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This exam is graded on a scale from 0 to 15 points. Read each one of the
four exercises carefully. When asked to prove something, make sure that your
answer is detailed and rigorous.

Exercise 1 (3 points)
Consider the language:

N = {(M) # w | M(w) writes a non-blank symbol on its second tape.}

where (M) stands for the code of the Turing Machine M.

Question 1.
Find a reduction f from the halting problem H to N.
Hint. Given a Turing machine M and an input x, design a Turing machine

N and an input y such that M (z) halts if and only if N(y) writes a non-blank
symbol on its tape.

Answer. Consider f: (M) # w) — ((M’) # w) where M’ is a TM with two
tapes that, on an input x, performs the following operations:

1. Simulate M (x) on its first tape.



2. If M (z) accepts, write a non-blank symbol on its second tape then accept.

3. If M(x) doesn’t accept, reject.

The function f is obviously a reduction from H to N

Question 2.
Is N decidable? Why?

Answer. H <7 N and H is undecidable, thus N is undecidable as well.

Exercise 2 (4 points)

The radix order <,..q4 is a binary relation on the set of input words ¥* such that
& <yqq y if and only if |z| < |y| or |z| = |y| and = <., y, where <., stands for
the lexicographic order.

We want to prove that a language L is decidable if and only if there exists
a Turing machine enumerating all the words of L in radix order.

Question 1.

Let M be a Turing machine accepting a decidable language L. Design a Turing
machine N enumerating L in radix order.

Hint. N can use multiple tapes.

Answer. Consider a TM N with three tapes that performs the following op-
erations, starting from i = 0:

1. Write the i-th word a; of ¥* (in the radix order) on its first tape.

2. Simulate M (z;) on its second tape.

3. If M(x;) accepts, add #x; to its third tape. If it refuses, do nothing.
4

. Increment 7, scrub the second tape until it is empty, and loop back to the
first step.

N enumerates L in the radix order on its third tape.

Question 2.

Let M be a Turing machine enumerating a sequence (w;);>o sorted according
to the radix order. Prove that the language L = {w; | ¢ > 0} is decidable.

Hint. Design a Turing machine N with multiple tapes accepting L. Obviously,
N should rely on M.



Answer. Consider N with two tapes that, on the input z, performs the fol-
lowing operations:

1. Simulate M on its second tape until it writes a word w. If it can’t because
the enumeration is over, reject.

2. If x = w, accept.
3. If x < w, reject.
4. If > w, loop back to the first step and resume the simulation.

If z € L, then « is enumerated by M and N accepts x. Moreover, since M
enumerates L in the radix order, x can’t be enumerated after a word w > =x.
Thus, = ¢ L if M outputs w > z before x. N therefore recognizes L.

Exercise 3 (4 points)

Let DOUBLE-SAT = {¢ | ¢ is a Boolean formula satisfiable at least twice.}.

Question 1.

Prove that DOUBLE-SAT is in NP.

Hint. Find a non-deterministic polynomial algorithm, or use the certification
theorem.

Answer. Consider a NTM N that, on an input ¢, performs the following
operations:

1. Non-deterministically guess two valuations x and y of ¢.
2. Check that x # y. If it’s not the case, reject.

3. Check that ¢(x) and ¢(y) are true. If it’s not the case, reject. Otherwise,
accept.

N recognizes DOUBLE-SAT non-deterministically in polynomial time.

Question 2.

Find a polynomial reduction f from SAT to DOUBLE-SAT.

Hint. Given a formula ¢, design in polynomial time a formula v such that ¢
admits at least one solution if and only v admits at least two solutions.

Answer. Consider [ : ¢ — ¢’ such that, if ¢ has n variables 1, ..., 2,, then
¢’ has n+ 1 variables zq,...,z, and ¢’ = ¢ V ¢[z] + x0].

If o(y1,--.,yn) = 1, then @' (—y1,91,-..,yn) = 1 and ¢ (y1,91,...,yn) = L.
And if ¢'(yo,...,yn) = 1, then ©(y1,...,yn) = 1 or ©(Yo,Y2y,---,yn) = 1.

Thus, f is indeed a polynomial reduction from SAT to DOUBLE-SAT.



Question 3.

Is DOUBLE-SAT NP-complete? Why?

Answer. SAT 35 DOUBLE-SAT and SAT is NP-hard, thus DOUBLE-SAT as well.
Moreover, DOUBLE-SAT is in NP. Therefore, DOUBLE-SAT is NP-complete.

Exercise 4 (4 points)

We want to prove that P is closed under Kleene star. To this end, we consider
a language L C ¥* recognized by an algorithm A running in polynomial time.

There is no need to write proofs featuring Turing machines in this exercise.

Question 1.

Let x = 1 ...z, be a non-empty word in ¥*. Vi,j € {1,...,n}, we define:

I lifi<jandz;...z; €L
“7 1 0 otherwise.

Design an algorithm computing the matrix (/; j); je{1,....n} in polynomial time.

Answer. Vi,j € {1,...,n}, i < j, we run the algorithm A on the word
x;i...xj. If A accepts, we fill the cell /; ; with a 1, and if it refuses, with a
0 instead. The algorithm A runs in polynomial time and is called on O(n?)
words of length < n; thus, the whole process runs in polynomial time w.r.t. n.

Question 2.

Let G be a directed graph with n+ 1 vertices X, ..., X,,4+1 such that X; — X;
if and only if l; ;1 = 1. Prove that x € L* if and only if there exists a path
from X; to X,,41 in G.

Hint. Prove both directions of the equivalence.

Answer. If x € L*, then there exists an increasing sequence iy, ..., of
indices such that iy = 1,4 =n+1,and Vj € {1,..., k= 1}, 2, ...25,,, 1 € L,
hence, l;; ;,,,—1 = 1. Thus, by definition of G, there is a path X; — X;, —
e Xik—l — Xn+1 in G.

If there is a path X; — X,, — ... = X,,_, = X,41 in G, consider the
sequence i1, ..., of indices where i; = 1 and i, = n + 1. By definition of G,
Vied{l,...,k—1}1 1=1,thus z;, ...2;,,, 1 € Land v € L.

Liti+1—

Question 3.

Prove that P is closed under Kleene star.



Hint. Design an algorithm B recognizing L* in polynomial time.

Answer. Given an input word z, compute the matrix [, then the graph G,
and find a path from X; to X,,+1 in G using a depth-first search. Such a path
exists if and only if x € L*.

These three operations can be performed in polynomial time, hence the
whole algorithm as well. L* can therefore be recognized in polynomial time,
thus L € P.



