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This exam is graded on a scale from 0 to 15 points. Read each one of the
four exercises carefully. When asked to prove something, make sure that your
answer is detailed and rigorous.

Exercise 1 (3 points)
Consider the language:

N = {⟨M⟩# w |M(w) writes a non-blank symbol on its second tape.}

where ⟨M⟩ stands for the code of the Turing Machine M .

Question 1.
Find a reduction f from the halting problem H to N .

Hint. Given a Turing machine M and an input x, design a Turing machine
N and an input y such that M(x) halts if and only if N(y) writes a non-blank
symbol on its tape.

Answer. Consider f : (⟨M⟩# w)→ (⟨M ′⟩# w) where M ′ is a TM with two
tapes that, on an input x, performs the following operations:

1. Simulate M(x) on its first tape.
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2. If M(x) accepts, write a non-blank symbol on its second tape then accept.

3. If M(x) doesn’t accept, reject.

The function f is obviously a reduction from H to N .

Question 2.
Is N decidable? Why?

Answer. H ≤T N and H is undecidable, thus N is undecidable as well.

Exercise 2 (4 points)
The radix order <rad is a binary relation on the set of input words Σ∗ such that
x ≤rad y if and only if |x| < |y| or |x| = |y| and x ≤lex y, where ≤lex stands for
the lexicographic order.

We want to prove that a language L is decidable if and only if there exists
a Turing machine enumerating all the words of L in radix order.

Question 1.
Let M be a Turing machine accepting a decidable language L. Design a Turing
machine N enumerating L in radix order.

Hint. N can use multiple tapes.

Answer. Consider a TM N with three tapes that performs the following op-
erations, starting from i = 0:

1. Write the i-th word xi of Σ∗ (in the radix order) on its first tape.

2. Simulate M(xi) on its second tape.

3. If M(xi) accepts, add #xi to its third tape. If it refuses, do nothing.

4. Increment i, scrub the second tape until it is empty, and loop back to the
first step.

N enumerates L in the radix order on its third tape.

Question 2.
Let M be a Turing machine enumerating a sequence (wi)i≥0 sorted according
to the radix order. Prove that the language L = {wi | i ≥ 0} is decidable.

Hint. Design a Turing machine N with multiple tapes accepting L. Obviously,
N should rely on M .
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Answer. Consider N with two tapes that, on the input x, performs the fol-
lowing operations:

1. Simulate M on its second tape until it writes a word w. If it can’t because
the enumeration is over, reject.

2. If x = w, accept.

3. If x < w, reject.

4. If x > w, loop back to the first step and resume the simulation.

If x ∈ L, then x is enumerated by M and N accepts x. Moreover, since M
enumerates L in the radix order, x can’t be enumerated after a word w > x.
Thus, x ̸∈ L if M outputs w > x before x. N therefore recognizes L.

Exercise 3 (4 points)
Let DOUBLE-SAT = {φ | φ is a Boolean formula satisfiable at least twice.}.

Question 1.
Prove that DOUBLE-SAT is in NP.

Hint. Find a non-deterministic polynomial algorithm, or use the certification
theorem.

Answer. Consider a NTM N that, on an input φ, performs the following
operations:

1. Non-deterministically guess two valuations x and y of φ.

2. Check that x ̸= y. If it’s not the case, reject.

3. Check that φ(x) and φ(y) are true. If it’s not the case, reject. Otherwise,
accept.

N recognizes DOUBLE-SAT non-deterministically in polynomial time.

Question 2.
Find a polynomial reduction f from SAT to DOUBLE-SAT.

Hint. Given a formula φ, design in polynomial time a formula ψ such that φ
admits at least one solution if and only ψ admits at least two solutions.

Answer. Consider f : φ→ φ′ such that, if φ has n variables x1, . . . , xn, then
φ′ has n+ 1 variables x0, . . . , xn and φ′ = φ ∨ φ[x1 ← x0].

If φ(y1, . . . , yn) = 1, then φ′(¬y1, y1, . . . , yn) = 1 and φ′(y1, y1, . . . , yn) = 1.
And if φ′(y0, . . . , yn) = 1, then φ(y1, . . . , yn) = 1 or φ(y0, y2, , . . . , yn) = 1.
Thus, f is indeed a polynomial reduction from SAT to DOUBLE-SAT.
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Question 3.
Is DOUBLE-SAT NP-complete? Why?

Answer. SAT ≤P
T DOUBLE-SAT and SAT is NP-hard, thus DOUBLE-SAT as well.

Moreover, DOUBLE-SAT is in NP. Therefore, DOUBLE-SAT is NP-complete.

Exercise 4 (4 points)
We want to prove that P is closed under Kleene star. To this end, we consider
a language L ⊆ Σ∗ recognized by an algorithm A running in polynomial time.

There is no need to write proofs featuring Turing machines in this exercise.

Question 1.
Let x = x1 . . . xn be a non-empty word in Σ∗. ∀i, j ∈ {1, . . . , n}, we define:

li,j =

{
1 if i ≤ j and xi . . . xj ∈ L
0 otherwise.

Design an algorithm computing the matrix (li,j)i,j∈{1,...,n} in polynomial time.

Answer. ∀i, j ∈ {1, . . . , n}, i ≤ j, we run the algorithm A on the word
xi . . . xj . If A accepts, we fill the cell li,j with a 1, and if it refuses, with a
0 instead. The algorithm A runs in polynomial time and is called on O(n2)
words of length ≤ n; thus, the whole process runs in polynomial time w.r.t. n.

Question 2.
Let G be a directed graph with n+1 vertices X1, . . . , Xn+1 such that Xi → Xj

if and only if li,j−1 = 1. Prove that x ∈ L∗ if and only if there exists a path
from X1 to Xn+1 in G.

Hint. Prove both directions of the equivalence.

Answer. If x ∈ L∗, then there exists an increasing sequence i1, . . . , ik of
indices such that i1 = 1, ik = n+1, and ∀j ∈ {1, . . . , k− 1}, xij . . . xij+1−1 ∈ L,
hence, lij ,ij+1−1 = 1. Thus, by definition of G, there is a path X1 → Xi2 →
. . .→ Xik−1

→ Xn+1 in G.
If there is a path X1 → Xi2 → . . . → Xik−1

→ Xn+1 in G, consider the
sequence i1, . . . , ik of indices where i1 = 1 and ik = n + 1. By definition of G,
∀j ∈ {1, . . . , k − 1}, lij ,ij+1−1 = 1, thus xij . . . xij+1−1 ∈ L and x ∈ L∗.

Question 3.
Prove that P is closed under Kleene star.
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Hint. Design an algorithm B recognizing L∗ in polynomial time.

Answer. Given an input word x, compute the matrix l, then the graph G,
and find a path from X1 to Xn+1 in G using a depth-first search. Such a path
exists if and only if x ∈ L∗.

These three operations can be performed in polynomial time, hence the
whole algorithm as well. L∗ can therefore be recognized in polynomial time,
thus L ∈ P.
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