
Learning Linear-time Temporal Logic
Internship Proposal

Adrien Pommellet
adrien [at] lrde.epita.fr

January 25, 2024

Topics of the proposal: passive learning; linear-time temporal logic; SAT solving;
C++ programming

Passive learning is the act of computing a theoretical model of a system from
a given set of data, without being able to acquire further information by actively
querying said system. The input data may have been gathered through monitoring,
collecting executions and outputs of systems. Automata and logic formulas tend
to be the most common models, as they allow one to better express the behaviour
and properties of systems of complex or even entirely opaque design.

Linear-time Temporal Logic LTL [4] remains one of the most widely used for-
malisms for specifying temporal properties of reactive systems. It applies to finite
or infinite execution traces, and for that reason fits the passive learning framework
very well: a LTL formula is a concise way to distinguish between correct and incor-
rect executions. The LTL learning problem, however, is anything but trivial: even
simple fragments on finite traces are NP-complete [2], and consequently recent
algorithms tend to leverage SAT solvers [3].

Due to performance issues, it is not at the moment possible to learn minimal
LTL formulas on large samples. The immediate purpose of this project is there-
fore to improve upon the learning process by computing a compact intermediate
representation of the original sample based on Kripke structures. Optimizing the
SAT encoding of LTL’s semantics and topology-guided parallel SAT solving [5] also
belong to our areas of interest.

This internship requires both theoretical and practical skills. On the one hand,
despite recent results pertaining to the passive learning problem for ω-automata [1],
no such algorithm for state-based Kripke structures exists yet to our knowledge.
On the other hand, we intend on writing a C++ program and employ state-of-the-
art SAT solvers to outperform existing approaches. For that reason, some C++
experience is strongly recommended; elementary knowledge of model-checking the-
ory is helpful but not mandatory.



References

[1] León Bohn and Christof Löding. Constructing Deterministic ω-Automata from
Examples by an Extension of the RPNI Algorithm. In 46th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2021).

[2] Nathanaël Fijalkow and Guillaume Lagarde. The complexity of learning lin-
ear temporal formulas from examples. In Jane Chandlee, Rémi Eyraud, Jeff
Heinz, Adam Jardine, and Menno van Zaanen, editors, Proceedings of the 15th
International Conference on Grammatical Inference, 23-27 August 2021, Vir-
tual Event, volume 153 of Proceedings of Machine Learning Research, pages
237–250. PMLR, 2021.

[3] Daniel Neider and Ivan Gavran. Learning linear temporal properties. In Niko-
laj S. Bjørner and Arie Gurfinkel, editors, 2018 Formal Methods in Computer
Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2,
2018, pages 1–10. IEEE, 2018.

[4] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57, 1977.

[5] Heinz Riener. Exact synthesis of ltl properties from traces. In 2019 Forum for
Specification and Design Languages (FDL), pages 1–6, 2019.

2


