's request has an in�uen
e on d1 (observed by the formula),C2's request has no in�uen
e on the formula (unobserved event),the two events are independent (doing one will not prevent theother)Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 26 / 43
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Let's start (very) simplea0 b0ta tba1 b1
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e M σt
σ′

−−−→ M ′, there exists a sequen
e M σσ
′t
−−−→ M ′.If we do not observe t
 , we 
an keep only the latter. Of 
ourse if wedo not observe tb we 
an further simplify the graph.Alexandre Duret-Lutz Emptiness 
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The Priority MethodA way to redu
e state spa
e with a priori knowledge.The analyst manually supplies a partial ordering of the events.E.g. ta ≺ tb ≺ t
 .This ordering is used whenever there is a 
hoi
e between events.The information is stati
.What kind of property does it preserves?(assuming the partial ordering has been set properly)
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The Priority MethodA way to redu
e state spa
e with a priori knowledge.The analyst manually supplies a partial ordering of the events.E.g. ta ≺ tb ≺ t
 .This ordering is used whenever there is a 
hoi
e between events.The information is stati
.What kind of property does it preserves?(assuming the partial ordering has been set properly)Rea
hability of a state? Not all, obviouslyDeadlo
k dete
tion? YesVeri�
ation of LTL formulæ? SomeVeri�
ation of LTL\X formulæ? SomeWe need to formalize the 
on
epts of dependent and observedevents, and introdu
e dynami
 ordering.Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 29 / 43



A De�nition for Petri Nets
〈S ,T ,W ,M0〉 whereS is the set of states,T is the set of transitions,W : (S × T ) ∪ (T × S) → N is the ar
 weight fun
tion,M0 : S → N is the initial marking.For x ∈ S × T we denote •x = {y | W (y , x) > 0}.For x ∈ T × S we denote x• = {y | W (x , y) > 0}.A marking is a S → N fun
tion.A transition t ∈ T is enabled at marking M (denoted M t

−→) if
∀s ∈ •t, M(s) ≥ W (s, t).A transition t enabled at marking M 
an �re into marking M ′(denoted M t

−→ M ′) if ∀s ∈ S , M ′(s) = M(s) −W (s, t) + W (t, s).A marking M is dead if ∄t ∈ T , M t
−→.Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 30 / 43



The Rea
hability GraphThe rea
hability graph of a Petri net 〈S ,T ,W ,M0〉 is a pair 〈V ,E 〉whereV (verti
es) is a set of markings,E ⊂ V × T × V (edges)and the following holdM0 ∈ V ,if M ∈ V and M t
−→ M ′ then M ′ ∈ V and (M, t,M ′) ∈ E ,V and E 
ontain no other elements.Note that if M tt′

−→ M ′ and M t′t
−→, then M t′t

−→ M ′.Alexandre Duret-Lutz Emptiness 
he
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Some Abbreviations
For σ = t1t2 · · · tn ∈ T ⋆ we denote M σ

−→ is there exists M1, M2,. . .Mn−1 su
h that M t1−→ M1 t2−→ M2 · · ·Mn−1 tn−→.Similarly M σ

−→ M ′ if there additionally exists M ′ su
h thatM t1−→ M1 t2−→ M2 · · ·Mn−1 tn−→ M ′

Alexandre Duret-Lutz Emptiness 
he
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The Idea behind Stubborn SetsThe Petri net is split in two parts: a bla
k box and an environment,su
h that the transitions of the two sets are independent.In the following we assume that t is a bla
k box transition while σ isa sequen
e of transitions from the environment.Prin
iple 1 If ¬M T
−→ and M σ

−→, then ¬M σt
−→.In other words, �ring transitions in the environment
annot enable a disabled transition of the bla
k box.Prin
iple 2 If M T

−→ and M σ
−→, then M σt

−→ and M tσ
−→.Transition from the environment and from the bla
k box
an be interleaved as wished.Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 33 / 43



Appli
ation to Finding Dead MarkingsP1 If ¬M T
−→ and M σ

−→, then ¬M σt
−→.P2 If M T

−→ and M σ
−→, then M σt

−→ and M tσ
−→.When looking for dead states, we 
an simplify the rea
hability graphby �ring any bla
k box transitions (t) before environment transitions(σ).Let there be an enabled transition r in the bla
k box and a path πleading to a dead marking.Then π must 
ontain some transition t from the bla
k box.(Otherwise, by P1, π 
annot use non enabled transitions of the bla
kbox, and by P2 the transition r would still be �reable on the deadmarking...)P2 allows us to move t to the front of π.Can be move t to the ba
k of π?Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 34 / 43
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Looser Prin
iples ⇒ Stubborn SetsAgain t is a transition from the bla
k box (stubborn set TM), and σis a sequen
e of transitions from the environment (T \ TM).Prin
iple 1* If M σt
−→, then M tσ

−→.Transitions of the stubborn set 
an be moved beforethose of the environment.Prin
iple 2* If M σ
−→, then M σt′

−→ for some �xed transition t ′ ∈ TM .In other words the stubborn set is never empty and theenvironment 
annot disable its transitions.When looking for dead states, we 
an still simplify the rea
habilitygraph by �ring transitions from the stubborn set before any other.Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 35 / 43



Dead Markings with these De�nitionsP∗1 If M σt
−→, then M tσ

−→.P∗2 If M σ

−→, then M σt′
−→.Let M π

−→ M ′ be a transition sequen
e to a dead marking M ′.
π ne
essarily 
ontain a transition from the stubborn set. (If it doesnot, P∗2 implies that M ′

t′
−→ and M ′ 
annot be dead.)Therefore π = σtπ′ and by P∗1 we have M tσπ

′

−−→ M ′.Can be move t to the ba
k of π?
Alexandre Duret-Lutz Emptiness 
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−→ M ′ be a transition sequen
e to a dead marking M ′.
π ne
essarily 
ontain a transition from the stubborn set. (If it doesnot, P∗2 implies that M ′

t′
−→ and M ′ 
annot be dead.)Therefore π = σtπ′ and by P∗1 we have M tσπ

′

−−→ M ′.Can be move t to the ba
k of π? No: some transitions of π
′ areallowed to disable t.Alexandre Duret-Lutz Emptiness 
he
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Exemple Stubborn Seta0 b0ta tba1 b1

0t
 
1

000 100
010 1100-1 1-1ta tbtb ta t
t
 ta

Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 37 / 43



Exemple Stubborn Seta0 b0ta tba1 b1

0t
 
1

000 100
010 1100-1 1-1ta tbtb ta t
t
 ta

Ex:Stubborn set for marking 000: T000 = {ta, tb}.Stubborn set any other marking s: Ts = T .Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 37 / 43



Exemple Stubborn Seta0 b0ta tba1 b1

0t
 
1

000 100
010 1100-1 1-1ta tbtb ta t
t
 ta

Ex:Stubborn set for marking 000: T000 = {ta, tb}.Stubborn set any other marking s: Ts = T .Was it OK to set T000 = {ta}?T000 = {tb}? T000 = {tb, t
}?Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 37 / 43



Exemple Stubborn Seta0 b0ta tba1 b1

0t
 
1

000 100
010 1100-1 1-1ta tbtb ta t
t
 ta

Ex:Stubborn set for marking 000: T000 = {ta, tb}.Stubborn set any other marking s: Ts = T .Was it OK to set T000 = {ta}? Yes.T000 = {tb}? T000 = {tb, t
}?Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 37 / 43



Exemple Stubborn Seta0 b0ta tba1 b1

0t
 
1

000 100
010 1100-1 1-1ta tbtb ta t
t
 ta

Ex:Stubborn set for marking 000: T000 = {ta, tb}.Stubborn set any other marking s: Ts = T .Was it OK to set T000 = {ta}? Yes.T000 = {tb}? No. T000 = {tb, t
}?Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 37 / 43



Exemple Stubborn Seta0 b0ta tba1 b1

0t
 
1

000 100
010 1100-1 1-1ta tbtb ta t
t
 ta

Ex:Stubborn set for marking 000: T000 = {ta, tb}.Stubborn set any other marking s: Ts = T .Was it OK to set T000 = {ta}? Yes.T000 = {tb}? No. T000 = {tb, t
}? Yes.Alexandre Duret-Lutz Emptiness 
he
ks and Partial Orders 37 / 43



Computing Stubborn SetsAn abbreviation: ∆(t, s) = W (t, s) −W (s, t).One way to 
ompute a stubborn set for a non-dead marking M:1 Pi
k a transition t enabled in M (i.e. M t
−→) and set TM = {t}.2 For any transition t in (and later added to) TM :If M t

−→ Add to TM any transition that 
an disable t.If ¬M t
−→ Pi
k a pla
e s ∈ •t so that M(s) < ∆(t, s).Add to TM all transitions r so that ∆(r , s) > 0.The set of all enabled transitions is always a valid stubborn set, so weshould never try to build a larger set.Alexandre Duret-Lutz Emptiness 
he
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Example
AB

CDE
FGta tbt
 td

Alexandre Duret-Lutz Emptiness 
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Ignoring problemSome words about about verifying in�nite behaviors.AB CDta tb t
 tdTAC = {ta} and TB = {tb} implies that {t
 , td} are never �red.We also need to deal with properties.Alexandre Duret-Lutz Emptiness 
he
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Client/Server using Syn
hronized Automata1 2srClient C 12 3r1s1 r2s2Server S − ×

adCanal BSyn
hronization rule for system 〈C ,C , S ,B,B,B,B〉:
(1) 〈 s , . , . , . , . , a , . 〉
(2) 〈 . , s , . , . , . , . , a 〉
(3) 〈 r , . , . , d , . , . , . 〉
(4) 〈 . , r , . , . , d , . , . 〉
(5) 〈 . , . , r1 , . , . , d , . 〉
(6) 〈 . , . , s1 , a , . , . , . 〉
(7) 〈 . , . , r2 , . , . , . , d 〉
(8) 〈 . , . , s2 , . , a , . , . 〉Alexandre Duret-Lutz Emptiness 
he
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State Spa
e 111
−−−−211

−−×−
121

−−−×212
−−−−

221
−−××

123
−−−−211

×−−−
222

−−−×
223

−−×−
121

−×−−221
×−−×

221
−××−223

×−−−
222

−×−−221
××−−

q0q1 q2q3 q4 q5q6 q7 q8 q9q10 q11q12 q13q14Alexandre Duret-Lutz Emptiness 
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