Fairness

Alexandre Duret-Lutz

avril 2009

Alexandre Duret-Lutz Fairness 1/ 20

Fairness

@ Hypotheses on the system to verify.
@ You may consider fairness hypothesis anytime you have to deal
with a repeated choice.

@ Messages sent over a lossy channel will be delivered after a finite
number of retries (the repeated choice is whether the channel
will lose the message)

@ Starvation-free resource allocator: anybody requesting the
resource eventually gets it.

o Two independent processes running on the same host get a “run
slice” infinitely often (the repeated choice is done by the
scheduler).

o Finite wait: a process blocked until it is granted a resource will
eventually get it.

Is there any difference between the last three examples?

Alexandre Duret-Lutz Fairness 2 /20

Fairness hypotheses & the Emptiness Check

These hypotheses can be seen as constraints for the emptiness check.

If two independent processes running on the same host should get a
“run slice” infinitely often:

@ We want a counterexample where both processes are progressing
infinitely often.

@ We can ignore runs where one process is stuck.

Do we really need to modify the emptiness check algorithm?

Alexandre Duret-Lutz Fairness

3/20

Expressing Fairness with LTL

To check proposition prop under hypothesis fairness
we check fairness — prop.

Alexandre Duret-Lutz Fairness 4 /20

Expressing Fairness with LTL

To check proposition prop under hypothesis fairness
we check fairness — prop.

-AM & Aﬁ(fairness—mrop)

Alexandre Duret-Lutz Fairness 4 /20

Expressing Fairness with LTL

To check proposition prop under hypothesis fairness
we check fairness — prop.

-AM & Aﬁ(fairness—mrop)
AM & Afaimess/\—\prop
-AM & Afairness X -Aﬁprop

Added complexity depends on Agjmess-

Alexandre Duret-Lutz Fairness 4 /20

Kinds of Fairness Hypotheses

unconditional fairness Something will happen infinitely often.

weak fairness If something happens continuously, something else will
happen infinitely often.

strong fairness If something happens infinitely often, something else
will happen infinitely often.

Alexandre Duret-Lutz Fairness 5 /20

Kinds of Fairness Hypotheses

unconditional fairness Something will happen infinitely often. GF p

weak fairness If something happens continuously, something else will
happen infinitely often.

strong fairness If something happens infinitely often, something else
will happen infinitely often.

Alexandre Duret-Lutz Fairness 5 /20

Kinds of Fairness Hypotheses

unconditional fairness Something will happen infinitely often. GF p

weak fairness If something happens continuously, something else will
happen infinitely often. FGe— GF¢

strong fairness If something happens infinitely often, something else
will happen infinitely often.

Alexandre Duret-Lutz Fairness 5 /20

Kinds of Fairness Hypotheses

unconditional fairness Something will happen infinitely often. GF p

weak fairness If something happens continuously, something else will
happen infinitely often. FGe— GF¢

strong fairness If something happens infinitely often, something else
will happen infinitely often. GFe— GF¢

Alexandre Duret-Lutz Fairness 5 /20

Kinds of Fairness Hypotheses

unconditional fairness Something will happen infinitely often. GF p

weak fairness If something happens continuously, something else will

happen infinitely often. FGe— GF¢
strong fairness If something happens infinitely often, something else

will happen infinitely often. GFe— GF¢
We have

FGe - GFe¢=-FGeVGF¢
=GF-eVGF¢€
=GF(-eV¥¢)

therefore weak fairness can be expressed as unconditional fairness.

Alexandre Duret-Lutz Fairness 5 /20

Size of Agimess (Generalized Biichi)

We may want to apply several fairness hypotheses.

weak fairness

strong fairness
Ni_, GFen; — GF oc;

n A, GF(=en; Voc)

1 1 state 4 states

2 1 state 10 states

3 1 state 28 states
4 1 state 82 states
n 1 state 37 + 1 states

Alexandre Duret-Lutz

deterministic

Fairness

non-deterministic

6 /20

Look of Ag F(—enVoc)

—enV oc en /\ nocC

OO

Biichi acceptance conditions correspond to formulae such as GF a.

Alexandre Duret-Lutz Fairness 7 /20

Look of Ag F(—enVoc)

—enV oc en /\ nocC

OO

Biichi acceptance conditions correspond to formulae such as GF a.

AM & Afairness & A—|prop

The system can be labeled with the appropriate acceptance
conditions as the state space is explored.

Therefore weak fairness is trivial if you have a generalized emptiness
check.

Alexandre Duret-Lutz Fairness 7 /20

Look of AG Fen—GF oc

T
—_— —|—
oc
— _/O —0co oc €N 9 —en
—en T
—en T ﬂocﬁO@oc O:(‘j}—'en

Note: | don't know of any LTL translator who is able to create the
left automaton!

With n fairness hypotheses, the left automaton reaches 3" states and
the right automaton reaches 3" + 1 states.

Alexandre Duret-Lutz Fairness 8 /20

Size Of Afairness

@ Weak fairness: A\!_, G F(—en; V oc)

@ Strong fairness: A\7_, GFen; — GF oc;

Alexandre Duret-Lutz Fairness 9 /20

Size Of Afairness

@ Weak fairness: A\!_, G F(—en; V oc)

o Generalized Biichi automata always 1 state, deterministic.
o Weak fairness comes for free if you have a generalized emptiness
check for generalized Biichi automata.

@ Strong fairness: A\7_, GFen; — GF oc;

Alexandre Duret-Lutz Fairness 9 /20

Size Of Afairness

@ Weak fairness: A\!_, G F(—en; V oc)

o Generalized Biichi automata always 1 state, deterministic.
o Weak fairness comes for free if you have a generalized emptiness
check for generalized Biichi automata.
@ Strong fairness: A\7_, GFen; — GF oc;
o Generalized Biichi automata with 3”7 + 1 states,
non-deterministic.

Alexandre Duret-Lutz Fairness 9 /20

Size Of Afairness

@ Weak fairness: A\!_, G F(—en; V oc)

o Generalized Biichi automata always 1 state, deterministic.
o Weak fairness comes for free if you have a generalized emptiness
check for generalized Biichi automata.

@ Strong fairness: A\7_, GFen; — GF oc;
o Generalized Biichi automata with 3”7 + 1 states,
non-deterministic.
o Streett automata always 1 state, deterministic.

Alexandre Duret-Lutz Fairness 9 /20

Streett Automata

@ Differ from Biichi automata only in acceptance conditions.

@ Acceptance conditions look like “if a run sees @ infinitely often,
then it will see o infinitely often” (can be generalized to more

pairs of colors)

Alexandre Duret-Lutz Fairness 10 / 20

Streett Automata

@ Differ from Biichi automata only in acceptance conditions.

@ Acceptance conditions look like “if a run sees @ infinitely often,
then it will see o infinitely often” (can be generalized to more
pairs of colors)

@ Exactly what is needed to recognize GF en — GF oc:

en N\ —oc —en /\ mocC
oc
(with e=-0)

Alexandre Duret-Lutz Fairness 10 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

= 0O

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

0O

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

|
- N
|
|
|

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

|
- N
|
|
|

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

|
- N
|
|
|

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

|
- i
|
|
|

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Emptiness Check for Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

|
L @0
|
|
|

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Alexandre Duret-Lutz Fairness 11 / 20

Finally

@ To be correct, has to be combined with a variant of heuristic H2
(ordering successors SCC-wise)

@ “Barriers” must be crossed only after all normal successors have
been visited.
Slowdown (w.r.t. generalized Biichi emptiness check):

@ SCC are revisited at worst m times if m pairs of acceptance
conditions.

@ Compare with the 3™ 4 1 states of the Biichi automaton for the
corresponding LTL formula...

This algorithm makes it possible to handle strong fairness with a
linear slowdown instead of an exponential slowdown.

Alexandre Duret-Lutz Fairness 12 / 20

Biichi and Streett automata

@ Converting (generalized) Biichi automata into Streett automata?

@ Converting Streett automata into (generalized) Biichi automata?

Alexandre Duret-Lutz Fairness 13 / 20

Biichi and Streett automata

@ Converting (generalized) Biichi automata into Streett automata?
Easy!

S S4

@ Converting Streett automata into (generalized) Biichi automata?

Alexandre Duret-Lutz Fairness 13 / 20

Biichi and Streett automata

@ Converting (generalized) Biichi automata into Streett automata?
Easy!

S S4

51 S 53

withe=eNe@e=-0.

@ Converting Streett automata into (generalized) Biichi automata?

Alexandre Duret-Lutz Fairness 13 / 20

Biichi and Streett automata

@ Converting (generalized) Biichi automata into Streett automata?
Easy!

S S4

51 S 53

withe=eNe@e=-0.

@ Converting Streett automata into (generalized) Biichi automata?
Exponential construction. No polynomial algorithm exist.

Alexandre Duret-Lutz Fairness 13 / 20

Back to the client/server example

r s s d
Client C Server S Channel B
Synchronization rules for the system (C, C, S, B, B, B, B):
(1) (s, ., .,.,.,a,.)
(2) (.8, o ., a)
(3) (r cd, o,)
(4) (.,r d)
(5) < . n, .., ., d . >
(6) (., S1,a, ., ., .)
(7) (., oo d)
8 (....= a,)

If a client sends a request, W||| it eventually get an answer?

Alexandre Duret-Lutz

(unfair) Kripke structure

Alexandre Duret-Lutz

How to we make it fair?

(1) (s c,a,)
(2) (S, a)
(3) (r d, ., .)
4) (..r dy)
(5) (n, ., ., d, .)
(6) (st,a, ., ., .)
(7) < n., ., ., ., d>
8 S, -, a, .,)

We want the choice between transition (5) and (6) to be fair.
Do we want strong or weak fairness?

Alexandre Duret-Lutz

How to we make it fair?

(1) (s c,a,)
(2) (S, a)
(3) (r d, ., .)
4) (..r dy)
(5) (n, ., ., d, .)
(6) (st,a, ., ., .)
(7) < n., ., ., ., d>
8 S, -, a, .,)

We want the choice between transition (5) and (6) to be fair.

Do we want strong or weak fairness?

If both (5) and (7) are enabled (= can occur) and we pick (5), then
transition (7) will not be enabled until (6) occurs. Therefore if we
always pick (5), (7) will not be enabled continuously: it will only be
enabled infinitely often.

We need strong fairness!

Alexandre Duret-Lutz

Making the Kripke Structure fair

Making the Kripke Structure fair (e =>e A =)

Another kind of fairness

The previous example still allows scenarios where one client never
work. What if we want to disallow this?

(1) (s c,a,)
(2) (S, a)
(3) (r d, ., .)
4) (..r dy)
(5) (n, ., ., d, .)
(6) (st,a, ., ., .)
(7) < n., ., ., ., d>
8 S, a, .,)

Alexandre Duret-Lutz

Another kind of fairness

The previous example still allows scenarios where one client never
work. What if we want to disallow this?

(1) (s c,a,)
(2) (S, a)
(3) (r d, ., .)
(4) (..r dy)
(5) (n, ., ., d, .)
(6) (st,a, ., ., .)
(7) < n., ., ., ., d>
8 S, a, .,)

We want (1) or (3) to occur infinitely often (i.e., client 1 progresses),
and (2) or (3) to occur infinitely often (i.e., client 2 progresses too).

Strong or weak?

Alexandre Duret-Lutz Fairness 18 / 20

Another kind of fairness

The previous example still allows scenarios where one client never
work. What if we want to disallow this?

0
QO

o~ o~~~ o~~~
=~
i
~— S S S S S S

e L o N Yo R
O N O O = W o+
— N

We want (1) or (3) to occur infinitely often (i.e., client 1 progresses),
and (2) or (3) to occur infinitely often (i.e., client 2 progresses too).

Strong or weak? Weak. In fact, unconditional fairness.

Alexandre Duret-Lutz Fairness 18 / 20

Making the Kripke Structure fair

Making the Kripke Structure fair (Biichi acc.)

A small LTL formula...

<GFpo—>GFp1 GFP2—>GFpo)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFp3) A(GF ps — GF(ps V ps)) A

(GFp; = GFps) A(GF py —>GFP7)> — GFpg

How many states to encode the negation in a Biichi automaton?

Alexandre Duret-Lutz Fairness 20 / 20

A small LTL formula...

<GFpo—>GFp1 GFP2—>GFpo)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFp3) A(GF ps — GF(ps V ps)) A

(GFp; — GFps) A(GFp, — GFP7)> — GFpg
How many states to encode the negation in a Biichi automaton?

Spot's LTL to Biichi translation without optimizations : 7291 states.

With optimizations : 1731 states.
Sebastiani et al. dedicated translation : 1281 states.

Alexandre Duret-Lutz Fairness 20 / 20

A small LTL formula...

<GFPO—>GFP1 GFp2—>GFp0)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFps) A(GF ps — GF(ps V ps)) A

(GFp; = GFps) A(GF py —>GFP7)> — GFpg

How many states to encode the negation in a Streett automaton?

Alexandre Duret-Lutz Fairness 20 / 20

A small LTL formula...

<GFPO—>GFP1 GFp2—>GFp0)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFps) A(GF ps — GF(ps V ps)) A

(GFp; = GFps) A(GF py —>GFP7)> — GFpg

How many states to encode the negation in a Streett automaton?
Formula of the form ¢ — where 1 is a strong fairness hypothesis.

Aoy = Ay @ Ay
Ay: 1-state deterministic Streett automaton with 8 pairs of acc.cond.
A, = Apgps: 2-state Biichi automaton (w/o acc.cond.)
Therefore A (., can be represented as a 2-state Streett
automaton with 8 pairs of acc.cond.

Alexandre Duret-Lutz Fairness 20 / 20

	Title
	Fairness
	Büchi
	Streett
	Streett Emptiness Check
	Büchi and Streett automata
	Back to the client/server example
	A small LTL formula...

