
October 24, 2024

A Brief Introduction to the Theory of
Computation and Complexity

Adrien Pommellet

Contents

An Introduction to the Theory of Computation 5

On Turing Machines 9

The Computing Power of Turing Machines 13

Turing Machines as Programs 17

Languages of Turing Machines 19

Non-deterministic Turing Machines 23

On Recursive Functions 27

Reducing Problems 29

Complexity of Turing Machines 33

Complexity Hierarchy 37

Non-Deterministic Complexity 39

Non-Deterministic Complexity Hierarchy 41

Polynomial Reductions 45

Going Further 51

An Introduction to the Theory of Computation

The savant Gottfried Leibniz dreamt in the seventeenth century of
building a machine that could determine the truth values of mathe-
matical statements. In 1928, the mathematician David Hilbert issued
the entscheidungsproblem1 problem: is there an algorithm that can de- 1 Also known as the decision problem in

the civilized world.termine the universal truth of a first-order logic statement?

One may indeed wonder what are the fundamental capabilities and
limitations of computers. In this first chapter, we will prove in an
informal manner that there exist some properties about programs that
cannot be decided by an algorithm.

The “hello, world” Problem

We wonder if there exists an algorithm that can determine whether Being mere programmers, our concerns
are cruder than Hilbert’s.the twelve first letters output by a C program are “hello, world”. This

seminal example by Kernigan and Richie obviously complies with this
constraint; we merely have to compile and run the program then check
its output:

1 # include < s t d i o . h>
2

3 main () {
4 p r i n t f (" he l lo , world\n") ;
5 }

However, executing the program and reading its output is not a
suitable procedure, as some programs may loop infinitely:

1 # include < s t d i o . h>
2

3 main () {
4 f o r (; ;) { }
5 p r i n t f (" he l lo , world\n") ;
6 }

Setting a time bound on our simulation would lead to some false
negatives:

1 # include < s t d i o . h>
2 # include <unistd . h>
3

4 main () {

6

5 s leep (TIME_BOUND + 1) ;
6 p r i n t f (" he l lo , world\n") ;
7 }

Moreover, we can embed very complex problems in this seemingly
trivial “hello, world” test. As an example, consider the following theo-
rem:

Theorem 1 (Fermat’s last theorem). No three strictly positive integers a,
b, and c satisfy the equation an + bn = cn for any integer value of n greater
than 2.

If we can determine whether the following program prints “hello,
world” or not:

1 # include < s t d i o . h>
2 # include <math . h>
3

4 main () {
5 i n t x , y , z ;
6 i n t n = 2 ;
7 f o r (; ;) {
8 f o r (x = 1 ; x <= n ; x++) {
9 f o r (y = 1 ; y <= n ; y++) {

10 f o r (z = 1 ; z <= n ; z++) {
11 i f (pow(x , n) + pow(y , n) == pow(z , n))
12 p r i n t f (" he l lo , world\n") ;
13 }
14 }
15 }
16 n++;
17 }
18 }

Then we can confirm or refute Fermat’s last theorem. Keep in mind it took a mere four cen-
turies to prove Fermat’s last theorem.
This doesn’t bode well for our decision
algorithm.Of Undecidable Programs

We assume that programs can take any sequence of bits as input, even A reasonable assumption, from a certain
point of view. That’s how code injection
attacks work, as an example.

the code of another program.

We suppose that there exists a program T such that, if T is given
a program P and a sequence of bits x as inputs, then T prints “yes”
if the twelve first letters output by P(x) are “hello, world”, and “no”
otherwise. We can assume that T does not use the standard output
stream stdout until it writes “yes” or “no”.

We then write a program T1 that, given a program P and a sequence
of bits x as inputs, outputs “yes” when T (P, x) would output “yes”,
and “hello, world” when T (P, x) would output “no” instead.

Eventually, we define T2(x) = T1(x, x) and consider T2(T2): Giving a program its own code as an in-
put is a common computability theory
trick that will be used more than once in
the chapters to come.

— If T2(T2) outputs “yes”, then T1(T2, T2) outputs “yes”, T (T2, T2) out-
puts “yes”, and T2(T2) therefore outputs “hello, world”.

7

— However, if T2(T2) outputs “hello, world” instead, then T1(T2, T2)

outputs “hello, world”, T (T2, T2) outputs “no”, and T2(T2) therefore
does not output “hello, world”.

Both cases are absurd and the program T therefore doesn’t exist.
The answer to Hilbert’s decision problem is therefore negative.

On Turing Machines

As a language-agnostic computing framework, we introduce Turing
machines2, a simple mathematical model that predates even the first 2 An interactive Turing machine simula-

tor can be found here.computers but remains nonetheless expressive enough for a formal
study of algorithms.

A First Look at Turing Machines

From a certain point of view, a program is nothing but a sequence of
instructions that interact with the memory by means of a processor.
Thus, we will consider a theoretical computer model known as the
Turing machine made of:

— An infinite3 memory tape divided into cells. Each cell can contain a 3 Obviously, there is no such thing as a
computer with infinite memory. But the
sheer size of a computer’s state space
makes any finite-state model absurdly
inefficient. Infinity remains a mere ap-
proximation of the finite but intractable
reality, and not the other way round.

symbol from a finite alphabet, or remain blank. The tape is infinitely
extendable to its left and to its right.

— A moveable head that can read, erase, and write symbols on tape
cells. It cannot, however, jump to an arbitrary memory location, but
can only read and modify one cell at a time.

— A finite memory (similar to an assembly register) called the state of
the machine. The state space features both an initial and a final (or
accepting) state.

— A finite, deterministic set of instructions called the transition func-
tion of the machine. . . . X1 X2 X3 . . .

q

Figure 1: This Turing machine in state q
is currently reading the cell X3.

The Turing machine starts in its initial state, with a given input
written on its tape. At each computation step (or cycle):

— The machine reads the cell of the tape pointed by the head.
— Depending on the content of the cell read by the head and the cur-

rent state of the machine, the machine applies the transition func-
tion.

— The head overwrites the current cell, the machine changes its state,
and then the head can move to an adjacent cell to its left or to its
right, depending on the transition function’s instructions.

. . . X1 X2 . . .

q’

Figure 2: If the machine switches from
state q to q′, erases X3, and moves its
head to the left, we end in a new con-
figuration.

The machine then keeps running until it reaches its accepting state
or can no longer apply a transition. It can be stuck in an infinite loop.

https://files.inria.fr/interstices/machine-turing/index.html

10

A Formal Definition

Definition 1. A Turing machine (TM) is a 7-tuplet M = (Q, q0, qa, Σ, Γ,
B, δ) where:

— Q is a finite state alphabet such that Q ∩ Γ = ∅.
— q0 is the initial state.
— qa is the accepting state.
— Σ is a finite input alphabet.
— Γ is a finite work alphabet such that Σ ⊂ Γ.
— B is the blank symbol such that B ∈ Γ and B ̸∈ Σ.
— δ is a partial transition function in (Q − {qa})× Γ → Q × Γ × {L, S,

R}. The set {L, S, R} stands for {Left, Stay, Right}.

In order to give an instant description of a TM at a given step of a
computation, we introduce configurations:

Definition 2. A configuration c of M is an infinite word in ConfM =

BωΓ∗QΓ∗Bω.

A configuration represents at the same time the tape content, the
head, and the state of the TM: the state is written to the left of the tape
cell currently being read by the tape head. . . . B X1 X2 X3 X4 B . . .

q

Figure 3: The configuration X1X2qX3X4.
We may omit the infinite blanks to the left and the right of the TM’s

tape: c = Bωw1qw2Bω can be written c = w1qw2.

Graphical representation. We can represent a Turing machine as a
graph whose nodes are the states in Q and whose edges are labelled in
Γ× Γ×{L, S, R}. If δ(q, X) = (q′, Z, m), then we draw an edge labelled
by (X, Z, m) between states q and q′.

q q′
(X, Z, m)

Figure 4: Graphical representation of a
TM transition.

Semantics of Turing Machines

We define a formal transition relation ⊢M on configurations of a Turing
machine M in the following manner:

Definition 3. Given a configuration w1YqXw2 ∈ ConfM, for δ(q, X) =

(q′, Z, m), m ∈ {L, S, R}, we define the following relations:

Static. If m = S, w1YqXw2 ⊢M w1YqZw2.
Right move. If m = R, w1YqXw2 ⊢M w1YZqw2.
Left move. If m = L, w1YqXw2 ⊢M w1qYZw2. . . . B X1 X2 X2 X4 B . . .

q

Figure 5: If we apply the transition rule
δ(q, X3) = (q′, X2, R) to X1X2qX3X4, we
end in a new configuration.

We consider the reachability relation ⊢∗
M, which is the transitive clo-

sure of ⊢M.

Exercise 1. Design a TM M such that, given an integer w written in
binary with its least significant bit stored first, on its left (little endian),
q0w ⊢∗

M qaw′ where w′ = 2 × w.

11

q0start q qa
(0, 0, L)(1, 1, L) (B, 0, S) Figure 6: A graphical answer to exercise

1.

Exercise 2. Design a TM M such that, given an integer w written
in binary with its most significant bit stored on its left (big endian),
q0w ⊢∗

M qaw′ and w′ = w + 1.

q0start q qa
(0, 1, L)(B, 1, L)

(1, 0, R) (0, 0, R)(1, 1, R)

(B, B, R)

Figure 7: A graphical answer to exercise
2.

Definition 4. A run of M on an input x is a (possibly infinite) sequence of
configurations (ci)i≥0 such that c0 = q0x and ∀i ≥ 0, ci ⊢M ci+1.

Definition 5. We say that a TM M halts on an input w if q0w ⊢∗
M w1qXw2

and the transition δ(q, X) is undefined4. Then M accepts w if q = qa, and 4 Remember that δ is a partial function.

rejects w otherwise. If M accepts, then the tape content w1Xw2 is called the
output of M.

We can extend this definition to runs as well. Note that a TM will
always halt if it reaches the accepting state qa by design of δ.

Definition 6. Two TMs M1 and M2 are said to be equivalent on their
respective inputs x and y if M1 halts on the input x (resp. rejects, accepts
with output z) if and only if M2 halts on the input y (resp. rejects, accepts
with output z). We then write M(x) ≡ N(y).

If both machines share the same input alphabet Σ and ∀x ∈ Σ∗, M1(x) ≡
M2(x), then M1 and M2 are said to be equivalent5 and we write M ≡ N. 5 Intuitively, if we think of M1 and M2

as black boxes producing outputs from
inputs, then they are similar.

The Computing Power of Turing Machines

As abstract as it may seem, the simple Turing machine model is actu-
ally equivalent to superficially more expressive and realistic comput-
ing models.

Binary Turing Machines

Definition 7. A Turing Machine is said to be binary if its input alphabet is
{0, 1} and its work alphabet is {0, 1, B}.

We define the binary language B = {0, 1}∗.

Theorem 2. Let M be a Turing machine and β : (Γ − {B}) → {0, 1}k

a injective binary translation such that k = log2(|Γ − {B}|). Then there
exists a binary TM M′ such that M halts (resp. rejects, accepts with output
y) on the input x if and only if M′ halts (resp. rejects, accepts with output
β(y)) on the input β(x).

We present an intuitive sketch6 of the proof of this result: 6 The full proof is left as an exercise to
the reader.

Proof. We can extend β to Γ by assuming that β(B) = Bk. Our intuition
is to simulate one cell of M by k cells of a new TM M′. In order to
simulate a transition of M, we do the following operations:

1. Starting from a state q common to M′ and M, we read k cells, storing
the data read in the control state.

2. Depending on the binary encoding of a symbol in Γ read and the
state of M simulated, we will simulate a transition d of δM.

3. To do so, we overwrite the k cells from right to left with the encoding
of the output symbol of d.

4. We then move the tape head k cells to the left (resp. 2 · k cells to the
right) if d moved M’s head to the left (resp. to the right).

If d ends in the accepting state, then so should the TM M′ after
simulating d.

Example 1. Consider a transition rule d : δM(q, X) = (q′, Y, L) of
M such that k = 3, β(X) = 010 and β(Y) = 101. We want to design a
binary simulation of d.

14

Starting from configuration q010, we must first read7
3 contiguous 7 The state q101

r stands for “the TM is in
reading mode, simulates state q, and has
read the word 010 from left to right”.

cells in a row:

q010 ⊢N 0q0
r 10 ⊢N 01q01

r 1 ⊢N 010q010
r

Having read the binary representation of X, we can apply the tran-
sition rule d. To do so, we store the word 110 to be written8 in the 8 The state d101

w stands for “the TM is ap-
plying the transition d and must write
the word 101 from right to left”.

control state, then write it from right to left on the tape:

⊢N 01d101
w 0 ⊢N 0d10

w 11 ⊢N d1
w001 ⊢N dw101

We must now simulate the move of M’s head to the left. To do so,
N moves9 its head three times to the left before it reaches state q′: 9 The state d3

l stands for “the TM is ap-
plying the transition d and must move
the tape head 3 cells to the left”.⊢N d3

l 101 ⊢N d2
l B101 ⊢N d1

l BB101 ⊢N dl BBB101 ⊢N q′BBB101

Turing Machines with Multiple Tapes

We introduce a new Turing machine model with a finite number n of
tapes, each with its own tape head:

Definition 8. A Turing machine with n tapes is a 7-tuplet M = (Q, q0,
qa, Σ, Γ, B, δ) where:

. . . B X1 X2 X3 B . . .

q

. . . B Y1 Y2 Y3 B . . .

▽

. . . B Z1 Z2 B B . . .

▽

Figure 8: This TM with three tapes and
three head is in configuration (q, X1 ▷
X2X3, Y1Y2 ▷ Y3, ▷Z1Z2).

— Q, q0, qa, Σ, Γ, and B are similar to the components of a single-tape TM.
— δ is a partial transition function in (Q − {qa})× Γn → Q × {1, . . . , n}

× Γ × {L, S, R}.

Let ▷ ̸∈ Γ. A configuration of M is an element of ConfM = Q ×
(BωΓ∗ ▷ Γ∗Bω)n. The symbol ▷ stands for the position of each head on
its respective tape. In a a manner similar to single-tape TM, we may
omit writing Bω when expressing a configuration.

A TM with multiple tapes can simultaneously read the cells pointed
by its n heads, but will only (without loss of generality) modify a single
tape at a time. We consider the following semantics:

Definition 9. Given a configuration (q, c1, . . . , cn) ∈ ConfM such that ∀j ∈
{1, . . . , n}, cj = wjYj ▷ Xjw′

j, and given δ(q, X1, . . . , Xn) = (q′, i, Z, m),
m ∈ {L, S, R}, we define a transition relation on configurations (q, c1, . . . ,
cn) ⊢M (q′, c′1, . . . , c′n) such that c′j = cj if j ̸= i and:

. . . B X1 X2 X3 B . . .

q

. . . B Y1 Y2 B B . . .

▽

. . . B Z1 Z2 B B . . .

▽

Figure 9: If we apply the transition rule
δ(q, X2, Y3, Z1) = (q′, 2, B, L) to (q, X1 ▷
X2X3, Y1Y2 ▷Y3, ▷Z1Z2), we end in a new
configuration. Intuitively, during a tran-
sition, a TM with n tapes reads from in-
puts from its n tape heads, but can only
modify one tape.

Static. If m = S, ci = wjYj ▷ Zw′
j.

Right move. If m = R, ci = wjYjZ ▷ w′
j.

Left move. If m = L, ci = wj ▷ YjZw′
j.

Other notions such as halting, accepting, or rejecting are defined in
a similar manner to TMs with a single tape:

15

Definition 10. We say that a TM M with n tapes halts on an input10 w if 10 As a convention, the input is written
on the first tape, and the output on the
last.

(q0, ▷w, ▷B, . . . , ▷B) ⊢∗
M (q, w1 ▷ X1w′

1, . . . , wn ▷ Xnw′
n) and the transition

δ(q, X1, . . . , Xn) is undefined. Then M accepts w if q = qa, and rejects w
otherwise. If M accepts, then the tape content wnXnw′

n is called the output
of M.

TMs with multiple heads, however, are not more expressive than
TMs with a single tape:

Theorem 3. Let M be a TM with k tapes. Then there exists a TM M′ with
a single tape such that M ≡ M′.

We present an intuitive sketch11 of the proof of this result: 11 The full proof is left as an exercise to
the forsaken reader.

Proof. Our intuition is to consider a single-tape TM M′ such that each
cell is split into (2 · k) sub-cells: k “tape” sub-cells to simulate the
matching cells of the n tapes of M, and k “head” sub-cells than can
either be blank or contain a symbol ▷ if one of the multiple heads of
M is reading the current cell.

In order to simulate a transition rule of M, we first scan the tape
of M′ for ▷ tape head symbols in the “head” sub-cells, recording the
content of the matching “tape” sub-cells in the control state until all
the k heads have been found.

. . . X1 X2 B . . .

q

. . . Y1 B B . . .

▽

⇕

. . . B X1
▷ Y1

▷ X2
B B B . . .

q.1

Figure 10: From a TM with two tapes to
a TM with one tape. Being in state q.1
means that the TM simulates state q and
there is one simulated tape head to its
left.

Then, if the i-th tape is meant to be modified, we scan the tape again
to find the ▷ in the i-th “head” sub-cell, modify the i-th “tape” sub-cell
accordingly, and simulate a move of the i-th head of M′ by writing ▷

in the i-th “head” sub-cell of one of the adjacent cells of M′ as well as
erasing it from the current i-th “head” sub-cell.

To avoid looping while scanning the tape of M′ for the non-blank
“head” cells, we should keep at all time in the control state of M′ the
number of simulated heads of M to the left and to the right of the
actual tape head.

Finally, if we need to accept with a given output, then right before
reaching the accepting state, we replace every non-empty cell of the
tape by the content of its n-th component that represents the matching
cell on the last tape.

We can therefore use TMs with multiple tapes as a more convenient
computation model that often makes writing proofs simpler.

Turing Machines as Programs

At the assembly level, a program is nothing but a sequence of bits
interpreted by a computer. In this chapter, we will show how this is
true of Turing machines as well.

Encoding Turing Machines

Definition 11. An encoding is an injective function E from the set of TMs An encoding matches a source code to a
program. Note that it isn’t surjective, as
a binary word may not be a source code.

to B.

Let us consider a TM M = (Q, q0, qa, Σ, Γ, B, δ) on the input alphabet
Σ = {0, 1} and the work alphabet {0, 1, B}. We assume that Q =

{q0, . . . , qn}.

We will encode M in the following manner, using the symbol 1 as a
separator inserted between each step: We combine an unary encoding of data

with a separator.
1. We write the number of states 0|Q| = 0n+1.
2. If the accepting state is qk, we write its index 0k+1.
3. For each transition rule δ(qi, x) = (qj, y, m), we write:

(a) The input state 0i+1.

(b) The input symbol: 0 if x = 0, 00 if x = 1, 000 if x = B.

(c) The output state: 0j+1.

(d) The output symbol, in a manner similar to the input.

(e) The head movement: 0 if m = L, 00 if m = S, 000 if m = R.

We can compute this way a binary encoding E(M). From now on,
we will use this standard encoding and write E(M) = ⟨M⟩ as well as
M⟨M⟩ = M.

If a binary string x doesn’t make sense with regards to the encod-
ing detailed previously, Mx is interpreted as the machine that always
rejects any input immediately.

Application 1. Let M be the TM described by Figure 11. Then:

E(M) = 00︸︷︷︸
|Q|

1 00︸︷︷︸
qa

1 01010101000︸ ︷︷ ︸
δ(q0,0)=(q0,0,R)

1 0100100100100︸ ︷︷ ︸
δ(q0,1)=(qa ,1,S)

q0start qa
(1, 1, S)

(0, 0, R)

Figure 11: A TM accepting all words
containing the symbol 1.

18

Definition 12. Let x ∈ Σ∗. The Kolmogorov’s complexity K(x) of x is
the size |⟨M⟩| of the smallest TM M accepting the empty input with output
x.

Example 2. (abc)1000 and a random string of equal length on the al-
phabet {a, b, c} are unlikely to have the same Kolmogorov complexity:
the former can be output by a simple TM that simulates a for loop.

Simulating Turing Machines

Theorem 4. There exists a TM U with three tapes on the input alphabet U simulates a run of the TM M on the
input x.{0, 1, #} such that for all binary TM M and binary input x, U (⟨M⟩ # x) ≡

M(x). U is called the universal machine.

We present an intuitive sketch12 of the proof of this result: 12 The full proof is left as an exercise to
the zealous reader.

Proof. We consider a TM U with three tapes:

1. The first tape stores the source code ⟨M⟩.
2. The second tape stores the simulated control state of M.
3. The third tape simulates the tape of M.

Given an input ⟨M⟩ # x on the first tape, U copies x on the third
tape, erases #x on the first tape, and writes 0 on the second tape (the
simulated initial state of M). U otherwise rejects any input that isn’t
of the form w # w′ where w, w′ ∈ B.

1 Input code ⟨M⟩
2 Simulated state q

3 Simulated tape x

Figure 12: The three tapes of the univer-
sal TM U .

Then, U scans the first tape for a transition rule that matches the
simulated state on the second tape and the symbol read by the third
tape head, applies said transition rule if it exists.

The TM U keeps simulating transitions until it no longer finds a
rule it can apply, then it checks if the second tape is in an accepting
state as described by ⟨M⟩ on its first tape: if it is, then U accepts, and
rejects otherwise.

The Church-Turing Hypothesis

It should be obvious by now that a Turing machine can model a modern
computer. We have shown that TMs can read binary programs, inter-
pret them and simulate a computer’s memory with multiple infinite
tapes.

As a consequence, we can admit the Church-Turing hypothesis: ignor-
ing resource limitations, a function is computable by an algorithm if and
only if can be computed by a Turing machine.

Languages of Turing Machines

In this chapter, we give a formal definition of algorithmically decidable
problems, using the Turing machine framework introduced in the pre-
vious chapters.

Recursively Enumerable Languages

Definition 13. The language of a TM M on the input alphabet Σ is the set
L(M) = {w ∈ Σ∗ | M accepts w}.

Obviously, if M1 ≡ M2, then L(M1) = L(M2).

Definition 14. A language L on the input alphabet Σ is said to be recur-
sively enumerable (RE) or semi-decidable if there exists a TM M on the Note that M may or may not halt on

words that are not in L.input alphabet Σ such that L(M) = L.

We then say that M accepts L.

Exercise 3. Compute a TM accepting the language {w ∈ B | |w|0 =

|w|1}.

q0

start

r0

r1

l

qa

(0,X
,R

)

(1, X, R)

(B
, B

, L
)

(1, X, R)

(0,X
,R

)

(B, B, R)

(X
,X

,R
)(

0,
0,

R
)

(X
,X

,R
)(1,1,R

)

(X, X, L)(0, 0, L)(1, 1, L)

(X
,X

,R
)

Figure 13: A graphical answer to exer-
cise 3. Our intuition is the following: if
we read a 0 (resp. a 1), we replace it by a
symbol X, then we scan the input from
left to right, looking for a 1 (resp. a 0)
that we also replace by a X. We then
rewind the head to the left of the input
and scan the tape again until every input
symbol has been replaced by a X, then
we accept.

20

Proposition 1. The set of RE languages on Σ is closed by union and inter-
section.

Proof. Let L1, L2 be two RE languages and M1, M2 be two TMs such
that L(M1) = L1 and L(M2) = L2.

Let M∪ be a TM with two tapes such that, on the input x, M∪
performs the following operations:

1. Copy x on the second tape.
2. Simulate a step of M1 on the first tape if possible.

Step 1 of M1 ⊢ Step 1 of M2 ⊢ Step 2 of
M1 ⊢ Step 2 of M2 ⊢ . . .

Figure 14: Interleaving multiple step-by-
step simulations is a common method to
avoid being stuck if one of the simulated
components loops.

3. Simulate a step of M2 on the second tape if possible.
4. Accept if either of these simulations accepts.
5. If they don’t, go back to step 2.

Then M∪ accepts L1 ∪ L2. We can design M∩ in a similar manner
by replacing step 4 with “Accept if both of these simulations accept.”.

On Recursive Enumeration

Definition 15. We say that a TM M enumerates a (possibly infinite)
sequence w0 # w1 # . . . on its tape if there exists a (possibly infinite) run
q0B ⊢∗

M w0 # q1 ⊢∗
M w0 # w1 # q2 ⊢∗

M . . . and, at any step of this run,
M never overwrites any cell located to the left of a # symbol (including the
symbol itself).

If M is a TM with multiple tapes, then the enumeration should be
done on its last tape; the use of its other tapes is unconstrained.

Theorem 5. (1) A language L on the input alphabet Σ is RE if and only if
(2) there exists a TM M such that M enumerates13 a sequence w0 # w1 # . . . 13 M recursively enumerates the words

in L, hence, the name of this class of lan-
guages.

where ∀i ∈ N, wi ∈ L and ∀l ∈ L, ∃!j ∈ N, l = wj.

Proof. (1) ⇒ (2). Let L be a RE language accepted by a TM M. Let M′

be a TM with two tapes that, starting on an empty input, performs the
following operations:

1. Starting from i = 1, simulate the i first steps of M on the i first
words of Σ∗ (sorted according to the radix order) on the first tape.

2. Write on the second tape any word accepted by one of these simu-
lations if it has not already been written, inserting a # between each
new word.

W
or

d
1

W
or

d
2

W
or

d
3

Step 1 of M 1 2 3

Step 2 of M 2 3 . . .
Step 3 of M 3

Figure 15: Diagonal simulations are an-
other common method to handle possi-
bly infinite languages.

3. Increment i and go back to step 1.

Then M′ obviously recursively enumerates the elements of L.

(2) ⇒ (1). Let M be a TM enumerating a sequence of words w0 #
w1 # . . ., and M′ a TM with two tapes such that:

1. Its input x is stored at all time on the first tape.

21

2. M is simulated on the second tape, enumerating w0 # w1 #

Moreover, each time M′ writes a # on its second tape, it compares
the last word wi written to the input x on the first tape. If both are
equal, M′ accepts. If the simulation of M halts, then M′ halts as well.

Obviously, the TM M′ accepts L. Hence, L is RE.

We then say that M enumerates L.

A Non-recursively Enumerable Language

Theorem 6. Let D = {⟨M⟩ | M does not accept ⟨M⟩ .} be the diagonal-
ization language. Then D is not RE.

Proof. We suppose that there exists a TM D accepting D. If D(⟨D⟩) Cantor first designed this method to
prove that the set of real numbers is not
countable.

accepts, then D(⟨D⟩) does not accept. If D(⟨D⟩) does not accept, then
D(⟨D⟩) should accept.

Both cases are absurd and D therefore doesn’t exist.

Recursive Languages

Definition 16. A language L on the input alphabet Σ is said to be recursive
(R) or decidable if there exists a TM M on the input alphabet Σ such that
M accepts L and always halts14. 14 As a direct consequence, M rejects c L.

We say that M recognizes L. Obviously:

Proposition 2. If L is R, then L is RE.

Moreover:

Proposition 3. The set of R languages on Σ is closed by complementation,
union, and intersection.

Proof. Let L be a R language accepted by a TM M. We consider the
machine M′ that simulates M on the input x, then rejects if M accepts
and accepts if M rejects. M′ obviously recognizes the language cL that
is therefore R.

Closure by union and intersection can be proved in a similar manner
to RE languages15. 15 The full proof is left as an exercise to

the unlucky reader.
Theorem 7. If both L and cL are RE, then L is R.

Proof. Let M and c M be two TM accepting L and cL respectively. Let
M′ be a TM with two tapes such that, on the input x, M′ performs the
following operations:

1. Copy x on the second tape.
2. Simulate a step of M on the first tape if possible.

22

3. Simulate a step of c M on the second tape if possible.
4. Accept if the simulation of M accepts. Reject if the simulation of c M

accepts.
5. If they don’t, go back to step 2.

Since both L and cL are RE, at least one of the two TMs M and c M
will halt on any input x. Hence, M′ halts and obviously accepts L.

A Non-recursive Language

Theorem 8. Let H = {⟨M⟩ # x | M halts on the input x.} be the halting
problem. Then H is not R.

Proof. We suppose that there exists a TM H recognizing H. Let H′ be a
TM such that, given an input x, if H(x # x) rejects, then H′(x) accepts,
and if H(x # x) accepts, then H′(x) loops.

If H′(⟨H′⟩) accepts, then H(⟨H′⟩ # ⟨H′⟩) accepts. Hence, H′(⟨H′⟩)
should not halt. If H′(⟨H′⟩) loops, then H(⟨H′⟩ # ⟨H′⟩) rejects and
H′(⟨H′⟩) should halt.

Both cases are absurd and therefore H doesn’t exist.

Obviously, H is RE: one merely has to use the universal machine U
on the input ⟨M⟩ # x.

Non-deterministic Turing Machines

In this chapter, we will stray from the deterministic computing model
and focus on non-deterministic Turing machines, in an automata the-
oretic fashion.

A Non-deterministic Model

Definition 17. A non-deterministic Turing machine (NTM) is a 7-tuplet
N = (Q, q0, qa, Σ, Γ, B, δ) where:

— Q, q0, qa, Σ, Γ, and B are similar to the components of a deterministic TM.
— δ is a transition function in (Q − {qa})× → 2Q×Γ×{L,S,R}.

We can then define the code, the set of configurations, and the runs
of a NTM in a manner similar to deterministic TMs. However, the
semantics of the transition relation ⊢N of a NTM are defined non-
deterministically16: 16 If a NTM is in state q and reads the

work symbol X, then it can apply one of
possibly many rules.Definition 18. Given a configuration w1YqXw2 ∈ Con fN , for all (q′, Z, m)

∈ δ(q, X), m ∈ {L, S, R}, we define the following relations in δ(q, X).:

Static. If m = S, w1YqXw2 ⊢N w1YqZw2.
Right move. If m = R, w1YqXw2 ⊢N w1YZqw2.
Left move. If m = L, w1YqXw2 ⊢N w1qYZw2.

q0w c1 c2

Figure 16: A run of a deterministic TM.
It is accepting if and only if c2 is in an
accepting state.We define halting, accepting, and rejecting runs in a manner similar

to deterministic TMs. However, instead of a single, linear run, these
semantics also yield an execution tree that features all possible runs
from a given starting configuration. Hence, NTMs have their own
accepting condition on a given input:

Definition 19. We say that a NTM N accepts an input w ∈ Σ∗ if there
exists an accepting run on the input w.

q0w

c0
1 c1

1

c0
2

c1
2 c2

2

Figure 17: An execution tree of a non-
deterministic TM. If, as an example, c2

2
is in an accepting state, then the NTM
accepts w.

The language L(N) of a NTM N is the set of all words accepted by
this NTM.

Definition 20. We say that a NTM N halts on an input w ∈ Σ∗ if every
run on the input w halts. N rejects the input w if it halts on w but does not
accept w.

24

Note that unlike TMs, a NTM can accept an input without halting at
the execution tree level. Therefore, we can’t define the output of a NTM
on a given input, as different runs may yield different results. As a
consequence, we define a new equivalence relation:

Definition 21. Two machines (be they deterministic or non-deterministic)
M1 and M2 are said to be semi-equivalent on their respective inputs x
and y if M1 halts on the input x (resp. rejects, accepts) if and only if M2 halts
on the input y (resp. rejects, accepts). We then write M(x) ∼ N(y).

If both machines share the same input alphabet Σ and ∀x ∈ Σ∗, M1(x) ∼
M2(x), then M1 and M2 are said to be semi-equivalent and we write M ∼
N.

We can prove that any language accepted by a NTM can be accepted
by a TM as well:

Theorem 9. If N is a NTM, then there exists a TM M such that M ∼ N.

Our intuition is to design a TM M that executes a breadth-first
search of the execution tree of N on a given input. Here is a sketch17 17 The full proof is left as an exercise to

the brave reader.of this proof:

Proof. We introduce a TM M on the work alphabet Γ∪Q∪{#, B′} such
that, given an input x, M does the following operations:

1. M writes the symbol q0 to the left of the input x.
2. M stores a queue of configurations18 of N on its tape, using a # 18 Of the form c0 # c1 # c2 . . .

separator symbol that does not belong to N’s work alphabet.
3. M halts if this queue is empty.19 19 In order to check if the queue is empty,

we encode configurations so that the
queue is a continuous sequence of non-
blank symbols. To do so, we use an
alternative B′ pseudo-blank symbols to
encode configurations that is otherwise
treated as a B symbol by the simulated
rules of the NTM N.

4. We read the leftmost configuration c of the queue. For each possi-
ble transition of N starting from this configuration c, M copies the
resulting configuration c′ at the end of the queue. Moreover, if c′ is
in state qa, then M accepts.

5. M erases c from the queue and loops back to state 2.

It should be obvious that M ∼ N.

In a similar manner to TMs, we can design NTMs with multiple tapes
that are equivalent to NTMs, hence, to TMs.

Applying Non-determinism

While NTMs accept the same set of RE languages as TMs, they can
often do so in a more concise manner, making some proofs easier.
Here are two examples of such properties:

Theorem 10. The set of RE languages is closed by concatenation.

25

Proof. Let L1 and L2 be two RE languages respectively accepted by the
TMs M1 and M2. Let N be a NTM with two tapes such that, given an
input x on its first tape, N does the following operations:

1. N arbitrarily splits x in two words x = x1 · x2 by scanning x from A common use of non-determinism is to
guess a transformation of the input that
can ease the next computation steps of a
problem.

left to right and non-deterministically choosing to halt the scan at
any given step.

2. N copies x2 on the second tape and erases it from the first tape.
3. N performs an interleaved simulation of M1 on the first tape and of

M2 on the second tape. If both simulations accept, the current run
of N accepts.

N then non-deterministically accepts L1 · L2: given l1 ∈ L1, l2 ∈ L2,
and x = l1 · l2, if we consider the split x = l1 · l2, then N accepts x.

Theorem 11. The set of RE languages is closed by Kleene star.

Proof. Let L be a RE language accepted by the TMs M. Let N be a
NTM with two tapes such that, given an input x on its first tape, N
does the following operations:

1. N arbitrarily splits x in two words x = x1 · x2 by scanning x from
left to right and non-deterministically choosing to halt the scan at
any given step.

2. N copies x1 on the second tape and erases it from the first tape.
3. N simulates M on x1. If M rejects x1, then the current run of N

halts.
4. If x2 is empty, the current run of N accepts. Otherwise, N applies

step 1 to x2.

N then non-deterministically accepts L∗: given l1, . . . , ln ∈ L and
x = l1 · . . . · ln, if we consider the split x = l1 · . . . · ln, then N accepts
x.

We can prove the following result in a similar manner:

Theorem 12. The set of R languages is closed by concatenation and Kleene
star.

On Recursive Functions

One of the earliest use of Turing machines was to model computable
functions. In this context, the content of the machine’s tape as it ac-
cepts is just as significant as the fact that it halts in the first place.

Computing Functions

Definition 22. Let E ⊆ Σ∗. A function f : E → Σ′∗ is said to be recursive
or computable if there exists a TM M on the input alphabet Σ such that
∀x ∈ E, f (x) = y if and only if M accepts x with the output y. We then say
that M computes f .

Exercise 4. Consider the unary multiplication function f on 0∗10∗

such that f (0n10m) = 0nm. Prove that f is recursive. Other common operations such as ad-
dition, subtraction, or division are sim-
ilarly recursive.Answer. Let M be a Turing Machine with two tapes. From a starting

configuration (q0, 0n10m, Bω), M does the following operations:

1. Scan the first tape from left to right, seeking for a 1. If it can’t find
one and the head ends on a blank, M rejects.

2. From there, scan the first tape from left to right, seeking for a 0. If
it finds one, then it is overwritten by 1. If it can’t find one, then M
accepts.

3. From there, scan the first tape from right to left, seeking for a blank,
then moving the head to the right of that blank.

4. Scan the first tape from left to right, writing a new 0 on the second
tape each time a 0 is read on the first tape, stopping when a 1 is
read.

5. Go back to step 2.

Our intuition is to copy 0n m times on the second tape, replacing a
0 from the input 0m by a 1 each time a copy is performed until no 0
remains. When this loop ends, M accepts with the output 0nm and has
therefore computed the unary multiplication of n and m.

28

Properties of Recursive Functions

Theorem 13 (Kleene’s iteration). There exists a total, recursive function s on
the set20 B# = {0, 1, #}∗ such that, given any TM M on {0, 1, #}, ∀x, y ∈ B, 20 The # symbol is used a separator to

feed multiple arguments to a TM or a
recursive function using a single input
string

Ms(⟨M⟩#x)(y) ≡ M(x # y).

Proof. Consider the function s that matches to any TM code ⟨M⟩ and
binary input x the code ⟨M′⟩ of the following machine:

1. M′ writes x# before the current input y.
2. M′ simulates M on x # y.

Then M⟨M′⟩(y) ≡ M(x # y).

Thus, the following theorem holds:

Theorem 14 (Kleene’s recursion). Let f be a total recursive function. Then
there exists a TM M such that M f (⟨M⟩) ≡ M. Intuitively, M is a fixed point of f .

Proof. Let M be a TM be a TM with four tapes that, given an input
x # y on its first tape, performs the following operations:

1. M computes f (s(x # x)) on its second tape.
2. M copies y on its fourth tape.
3. M simulates M f (s(x#x))(y) with its last three tapes, in a manner

similar to the universal machine.

1 Input x # y

2 Simulated code f (s(x # x))

3 Simulated state q

4 Simulated tape y

Figure 18: The four tapes of the TM M.

By definition of M:

M(⟨M⟩ # y) ≡ M f (s(⟨M⟩#⟨M⟩))(y)

And by Kleene’s iteration theorem:

M(⟨M⟩ , y) ≡ Ms(⟨M⟩#⟨M⟩)(y)

Hence:
M f (s(⟨M⟩#⟨M⟩))(y) ≡ Ms(⟨M⟩#⟨M⟩)(y)

Therefore s(⟨M⟩ # ⟨M⟩) is a fixed point of f .

Application 2. Consider the recursive function f such that, given
any TM M, f (⟨M⟩) is the code of the TM that, on any input, erases it
then writes ⟨M⟩ on its tape and accepts.

By Kleene’s recursion theorem, f has a fixed point x such that Mx

writes its own code x on its tape then accepts. Such a program is called
a quine.

One can actually compute the source code of a non-trivial21 quine 21 Merely opening and printing the pro-
gram’s own source file is obviously a de-
spicable cheat worthy of a painful and
humiliating death.

by following the steps of the proof of Kleene’s recursion theorem.

Reducing Problems

In this chapter, we will see how we can use a relation on languages
called reduction and previous knowledge on a few canonical problems
to determine whether another problem is decidable or not.

Introducing Reductions

Definition 23. We say that a language A can be Turing-reduced to a lan-
guage B if there exists a total recursive function f such that x ∈ A ⇔ f (x) ∈
B.

We then write A ≤T B. f is called the reduction of A to B.

Proposition 4. If A ≤T B and B is decidable22 (resp. RE), then A is 22 Think of B being “bounded”.

decidable (resp. RE) as well.

Proof. Since B is decided by a TM M, we can design M′ that decides
A by computing f (x) on an input x then simulating M.

As a consequence:

Proposition 5. If A ≤T B and A is undecidable23 (resp. not RE), then B is 23 Think of A being “infinite”.

undecidable (resp. not RE) as well.

Proof. If B were decidable (resp. RE), then so would be A. This is
obviously not the case.

Note that A being R or RE does not mean B is.

Undecidability Proofs Featuring Reductions

These canonical problems can all be shown to be undecidable using a
proper reduction:

Proposition 6. The accepting problem A = {⟨M⟩ # x | M accepts x.} is
undecidable.

Proof. We will prove that H ≤T A.

30

Consider the function f that matches (⟨M′⟩ # x) to (⟨M⟩ # x), where
M′ is a TM that simulates M and accepts whenever M halts.

Obviously M′ accepts x if and only if M halts on x. f is therefore a
reduction from H to A, and the latter problem is undecidable.

Proposition 7. The equality problem E = {⟨M1⟩ # ⟨M2⟩ | L(M1) =

L(M2)} is undecidable.

Proof. We will prove that H ≤T E .
Consider the function f that matches to (⟨M⟩ # x) the codes (⟨M1⟩ #

⟨M2⟩) of two TM M1 and M2 such that, on any given input, M1 erases
it24, writes x instead, simulates M on x, and eventually accepts if M 24 In order to design a reduction, we can

define a TM that outright ignores the
original input and instead rewrite a new
constant input related to another (often
simpler) problem that we then try to
solve.

halts, and M2 always immediately accept regardless of the input.
M1 either accepts every single word (and L(M1) = L(M2)) or none

at all, depending on whether M halts on the input x or not. f is
therefore a reduction from H to E , and the latter problem is undecid-
able.

Proposition 8. The non-emptiness problem Lne = {⟨M⟩ | L(M) ̸= ∅}
is undecidable.

Proof. We will prove that H ≤T Lne. A diligent reader should have noticed a
recurring pattern by now.Consider the function f that matches to (⟨M⟩ # x) the code ⟨M′⟩ of

a TM M′ such that, on any given input, M′ erases it, writes x instead,
simulates M on x, and eventually accepts if M halts.

M′ either accepts every single word or none at all, depending on
whether M halts on the input x or not. f is therefore a reduction from
H to Lne, and the latter problem is undecidable.

Using the same reduction function, we can also prove that:

Corrolary 1. The emptiness problem Le = {⟨M⟩ | L(M) = ∅} is
undecidable.

As a consequence:

Proposition 9. Lne is RE and Le is not.

Proof. Consider a TM M′ that, on an input ⟨M⟩, simulate the i first
steps of M on the i first words of Σ∗ (sorted according to the radix
order), starting from i = 1. If any of these simulations accepts, then
M′ accepts. Obviously, M′ accepts Lne.

Since Le = cLne and Lne is not decidable, by Theorem 7, Le is not
RE.

Rice’s Theorem

Let us consider the following class of languages:

31

Definition 24. A property is a language P such that ∀m, m′ ∈ Σ∗, if
Mm ≡ Mm′ , then m ∈ P ⇔ m′ ∈ P .

A property therefore describes the language and the outputs of “M always halts in less than 10 steps.” is
not a property. “M accepts any word of
length shorter than 5.” is.

a Turing machine, but not the way its computations are performed.
Properties on TMs are unfortunately undecidable:

Theorem 15 (Rice’s theorem). Let P be a non-trivial property (i.e. there
exists m ∈ P and m′ /∈ P). Then P is not decidable.

Proof. We will prove that H ≤T P . A surprise, to be sure, but a welcome
one.Let M0 be a TM that always loops on any input. We assume that

⟨M0⟩ /∈ P and consider ⟨M1⟩ ∈ P .
Consider the function f that matches to (⟨M⟩ # x) the code ⟨M′⟩

of a TM M′ such that, on any given input y, M′ simulates M(x) then
M1(y), accepting if the latter accepts.

If (⟨M⟩ # x) ∈ H, then M ≡ M1 and ⟨M⟩ ∈ P . And if (⟨M⟩ # x) /∈
H, then M ≡ M0 and ⟨M⟩ /∈ P . f is therefore a reduction from H to
P , and the latter problem is undecidable.

If M0 ∈ P , we prove that H ≤T
cP instead.

Complexity of Turing Machines

In practice, being able to decide a problem is of very little help if it
can’t be done within a reasonable amount of time. We will introduce
in this chapter the notion of complexity of Turing machines.

Time Complexity

Definition 25. If r = q0w ⊢M c1 ⊢M . . . ⊢M cn is an halting (resp.
accepting, rejecting) run of a TM, then the integer n is called the length or
the number of steps of r. We then say that M halts (resp. accepts, rejects)
on the input w in n steps.

If a TM does not loop, then we can define its worst case complexity: If a TM does loop on some inputs, then
its worst case complexity is +∞.

Definition 26. Let M be a TM that always halts. The time complexity of
a TM M is the function tM that matches to each integer n the smallest value
tM(n) such that for all input w of length smaller than n, M halts on the input
w in less than tM(n) steps.

We can then introduce time complexity classes on recursive lan-
guages:

Definition 27. Let f : N → N be an increasing function on integers. If Remember that, given two integer func-
tions f and g, the statement f = O(g)
means that there exists n0, K ∈ N∗ such
that ∀n ≥ n0, f (n) ≤ K · g(n).

M is a TM with k tapes such that tM = O(f), then we write that L(M) ∈
DTIMEk(f), meaning that L(M) belongs to the class of recursive languages
asymptotically recognized by a TM with k tapes in O(f) steps.

We can then define the set DTIME∗(f) =
⋃

k≥0
DTIMEk(f).

Time-constructible Functions

We consider a class of recursive functions such that their computation
time is proportional to the size of the output produced:

Definition 28. A function f : N → N is said to be be time-constructible Intuitively, given an input n, we can
compute f (n) in roughly f (n) steps.if there exists a TM M with any number of tapes such that, on the input 1n,

M accepts with the unary output 1 f (n) in O(f (n)) steps. We then say that
M computes f .

34

Note that M could instead take a binary input β(n) and accept with
the binary output β(f (n)): the unary and binary definitions are equiv-
alent, although they obviously require different implementations25. 25 The proof of this statement is left as an

exercise to the faithful reader.
Example 3. The function n → n2 is time-constructible. Consider a

TM M with three tapes such that, given an input 1n, M copies 1n on its
second tape then performs the following operations until the second
tape is empty:

1. M copies the content 1n of the first tape on the third tape.
2. M erases a 1 from the second tape.

As each copy of the input tape takes O(n) steps and there are n
copy operations, M outputs 1n2

in O(n2) steps.

Example 4. The function n → 2n is time-constructible. Consider a
TM M with three tapes such that, given an input 1n, M writes 1 on its
third tape then performs the following operations:

1. M removes the leftmost 1 symbol from the first tape, and halts if it
can’t.

2. M copies the content of the third tape to the second tape.
3. M adds the content of the second tape to the output tape, erasing it

and rewinding the second tape’s head to the left as it performs the
copy operation.

4. M rewinds the third tape’s head to its leftmost position.

At the end of the i-th loop, the content of the third tape is 12i
. More-

over, step 1 takes O(n) transitions. Step 2, 3, and 4 are linear in the
size of the third tape at the beginning of the loop, i.e. 2i−1. Since
∑n

i=1(2
i−1) = 2n − 1, the whole computation takes O(2n) operations.

Complexity Properties

We have proven that TMs can be simulated by other TMs and that
increasing the amount of tapes of a TM does not improve its expres-
siveness. However, these operations do change the complexity of the
computations performed.

Proposition 10. Given a TM M with k tapes, there exist a single-tape TM
M′ such that M′ can simulate n steps of M in O(n2) steps.

Proof. Let us consider the TM M′ introduced in the proof of Theorem
3. In order to simulate the i-th step of M, given an input x, the TM M′

must read at most 4 · (|x|+ (i − 1)) cells: one two-way pass on its tape
(whose size is at most |x|+ (i − 1)) to find the k heads, and another
to apply the relevant transition. Hence, in order to simulate the n
first steps of M on the input |x|, M′ takes O(∑n

i=1(i − 1)) = O(n2)

steps.

35

Proposition 11. There exists an universal TM U with three tapes such that,
given a TM M and an input x, U can on the input ⟨M⟩ # x simulate n steps
of M(x) in O(|⟨M⟩| · n) steps.

Proof. Let us consider the TM U introduced in the proof of Theorem
4. In order to simulate a single step of M, the TM U must scan at most
|⟨M⟩| cells of its input tape in order to find the right transition to apply,
comparing each starting state of each transition with the simulated
TM’s current state. This two-way pass takes O(|⟨M⟩|) steps. Hence,
simulating n steps of M(x) takes O(|⟨M⟩| · n) steps.

Complexity Hierarchy

In this chapter, we will start building a hierarchy of languages, i.e. an
increasing sequence of complexity classes.

Introducing Complexity Classes

We introduce polynomial and exponential complexity classes:

Definition 29. We introduce the sets PTIME =
⋃

k∈N

DTIME∗(n → nk) (or P is the set of problems that can be
solved in polynomial time, and EXP, the
set of problems that can be solved in ex-
ponential time.

just P) and EXPTIME =
⋃

k∈N

DTIME∗(n → 2nk
) (or just EXP).

Example 5. We say that two integers are relatively prime if their
greatest common divisor is 1. Then RPRIME = {(x, y) | x, y ∈ N are
relatively prime.} is in P. Indeed, the Euclidian algorithm is polyno-
mial.

Example 6. The set CONNECTED = {G | G is a connected graph.} is
in P. Indeed, we can check the connectivity of a given graph using a
depth-first search algorithm in polynomial time.

Obviously:

Proposition 12. PTIME ⊆ EXPTIME.

Moreover, the following closure properties hold:

Proposition 13. PTIME and EXPTIME are closed by union, intersection, and
complementation.

Proof. Intuitively26, if we consider the TM designed in the proof of 26 The full proof is left as an exercise to
the diligent reader.Proposition 3 in order to accept the union of two recursive languages,

its time complexity is asymptotically equal to the sum of the complex-
ity of the two TMs it simulates.

Hence, if both languages are in PTIME (resp. EXPTIME), then so is
their union. The same holds true for the intersection and the comple-
mentation.

38

Building the Time Hierarchy

We want to prove that PTIME ̸= EXPTIME. To this end, we will need the
following theorem:

Theorem 16 (Weak time hierarchy). Let f and g be two time-constructible Remember that, given two integer func-
tions f and g, the statement f = o(g)
means that lim

n→+∞
f (n)
g(n) = 0.

functions such that n → n = o(g) and f = o(n → g(n)
n). Then the strict

inclusion DTIME1(f) ⊂ DTIME∗(g) holds.

Proof. Let us consider a TM D on 5 tapes that, given an input w of size
n, performs the following operations:

1. D checks that the input is of the form x # 0i and rejects otherwise27. 27 We need to pad the argument and in-
flate it later in order to use the asymp-
totic complexity bounds defined in the
hypothesis.

2. D computes g(n) in unary form on its second tape (this function is
indeed time-constructible).

3. D copies n in unary form on its third tape.
4. D simulates ⌈ g(n)

n ⌉ steps of Mx on the input w with its fourth and
five tapes. In order to do so, it removes n symbols from the second
tape each time it simulates a step until the second tape is empty.

5. If the simulation accepts, D rejects. In any other case, D accepts.

1 Input code x and padding

2 Counter g(n)

4 Value n

4 Simulated state q

5 Simulated tape w

Figure 19: The five tapes of the TM D.

Step 1 and 3 are linear. Step 2 takes O(g(n)) transitions. Step 4
takes O(n · ⌈ g(n)

n ⌉) transitions by Property 11. Hence, D halts in at
most O(g) steps and L(D) ∈ DTIME∗(g).

We suppose that L(D) ∈ DTIME1(f). Then there exists a single-tape
TM M recognizing L(D) such that ∃a, b, ∀n ∈ N, tM(n) ≤ a · f (n) + b.
Since f = o(n → g(n)

n), there exists n0 such that ∀n ≥ n0, a · f (n) + b <
g(n)

n .
Consider x = ⟨M⟩ # 0n0 . M halts on the input x in strictly less than

g(|x|)
|x| steps. Hence, D(x) can simulate M(x) until it halts. If x ∈ L(D),

M accepts and D rejects. If x /∈ L(D), M rejects and D accepts. Both
cases are absurd28, hence L(D) /∈ DTIME1(f). 28 A diagonalization argument. How un-

expected.
As a direct consequence of this theorem:

Theorem 17. PTIME ⊂ EXPTIME.

Proof. Let f (n) = 2n and g(n) = 23n. We have PTIME ⊆ DTIME∗(f)
and DTIME∗(g) ⊆ EXPTIME. Moreover, by Property 10, DTIME∗(f) ⊆
DTIME1(n → f (n)2).

However, (n → f (n)2) = o(n → g(n)
n). By the weak time hierarchy

theorem, DTIME1(n → f (n)2) ⊂ DTIME∗(g). As a consequence, PTIME ⊂
EXPTIME.

We admit29 the generalized time hierarchy theorem: 29 A full proof by Markus Krötzsch can
be found in his Complexity Theory lec-
ture notes here.Theorem 18 (Time hierarchy). Let f and g be two time-constructible func-

tions such that f = o(n → g(n)
log(n)). Then DTIME∗(f) ⊂ DTIME∗(g).

https://iccl.inf.tu-dresden.de/w/images/d/d9/CT2018-Lecture-12-overlay.pdf

Non-Deterministic Complexity

In this chapter, we extend the idea of complexity from runs and deter-
ministic machines to non-deterministic Turing machines and execution
trees.

Non-deterministic Time Complexity

Note that Definition 25 and Definition 26 apply to NTMs as well. We
can therefore define time complexity classes for NTMs:

Definition 30. Let f : N → N be an increasing function on integers. tM(n) is the lowest integer bound on the
depth of the execution tree on any input
of size n or smaller.

If M is a NTM with k tapes such that tM = O(f), then we write that
L(M) ∈ NTIMEk(f), meaning that L(M) belongs to the class of languages
asymptotically recognized by a NTM with k tapes in O(f) steps.

We also define the set NTIME∗(f) =
⋃

k≥0
NTIMEk(f). Obviously:

Proposition 14. DTIMEk(f) ⊆ NTIMEk(f).

Non-deterministic Complexity Properties

Using Theorem 9, we can show that the following relationship between
TMs and NTMs hold:

Theorem 19. If N ∈ NTIME(f) is a NSTM, then there exists a STM M ∈
DTIME(2O(f)) such that M ∼ N. The notation g = 2O(f) means that there

exists a function h = O(f) such that g =
O(n → 2h(n)).Proof. Let k be an integer such that, from any given configuration of N,

one can apply at most k transitions. Since N ∈ NTIME(f), there exists
a constant K such that tN(n) ≤ K · f (n). Given an input of size n, the
TM M introduced in the proof of Theorem 9 performs a breadth-first
search on a tree of arity30 k at most and of depth K · f (n) at most. 30 The arity of a tree is the maximum

number of children any given node can
have.

Hence, assuming it takes at most k(K· f (n))) transitions to simulate a
single step of N (i.e. reading the entire set of possible configurations),
the whole computation takes O((k(K· f (n)))2) = 2O(f (n)) steps.

As a direct consequence:

40

Theorem 20. NTIME(f) ⊆ DTIME(2O(f)).

By Theorem 4, there exists an universal TM that can simulate single-
tape TMs from their source code. We show that an universal machine
exists for NTMs as well:

Theorem 21. There exists a NTM U ′ with three tapes on the input alphabet U ′ simulates a run of the NTM N on the
input x.{0, 1, #} such that for all binary NTM N and binary input x, U ′(⟨N⟩ # x) ∼

N(x). U ′ is called the non-deterministic universal machine.

Moreover, it takes O(|⟨N⟩| · n) steps to simulate n steps of N(x).

Proof. In a similar manner to the proof of Theorem 4, we consider a
NTM U ′ with three tapes:

1. The first tape stores the source code ⟨N⟩.
2. The second tape stores the simulated control state of N.
3. The third tape simulates the work tape of N.

1 Input code ⟨N⟩
2 Simulated state q

3 Simulated tape x

Figure 20: The three tapes of the univer-
sal NTM U ′.

Given an input ⟨N⟩ # x on its the first tape, U copies x on the third
tape, erases #x from the first tape, and writes 0 on the second tape (the
simulated initial state of N).

Then, U ′ keeps scanning the first tape for a transition rule that
matches the simulated state on the second tape and the symbol read
by the third tape head; if it finds such a transition rule, it can non-
deterministically choose either to apply it or to skip it and keep scan-
ning the tape for another transition.

However, to ensure U ′ does eventually apply a transition if one
exists, it must deterministically apply the first matching transition it
finds after its first non-deterministic two-way pass of ⟨N⟩ on the first
tape. A simulated transition therefore takes at most O(|⟨N⟩|) steps.

If U ′ can’t find such a transition rule, then it checks if the second
tape is in an accepting state as described by ⟨N⟩ on the first tape: if it
is, then U ′ accepts, and halts otherwise.

Non-Deterministic Complexity Hierarchy

In this chapter, we extend the time hierarchy with non-deterministic
complexity classes and introduce what is perhaps the most famous
unsolved problem in computer science.

Non-deterministic Complexity Classes

In a manner similar to deterministic TMs, we introduce polynomial
and exponential complexity classes:

Definition 31. We introduce the sets NPTIME =
⋃

k∈N

NTIME∗(n → nk) (or NP is the set of problems that can be
non-deterministically solved in polyno-
mial time, and EXP, the set of problems
that can be non-deterministically solved
in exponential time.

just NP) and NEXPTIME =
⋃

k∈N

DTIME∗(n → 2nk
) (or just NEXP).

Example 7. The set SAT = {φ | φ is a satisfiable Boolean formula.}
is in NP. If we guess31 the right valuation, checking that a Boolean 31 By guessing, we mean that a non-

deterministic program can write every
possible value in the valuation space,
in particular any one that satisfies the
Boolean formula.

formula holds true for this valuation only takes a polynomial amount
of time.

Example 8. The travelling salesman problem TSP = {(G, W) |
G has a Hamiltonian circuit of weight at most W.} is in NP. We can
guess a path in the graph G, then check that it is indeed a Hamil-
tonian32 circuit of weight lesser than W in polynomial time. 32 A Hamiltonian circuit is a path in a

graph that loops and visits each vertex
exactly once.Obviously:

Proposition 15. NPTIME ⊆ NEXPTIME.

Moreover, as a consequence of Theorem 19:

Theorem 22. NPTIME ⊆ EXPTIME.

The following closure properties also hold33: 33 The full proof is left as an exercise to
the unfortunate reader.

Proposition 16. NPTIME and NEXPTIME are closed by union and intersection.

Note that we do not know if NPTIME and NEXPTIME are closed by
complementation. For a given complexity class X, we therefore intro-
duce the class coX such that L ∈ coX ⇔ cL ∈ X.

Example 9. The set ANTILOGY = {φ | φ is a Boolean formula that
never holds true.} is in coNP. Indeed, its complement SAT is in NP.

42

Proposition 17. P ⊆ NP∩ coNP.

Proof. Obviously, P ⊆ NP and coP ⊆ coNP. However, P = coP by
Proposition 13. Thus, P ⊆ NP∩ coNP.

Building the Non-deterministic Hierarchy

In a similar manner to the deterministic case, a time hierarchy theorem
that we will admit34 holds for non-deterministic complexity classes: 34 A full proof can be found in Stephen

A. Cook’s paper A hierarchy for non-
deterministic time complexity.Theorem 23 (Non-deterministic time hierarchy). Let f and g be two

time-constructible functions such that (n → f (n + 1)) = o(g). Then the
strict inclusion NTIME∗(f) ⊂ NTIME∗(g) holds.

As a direct consequence:

Theorem 24. NPTIME ⊂ NEXPTIME.

Proof. Similar to that of Theorem 17.

Note that the following relation between P and NP holds:

Theorem 25 (Certification). (1) L ∈ NP if and only if (2) there exists L′ ∈ P Intuitively, we can compute a solution x
to a given problem non-deterministically
in polynomial time if and only if we can
provide a certificate y such that, given x
and y, we can using y deterministically
check that x is indeed a correct solution
in polynomial time with regards to x and
y.

on an input alphabet Σ′ and a polynomial π such that:

x ∈ L ⇔ ∃y ∈ (Σ′)≤π(|x|) such that x # y ∈ L′

The word y is then called the certificate or witness of x.

Proof. (1) ⇒ (2). If L ∈ NP, then there exists a NTM N on the input
alphabet Σ recognizing L and a time-computable polynomial π such
that tN ≤ π. Let ∆ be the set of transitions of N. Note that to each run
r of N on a input x of size n, we can match the sequence of transitions
dr ∈ ∆≤π(n) used by r.

Let M be a TM with 3 tapes on the input alphabet Σ′ = Σ ∪ ∆ ∪ {#}
that performs the following operations on an input w of size n:

1. M checks that the input w is of the form x # y, y ∈ ∆∗, and rejects
otherwise.

2. M computes π(|x|) in unary form on its second tape.
3. M simulates on its third tape the sequence of transitions y of the

NTM N on the input x for π(|x|) steps.
4. If the simulation accepts after applying the whole sequence y, then

M accepts. M rejects in any other case.
1 Input x and transitions y

2 Counter π(|x|)
3 Simulated tape of N

Figure 21: The three tapes of the TM M.
M accepts x # y if and only if there exists a run r of N accepting

the input x such that dr = y. Moreover, step 1 is linear. Step 2 takes
O(π(n)) operations. Simulating a transition in the sequence y takes a
constant amount of time and M simulates π(|x|) ≤ π(n) transitions, so

43

step 3 takes O(π(n)) operations as well. Hence, M runs in polynomial
time and L′ = L(M) ∈ P.

(2) ⇒ (1). Let M be a single-tape TM accepting L′ in polynomial
time, and N be a NTM with two tapes that performs the following
operations on an input x:

1. N computes 1π(|x|) on its second tape.
2. N non-deterministically guesses y ∈ ∆≤π(|x| and writes #y after x

on its first tape.
3. N simulates M on the input x # y. 1 Input x # guess y

2 Counter π(|x|)

Figure 22: The two tapes of the NTM N.M(x) accepts if and only if ∃y ∈ (Σ′)≤π(|x|) such that x # y ∈ L′.
Hence, L = L(M). Moreover, step 1 of M is polynomial. Step 2 is
linear. Step 3 is polynomial since L′ ∈ P. As a consequence, L =

L(M) ∈ NP.

Example 10. A certificate x of an instance φ of SAT would be any
valuation such that φ(x) holds true.

Example 11. A certificate h of an instance (G, W) of TSP would be
any path h of G such that h is a circuit of weight lesser than W visiting
each vertex exactly once.

Collapsing the Time Hierarchy

We know that P ⊆ NP ⊆ EXP ⊆ NEXP, P ̸= EXP, and NP ̸= NEXP. We
don’t know, however, if P = NP. This is the most well-known unsolved Thanks to the certification theorem, P =

NP would mean that if the solution to a
problem is easy (polynomial) to check
for correctness, then so is the original
problem as well.

problem in computational complexity theory.

Solving it would bear major consequence on the time hierarchy. In-
deed:

Theorem 26. If P = NP, then EXP = NEXP.

Proof. Let L ∈ NEXP and let N be a NTM accepting L. Then ∃k1, k2 ∈ N

such that ∀n ∈ N, tN(n) ≤ (k1 · 2nk2). Consider L′ = {x # 0k1·2|x|
k2 | x ∈

L}. By the padding theorem35, L′ ∈ NP. 35 Check exercise 2 of sheet 4. A simi-
lar theorem holds for non-deterministic
complexity classes.

By hypothesis, L′ ∈ P, hence, by the padding theorem, L ∈ EXP.
Therefore, NEXP ⊆ EXP. However, EXP ⊆ NEXP by Proposition 14. As a
consequence, EXP = NEXP.

Theorem 27. If P = NP, then NP = coNP.

Proof. Obviously, P = coP by Proposition 13. Moreover, if P = NP, then
coP = coNP. Thus, NP = P = coP = coNP.

Polynomial Reductions

We have proven that recursive functions called reductions can preserve
decidability. We will show this is true of complexity classes as well if
the reductions can be computed in polynomial time.

Introducing Polynomial Reductions

Definition 32. A polynomial-time reduction of a language A to a lan-
guage B is a reduction f of A to B such that f can be computed in polynomial-
time, i.e. there exists a TM M computing f and a polynomial π such that
tM ≤ π.

We then write A ≤p
T B.

Example 12. Consider the problems CLIQUE = {(G, k) | G has a A clique is a set of vertices in a graph
such that every two distinct vertices in
the set are adjacent. An independent set
is a set of vertices, no two of which are
adjacent.

clique of size l ≤ k.} and IS = {(G, k) | G has an independent set of
size l ≤ k.}. Obviously, there exists an l-clique in a graph G if and

only if there exists an independent set of size l in cG. The function
f : (G, k) → (cG, k) is a polynomial reduction of CLIQUE to IS and of
IS to CLIQUE.

Proposition 18 (Transitivity). If A ≤p
T B and B ≤p

T C, then A ≤p
T C.

Proof. Let f and g be polynomial-time reductions of A to B and of B
to C, respectively. Then (g ◦ f) is a polynomial-time reduction of A to
C.

Proposition 19. If A ≤p
T B and B ∈ P (resp. NP), then A ∈ P (resp. NP).

Proof. Let MB be a TM that recognizes B in polynomial time and f be
a polynomial-time reduction of A to B. Consider the TM MA that, on
the input x, computes f (x) then simulates MB on f (x). MA recognizes
A in polynomial time, hence A ∈ P.

The proof of the NP case is similar.

Completeness and Hardness

Definition 33. Let X be a complexity class. A language L is said to be X-hard
if, ∀A ∈ X, A ≤p

T L. Moreover, if L ∈ X, then L is said to be X-complete.

46

Obviously:

Proposition 20. If A is X-hard and A ≤p
T B, then B is X-hard.

We can prove that P-completeness is trivial:

Proposition 21. (1) L ∈ P and L ̸= ∅, Σ∗ if and only if (2) L is P-complete.

Proof. (2) ⇒ (1). ∅ can’t be P-complete: if A ≤p
T ∅, then there exists

a polynomial reduction such that ∀x ∈ A, x ∈ A ⇔ f (x) ∈ ∅, hence,
A = ∅. In a similar manner, Σ∗ can’t be P-complete.

(1) ⇒ (2). Let L, A ∈ P such that ∃x1 ∈ L and ∃x2 /∈ L. Consider
f such that f (x) = x1 if x ∈ A and f (x) = x2 if x /∈ A. Membership
of A can be decided in polynomial time, hence f is a polynomial-time
reduction of A to L and A ≤p

T L. Therefore, L is P-complete.

NP-complete languages are known to be the best candidates for be-
ing in NP but not in P. Otherwise:

Proposition 22. Let L be a NP-complete language. If L ∈ P, then P = NP.

Proof. Any language A ∈ NP can be reduced in polynomial-time to L.
By Proposition 19, if L ∈ P, then A ∈ P as well and NP ⊆ P. Since
P ⊆ NP, we would have P = NP.

NP-complete and NP-hard Problems

Proposition 23. The non-deterministic halting problem H′ = {⟨N⟩ # x |
N is a NTM halting on the input x.} is NP-hard but not NP-complete.

Proof. The deterministic halting problem H is undecidable, hence, H′

is undecidable as well and H′ /∈ NP.
Let L ∈ NP and N be a NTM accepting L in polynomial time. We

consider a NTM N′ similar to N, but that only ever halts if N accepts
and loops otherwise. The function f : x → ⟨N′⟩ # x is obviously com-
putable in polynomial time. Moreover, x ∈ L ⇔ ⟨N′⟩ # x ∈ H′. Hence,
L ≤p

T H′.

Proposition 24. The bounded accepting problem At = {⟨N⟩ # x # 0t |
N is a NTM accepting x in less than t steps.} is NP-complete.

Proof. We first prove that At ∈ NP. We can recognize At in polynomial
time by using an NTM that simulates the t first steps of M(x) in a
manner similar to the universal NTM of Theorem 21.

Let L ∈ NP, N be a NTM accepting L, and π a polynomial such that
tN ≤ π. Consider the function f : x → ⟨N⟩ # x # 0π(x). It can be com-
puted in polynomial time, and x ∈ B ⇔ N(x) accepts x in less than
π(x) steps ⇔ f (x) = ⟨N⟩ # x # 0π(x) ∈ At.

47

One of the most useful NP-complete problems is the following:

Theorem 28 (Cook’s). SAT is NP-complete.

Proof. We have already proved that SAT is NP. Let us now prove that
it is NP-hard. Consider L ∈ NP; let N be a NTM accepting L and π a
polynomial such that tN ≤ π.

A SAT formula can be encoded in the alphabet {0, 1,∨,¬,∧} by us- As an example, an encoding of the SAT
formula φ = ¬x1 ∨ x2 is ⟨φ⟩ = 001 ∨
¬0100.

ing an unary representation 0i of each variable xi, writing the unary
number 0n of variables before the formula itself, and using the pre-
fix notation on operators with the symbol 1 as a separator between
arguments.

Note that if the NTM N runs on an input x of size n, then its head
can move at most π(n) cells to the left or to the right by the end of
the computation. Hence, if we index each cell of the NTM’s tape with
an integer in Z, 0 being the index of the starting head position, at any
step of a run on an input of size n, the entire TM’s tape configuration
lies between the cells indexed by −π(n) and +π(n).

. . . B B x0 x1 x2 . . .

q0

−1 −2 0 1 2

Figure 23: Indexing the cells of the NTM
N.

For all 0 ≤ j ≤ π(n), for all −π(n) ≤ i ≤ π(n), ∀a ∈ Γ, ∀q ∈ Q,
and ∀d ∈ δ, we define four Boolean variables aj

i , qj, hj
i , and dj whose

meaning is the following:

— aj
i = 1 if and only if the i-th cell at step j contains a.

— qj = 1 if and only if N is in state q at step j.
— hj

i = 1 if and only if the head points towards cell i of N’s tape at
step j.

— dj = 1 if and only if rule d is applied at the end of step j.

Our intuition now is to find a formula ψ(x) that constrains these
variables in such a manner that there exists a valuation v for which
ψ(x)(v) holds true if and only if there exists an accepting run of N on
x. Given an input x of size n, we can36 design in polynomial time the 36 The full proof is left as an exercise to

the bravest readers.following formulae of polynomial size:

— For all 0 ≤ j ≤ π(n), a mutual exclusion formula φ
j
run(x) =

⊕
d∈δ

dj

that ensures exactly one rule is applied at step j. Similar exclusion
formulae have to be designed to ensure that the content of each cell,
the position of the head, and the current state of N are unambiguous
at any step j of the computation.

— For all 0 ≤ j < π(n), for all −π(n) < i ≤ π(n), and ∀d ∈ δ,
assuming d = (p, a) → (q, b, L), a formula φ

j
d,i(x) = (dj ∧ hi,j) ⇒

(pj ∧ aj
i ∧ qj+1 ∧ bj+1

i ∧ hj+1
i−1) stating that in order to apply rule d at

step j to cell i, the incoming and resulting configurations have to
be compatible with rule d. Similar formulae are to be designed to
handle rules that move the head to the right or do not move it at all.

— φstart(x) stating that N starts in state q0 and that the initial content
of the i-th cell is xi for −π(n) ≤ i ≤ π(n).

48

— φend(x) = qπ(n)
a stating that the NTM is in state qa at the end of step

π(n).

To ensure that an accepting run always lasts exactly π(n) steps, we
allow37 the NTM to loop once it reaches state qa. The formula ψ(x) is 37 We contradict the formal definition of

the transition function as the accepting
state is meant to be a sink state. The
language accepted by the NTM stays the
same, though.

then defined as the conjunction of the formulae introduced previously.
By design, the NTM N accepts x if and only if there exists a valuation
v for which ψ(x)(v) holds true.

Moreover, ψ(x) uses a polynomial number of variables and features
a polynomial number of clauses of polynomial size that can be com-
puted in polynomial time. Finally, f : x → ⟨ψ(x)⟩ is a polynomial
reduction of L to SAT. SAT is therefore NP-hard, thus, NP-complete.

We admit38 the following consequences of Cook’s theorem: 38 A full proof can be found in Sec-
tions 10.3 of Hopcroft, Motwani, and
Ullman’s Introduction to Automata Theory,
Languages, and Computation (second edi-
tion).

Corrolary 2. CSAT = {φ | φ is a satisfiable Boolean formula in conjunctive
normal form (CNF).} is NP-complete.

Corrolary 3. 3-SAT = {φ | φ is a satisfiable Boolean formula in 3-CNF.} is
NP-complete.

In order to prove that a language L is NP-hard, it is common to use
a reduction of one of these SAT problems to L. As an example:

Proposition 25. IS is NP-complete.

Proof. IS is obviously in NP, an independent set being a suitable cer-
tificate. We will prove that 3-SAT ≤p

T IS.

Let φ =
m∧

i=1
Ci be a Boolean formula in 3-CNF on a set of variables

{x1, . . . , xn}, where each Ci is a clause of the form (yi
1 ∨ yi

2 ∨ yi
3) such

that ∀j ∈ {1, 2, 3}, ∃k ∈ {1, . . . , n}, (yi
j = xk) or (yi

j = ¬xk).

Consider the set of vertices V = {xi
k | i ∈ {1, . . . , m} ∧ j ∈ {1, 2, 3} ∧

(yi
j = xk)} ∪ {¬xi

k | i ∈ {1, . . . , m} ∧ j ∈ {1, 2, 3} ∧ (yi
j = ¬xk)} repre-

senting the various literals of the clauses. Obviously, |V| = (3 · m). Let
E be the set of edges such that:

x1
1

x1
2

x1
3

¬x2
1

x2
3

x2
4

Figure 24: A graph Gφ representing the
3-CNF formula φ = (x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ x3 ∨ x4).

1. Given a clause Ci, the set of vertices matched to the literals of Ci is
a 3-clique (i.e. a triangle).

2. If (yi
j = xk) and (yi′

j′ = ¬xk), then (xi
k,¬xi′

k) ∈ E.

We can prove that there is an independent set of size m in the undi-
rected graph Gφ = (V, E) if and only if φ is satisfiable.

Intuitively39, if G has an independent set of size m, then each vertex 39 The full proof is left as an exercise to
the remaining readers.in the set must belong to a different triangle representing a clause of

the whole formula by rule (1). These vertices can then be used to
design a valuation of the variables x1, . . . , xn such that the formula φ

holds. Rule (2) ensures that we can’t have literals matched to xk and
¬xk in the same independent set.

49

On the other hand, if φ is satisfiable, then at least one of the literals
of each clause Ci must be true. We can therefore pick a vertex vi

in each triangle representing a clause Ci such that {v1, . . . , vm} is a
independent set of size m. Gφ has (3 · m) vertices and at most (3 · m)2

edges, hence,
〈

Gφ

〉
can be built from ⟨φ⟩ in polynomial time.

As a consequence, f : ⟨φ⟩ →
〈

Gφ

〉
is a polynomial-time reduction

of 3-SAT to IS. By Proposition 20, IS is NP-complete.

Following the previous proposition:

Corrolary 4. CLIQUE is NP-complete.

Proof. CLIQUE ∈ NP and IS can be reduced to CLIQUE by complementa-
tion. By Proposition 20, CLIQUE is NP-complete.

Corrolary 5. VERTEXCOVER = {(G, k) | G has a vertex cover of size l ≤ k.} A vertex cover of a graph is a subset of
vertices such that each edge is adjacent
to at least one of these vertices.

is NP-complete.

Proof. Note that a graph G with n vertices admits a vertex cover of size
l if and only if it admits an independent set of size n − l. From there,
one can reduce the NP-complete problem IS to VERTEXCOVER.

Moreover, VERTEXCOVER is in NP, as the vertex cover itself is a certifi-
cate that can be checked in polynomial time.

Going Further

This course was a mere introduction to the theory of computation and
complexity. The most eager readers should be looking for material on
the following topics:

The Post correspondance problem Also known as the PCP, this is one of
the earliest provably undecidable problems ever introduced. Its def-
inition is the following: given two sequences u1, . . . , un and v1, . . . ,
vn, is there a sequence i1, . . . , ik of integers such that ui1 · . . . · uik =

vi1 · . . . · vik ?

Space complexity The space complexity sM(n) of a Turing machine M
is the maximum amount of space it will use on a input of size n.
In a similar manner to time complexity, we can define complexity
classes such as L (logarithmic space), NL, PSPACE and NPSPACE. The
hierarchy L ⊂ NL ⊂ P ⊂ NP ⊂ PSPACE = NPSPACE ⊂ EXP ⊂ NEXP

holds.

Probabilistic Turing machines There exists a class of non-deterministic
Turing machines such that, at each computation step, the next tran-
sition is chosen according to some probability distribution. This class
of machines features various acceptance conditions and its own
complexity hierarchy.

The following reading material is recommended:

Introduction to Automata Theory, Languages, and Computation by John E.
Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Chapter 10 of the
second edition focuses on NP-completude. Chapter 11 introduces
space complexity classes and probabilistic Turing machines.

Introduction to the Theory of Computation by Michael Sipser. Chapter 8

of the second edition focuses on space complexity. Chapter 9 fea-
tures proofs of various hierarchy theorems.

	An Introduction to the Theory of Computation
	The ``hello, world'' Problem
	Of Undecidable Programs

	On Turing Machines
	A First Look at Turing Machines
	A Formal Definition
	Semantics of Turing Machines

	The Computing Power of Turing Machines
	Binary Turing Machines
	Turing Machines with Multiple Tapes

	Turing Machines as Programs
	Encoding Turing Machines
	Simulating Turing Machines
	The Church-Turing Hypothesis

	Languages of Turing Machines
	Recursively Enumerable Languages
	On Recursive Enumeration
	A Non-recursively Enumerable Language
	Recursive Languages
	A Non-recursive Language

	Non-deterministic Turing Machines
	A Non-deterministic Model
	Applying Non-determinism

	On Recursive Functions
	Computing Functions
	Properties of Recursive Functions

	Reducing Problems
	Introducing Reductions
	Undecidability Proofs Featuring Reductions
	Rice's Theorem

	Complexity of Turing Machines
	Time Complexity
	Time-constructible Functions
	Complexity Properties

	Complexity Hierarchy
	Introducing Complexity Classes
	Building the Time Hierarchy

	Non-Deterministic Complexity
	Non-deterministic Time Complexity
	Non-deterministic Complexity Properties

	Non-Deterministic Complexity Hierarchy
	Non-deterministic Complexity Classes
	Building the Non-deterministic Hierarchy
	Collapsing the Time Hierarchy

	Polynomial Reductions
	Introducing Polynomial Reductions
	Completeness and Hardness
	NP-complete and NP-hard Problems

	Going Further

