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Formula to verify

G(dl — Fl’l).

dc dl A -n dp
Y o
T -n

A G(di—Fr)
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Synchronized product

Emptiness checks and Partial Orders



Today's special

© On-the-Fly Emptiness Checks for Generalized Biichi Automata
© Using Partial Orders to Reduce the State Space
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Part |

On-the-Fly Emptiness Checks for GBA

Jean-Michel Couvreur, Alexandre Duret-Lutz, Denis Poitrenaud
12th International SPIN Workshop on Model Checking of Software,
August 2005, San Francisco.
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Biichi Automata

A (transition-based) Biichi automaton has:

@ A set of states, with a designated initial state,
@ A set of transitions between states,

@ A set of accepting transitions.

An infinite run of this automaton is accepting if it visits an accepting
transition infinitely often.

S S4
S1 S S3
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Emptiness Check

Emptiness Check = Does an automaton have no accepting run?

— Search for an accepting cycle reachable from the initial state.
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Emptiness Checks History

nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '96
Gastin et al. '04
Schwoon & Esparza '04
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Nested DFS
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Nested DFS

Sy S4
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Nested DFS

Sy S4

S1 S2 S3
Found!
entries in | hash table size | search stack states
upper hash table in bits depth traversed
bounds: n | n(s+2) | n | 2n

n = number of states; s = bits per state.
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Generalized Biichi Automata

A Generalized (transition-based) Biichi automaton has:

@ A set of states, with a designated initial state,
@ A set of transitions between states,

@ A set of accepting sets of transitions.

An infinite run of this automaton is accepting if it visits a transition
from each accepting set infinitely often.
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Degeneralization

A generalized automaton with
@ n states
@ m acceptance conditions

can be degeneralized into an automaton with
@ nm states at worst

@ 1 acceptance condition
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Nested DFS on Generalized Biichi Automata

entries in | hash table size | search stack states
hash table in bits depth traversed
n | n (s +2) | n | 2n
n states,

s bits per state.
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Nested DFS on Generalized Biichi Automata

entries in | hash table size | search stack states
hash table in bits depth traversed
nm | nm(sy+2) | nm | 2nm

n states, m acceptance conditions,
sq bits per degeneralized state.
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Nested DFS on Generalized Biichi Automata

entries in | hash table size | search stack | states
hash table in bits depth traversed

nm nm(sy + 2) nm 2nm

n ‘ n(sg +2m) ‘ nm ‘ 2nm

n states, m acceptance conditions,
sq bits per degeneralized state, s, bits per generalized state (s, < s4).
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Emptiness Checks History

nested DFS | Courcoubetis et al. 90
Godefroid & Holzmann’93
Holzmann et al. '96
Gastin et al. '04
Schwoon & Esparza '04
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Emptiness Checks History
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Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 So S3
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Generalized Nested DFS (Tauriainen'03)

Sy S4

S1 $2 S3
Found!
entries in | hash table size | search stack states
hash table in bits depth traversed
degen+NDFS n n(sg +2m) nm 2nm
gen. NDFS n n(sg + m) 2n n(m+ 1)
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Emptiness Checks History

degeneralized generalized
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Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
without
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Our Generalized NDFS

@ Merge more recent optimizations of Gastin et al. ('04) and
Schwoon & Esparza ('04) into Taurainen's algorithm.

@ Introduce another optimization: weighted blue stack.

S S4
with

S1 So S3

Found!
Generalizable with m counters per state in the blue search.
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SCC-Based Emptiness Check

Found!
entries in | hash table size | search stack states
hash table in bits depth traversed
n | n(sg +1gn) | n | 2n
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SCC-Based Emptiness Check

Found!
entries in | hash table size | search stack states
hash table in bits depth traversed
n | n(sg +1gn) | n | 2n

Can be reduced to n if the search stack explicitly stores the states of

each component (requires more memory).
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Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.
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@ Upper bounds easy to have.

@ Objective : evaluate all these algorithms on the average, on
non-empty automata.
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nested DFS gauriainen .

ouvreur et al.

Schwoon & Esparza 02~
SCC | Geldenhuys & Valmari -

unique states visited
transitions visited
I search stack size I

SE04 Tau03 Couv05 Couv05 GV04

Couvreur et al. '05

Alexandre Duret-Lutz Emptiness checks and Partial Orders 22 /43



Conclusions

@ generalized vs. non-generalized:
o generalized algorithms require less memory
@ generalized algorithms produce more meaningful
counterexamples
@ weak fairness expressible using generalized conditions
o non-generalized NDFSs produce counterexamples directly

@ NDFS vs. SCC algorithms:

o SCC algorithms check emptiness faster

o SCC algorithms scale to generalized conditions and fairness
conditions easily

o NDFSs require less memory

@ All these algorithms and the benchmark framework are
implemented in our model checking library:
http://spot.lip6.fr
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Part |

Partial Order Methods

Mostly based on Section 4 of:

Marko Rauhamaa

A comparative study of methods for efficient reachability analysis.
Helsinki University of Technology, Research Report A14, September
1990.

www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A14.ps
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Kripke Structure to Simplify
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Can't we simplify?

We want to verify G(d; — F ry).
On this formula, the following two executions are equivalent:

@ client C; sends a request @ client G, sends a request
o client C; sends a request @ client C; sends a request

@ other events... -
@ other events (in same order)

The order between the two requests does not make any difference.
Some notes:
@ (i's request has an influence on d; (observed by the formula),
@ (,’'s request has no influence on the formula (unobserved event),
@ the two events are independent (doing one will not prevent the
other)
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Let's start (very) simple
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For any sequence M 2<% M’, there exists a sequence M 2225 M,
If we do not observe t., we can keep only the latter.
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Let's start (very) simple

t?tb t
TTT
O O O 110

dai bl 5]

For any sequence M 2<% M, there exists a sequence M 2255 M’
If we do not observe t., we can keep only the latter. Of course if we
do not observe t, we can further simplify the graph.
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The Priority Method

@ A way to reduce state space with a priori knowledge.

@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.

@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)
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@ This ordering is used whenever there is a choice between events.

@ The information is static.

@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)
@ Reachability of a state? Not all, obviously
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The Priority Method

@ A way to reduce state space with a priori knowledge.
@ The analyst manually supplies a partial ordering of the events.
E.g t,<tp < te.
@ This ordering is used whenever there is a choice between events.
@ The information is static.
@ What kind of property does it preserves?
(assuming the partial ordering has been set properly)

@ Reachability of a state? Not all, obviously
@ Deadlock detection? Yes

@ Verification of LTL formulae? Some

o Verification of LTL\ X formulae? Some

We need to formalize the concepts of dependent and observed
events, and introduce dynamic ordering.
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A Definition for Petri Nets

(S, T, W, M) where
@ S is the set of states,
@ T is the set of transitions,
@ W:(Sx T)U(T xS)— Nis the arc weight function,
@ My : S — N is the initial marking.
For x € S x T we denote ex = {y | W(y, x) > 0}.
For x € T x S we denote xe = {y | W(x,y) > 0}.
A marking is a S — N function.
A transition t € T is enabled at marking M (denoted M 5) if
Vs € ot, M(s) > W(s,t).
A transition t enabled at marking M can fire into marking M’
(denoted M = M) if Vs € S, M'(s) = M(s) — W(s, t) + W(t,s).
A marking M is dead if At € T, M 5.
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The Reachability Graph

The reachability graph of a Petri net (S, T, W, M) is a pair (V, E)
where
@ V (vertices) is a set of markings,
@ ECV x T xV (edges)
and the following hold
o MyeV,
o if MeVand M5 M then M' € V and (M, t, M) € E,
@ V and E contain no other elements.
Note that if M LN M’ and M t/—t> then M LEN M.
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Some Abbreviations

Foro=tty---t, € T we denote M Z is there exists My, M,

tn

"M,_; such that M & M, 2 My M, 2.

Similarly M Z, M’ if there additionally exists M’ such that
M2 My 2 My M,y 2 M
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The Idea behind Stubborn Sets

The Petri net is split in two parts: a black box and an environment,
such that the transitions of the two sets are independent.

In the following we assume that t is a black box transition while o is
a sequence of transitions from the environment.

Principle 1 If =M oand M 7, then -M 25,
In other words, firing transitions in the environment
cannot enable a disabled transition of the black box.
Principle 2 If M Loand M 7 then M 2% and M 1%
Transition from the environment and from the black box
can be interleaved as wished.
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Application to Finding Dead Markings

P, If =M L and M %, then =M 5.
P, If ML and M %, then M 2% and M 2%

When looking for dead states, we can simplify the reachability graph
by firing any black box transitions (t) before environment transitions
(o).

Let there be an enabled transition r in the black box and a path 7
leading to a dead marking.

Then m must contain some transition t from the black box.
(Otherwise, by P;, 7 cannot use non enabled transitions of the black
box, and by P, the transition r would still be fireable on the dead
marking...)

P, allows us to move t to the front of .

Can be move t to the back of 77
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Looser Principles = Stubborn Sets

Again t is a transition from the black box (stubborn set Ty), and o
is a sequence of transitions from the environment (T \ Ty).

Principle 1* If M 25 then M %,
Transitions of the stubborn set can be moved before
those of the environment.

Principle 2* If M %, then M “%, for some fixed transition ' € Tu.
In other words the stubborn set is never empty and the
environment cannot disable its transitions.

When looking for dead states, we can still simplify the reachability
graph by firing transitions from the stubborn set before any other.
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Dead Markings with these Definitions

P If M 25 then M 5.
Pi If M2, then M 25,

Let M 55 M’ be a transition sequence to a dead marking M'.
7 necessarily contain a transition from the stubborn set. (If it does

not, P implies that M’ Y, and M’ cannot be dead.)

Therefore m = otn’ and by P; we have M o M,

Can be move t to the back of 77
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Dead Markings with these Definitions

P If M 25 then M 5.
Pi If M2, then M 25,

Let M 55 M’ be a transition sequence to a dead marking M'.
7 necessarily contain a transition from the stubborn set. (If it does
not, P} implies that M’ 5 and M’ cannot be dead.)

ton’

Therefore 7 = otn’ and by P; we have M — M'.

Can be move t to the back of #7 No: some transitions of 7’ are
allowed to disable t.
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Exemple Stubborn Set
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Exemple Stubborn Set

dp bo Co Ny t, N
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Ex:
Stubborn set for marking 000: Togo = {t,, tp}.
Stubborn set any other marking s: T, = T.
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Ex:
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Stubborn set any other marking s: T, = T.

Was it OK to set Togo = {t,}7
Tooo = {tp}? Tooo = {tb, tc}7?
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Computing Stubborn Sets

An abbreviation: A(t,s) = W(t,s) — W(s,t).

One way to compute a stubborn set for a non-dead marking M:

© Pick a transition t enabled in M (i.e. M =) and set Ty, = {t}.
@ For any transition t in (and later added to) Ty:

If M = Add to Ty any transition that can disable ¢.
If =M 5 Pick a place s € ot so that M(s) < A(t, s).
Add to Ty all transitions r so that A(r,s) > 0.

The set of all enabled transitions is always a valid stubborn set, so we
should never try to build a larger set.
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lgnoring problem

Some words about about verifying infinite behaviors.

A C

A
t, %\(;Db/lx_l te Ii‘(;d/l,l_l

B D
Tac = {ta} and Tg = {tp} implies that {¢., t;} are never fired.

We also need to deal with properties.
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Client/Server using Synchronized Automata

Client C Server S Canal B

Synchronization rule for system (C, C,S, B, B, B, B):
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State Space

qia
N\ 221 S/

X X ==
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Kripke Structure to Simplify

Alexandre Duret-Lutz Emptiness checks and Partial Orders 43 / 43



Kripke Structure to Simplify
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