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A Historical Overview of Logic

Logic is usually understood by the layman as a coherent mode of rea-
soning that allows one to assess the truth of statements. As early as
Ancient Greece, philosophers used logical principles in order to differ-
entiate between rational arguments and baseless speculation.

Aristotle’s theory of syllogisim became the dominant model of de-
ductive reasoning in Europe and the Arab world during the Middle
Ages. His logic revolves around the notion of deduction: from several
premisses, a conclusion is drawn. As an example:

All men are mortal.
Socrates is a man.
Thus Socrates is mortal.

In the centuries that followed, various logical concepts were devel-
oped and improved. The seventeenth century savant Gottfried Leibniz
dreamt of an universal formal language that would reduce logical in-
ference to a purely mechanical process. We will in these lectures notes
focus on the systematic logic of the early XXth century that remains to
this day extremely relevant to the field of computer science.

This model hinges on the duality between syntax and semantics. Syn-
tactic proofs are based on a structural analysis of statements expressed
as formulas. Semantics is an interpretation of formulas according to
a mathematical model. In the latter case, truth is meant to be discov-
ered; in the former case, it is built using proofs. Are these two concepts
compatible? We will try to answer this question and many others in
these lecture notes.

Contemporary to modern logic were the seminal works of Turing
and Curry on computational models. The latter, along with Church, de-
veloped a theory of functions as formulas.

From a mathematical point of view, a function is merely a graph
mapping an input to an output, that we may or may not be able to
define using a formula. This is not a proper definition for a computer
scientist, as one cannot perform computations without an actual algo-
rithm.

Figure 1: Aristotle (384-322 BC).

Syntax is about structure, whereas se-
mantics is about meaning.

Figure 2: Haskell Brooks Curry (1900-
1982).



Church’s efforts gave birth to an universal model of computation
known as lambda calculus based on functions, applications, and vari-
able bindings. Data can either be processed as a function or as an
input, and computations are performed through substitutions. The
lambda calculus may be seen as an idealised version of a functional
programming language.

Lambda calculus and modern logic, while superficially different,
are intrinsically tied together by the Curry-Howard isomorphism theo-
rem. Computer programs and logical proofs are therefore the same
kind of mathematical objects.



Of Induction

Constructing arbitrarily complex objects from simpler ones through
the means of fixed rules': such is the principle of inductive definitions.
Induction can be seen as an actual methodology that ranges from de-
sign and implementation to verification.

Inductive Definitions

Definition 1. Let us consider:

— A a set of atomic objects?.

— C a set of constructors. To each constructor op € C, we match an integer
called its arity ar(op) € IN.

— d € NU{oo} a depth.

We introduce the set Ty, of elements of type T and order n:

— To=A

— Tpy1 = {op(xq,...,x¢) | op € C, ar(op) =k, (x1,...,%) € (ToU
L UTo)FL

We then say that the type T = |J Ty is defined inductively from (A,C,d).

n<d
Note that an inductive definition of infinite depth does not spawn
infinite expressions. The nesting depth of constructors must be finite,
but can be unbounded. Formally, the depth of a term t € T is the
smallest index i such that ¢t € 7.

Example 1. Let A be the Latin alphabet. The set of algebraic expressions
is defined inductively from:

— A=AUN.

— C = {+ - %+ \/} The operator ,/ is of arity 1, all the other
operators are of arity 2.

— d = oo

Example 2. Let X be a finite alphabet. Then the set £* of words on the
alphabet X is defined inductively from:

* To quote Steffen, Riithing, and Huth in
Mathematical Foundations of Advanced In-
formatics.

* Atomic literally means: "that cannot be
split’. Thus, atomic elements are the ele-
mentary bricks from which a set can be
built inductively.

Intuitively, it takes at most n nested con-
structors on atomic objects to build an
element of order 7.

This inductive definition is purely syn-
tactic, and lacks proper semantics. As an
example, there is at the moment no way
to tell that the expressions (1+1—1)
and 1 are equivalent.



— A=XU{e}.
— C = {-}. The operator - is of arity 2.
— d = oo

Example 3. Let X be a finite alphabet. Then the set R of rational
languages on the alphabet X is defined inductively from:

— A={{a} |aeZ}u{{e}}u.
— C={U,-,*}. The operators - and U are of arity 2, * is of arity 1.
— d =oco.

Note that we can define a function f inductively on 7
— First, define f on the set .4 atomic elements.
— Then for any constructor op € C of arity k, define f(op(x1,...,xx))
according to x1,...,xx and f(x1),..., f(xg).
Example 4. We define the length |w| of a word w € £* inductively:

— lef =0.
— |a|=1lifaex.
— [u-of = Jul +of.

Example 5. Given an inductive type 7, we define the subtype function
Sub: T — 27 inductively:

— Ift € Athen Sub(t) = {t}.
— Ift =op(xy,...,xx) then Sub(t) = {t} USub(xq)U... U Sub(xy).

Note that the inductive definition of sets yield a new proof pattern:

Property 1. Consider a set T defined inductively from (A,C,d) and P a
predicate (that is, a Boolean function) on T . If:

— Va € A, P(a) is true.
— Ve eCl, ifcisofarityk, Vty, ..., ty € T such that Vi € {1,...,k}, P(t;)
is true and t; is of depth smaller than d, P(c(t1, ..., ty)) is true as well.

Then V't € T, P(t) is true by structural induction.

It is implicitly equivalent to a standard recursion on the depth of
the derivation tree of the elements of 7.

A Verification Procedure for Recursive Constructions

Definition 2. Polish notation is a mathematical notation in which operators
precede their operands. Assuming operators of fixed arity, it does not need any
parentheses.

This function is used to define sub-
terms, sub-formulas, etc.



Example 6. The algebraic expression 1+ (3 X x) can be written in
Polish notation as + 1 x 3 x.

We introduce in Figure 3 an algorithm that, given an input word
w € (CUA)*, determines whether w is an element of the inductive
type T written in Polish notation.

int val = o;
// Reading the expression
; for (i = o; i < length(w); i++){
if (w[i].type == ATOMIC)
val ——;
else if (w[i].type == CONSIRUCIOR)
val += (w[i].arity - 1);
// Break if a terminal value has been reached
if (val == -1)
break;

}

. // Checking that the entire expression has been read properly

; if (i == length(w) - 1) && (val == -1)
return TRUE;
else

return FALSE;

Proposition 1. The algorithm in Figure 3 returns true if and only if w is
an element of type T.

Proof. First, let us prove by induction that for any integer #, the algo-
rithm accepts elements of 7 of order n or lower.

— Ifa € 7y, then a € A and the algorithm obviously accepts.

— Let w be an element of 7 of order n 4 1. By inductive definition,
there exists an operator op of arity k and k elements x1,...,x; of T
of order n or lower such that w = op x1 ... xj . Let us prove that the
algorithm accepts w.

By induction hypothesis, the algorithm accepts the elements of or-
der n or lower. Thus, whenever we execute the algorithm on the
input x;, the variable val3 is initially assigned the value 0 and even-
tually takes the value —1 once the entire word has been read, and
no sooner. Had we initially assigned an arbitrary value m to val in-
stead, then val would have taken m — 1 by the end of the algorithm.

If we apply the algorithm to w, the variable val is assigned the
value k — 1 after reading the first symbol op. Then, after reading the
prefix op x1, the variable val takes the value k — 2 by the end of this
sequence, and no sooner. Similarly, after reading the prefix op x7 ...
x;, val takes the value k — 1 — i by the end of this sequence, and no
sooner.

Figure 3: An algorithm to check induc-
tive constructions.

This lengthy proof by induction will
help you hone your mathematical skills.

3 Intuitively, the variable val represents
the number of pending arguments given
the operators read by the algorithm so
far. An operator of arity k requires k
arguments and produces a single argu-
ment, hence, increments val by k — 1.
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Thus, the variable val remains positive during the entire execution
of the algorithm on the word w = op x7 ... x, with the exception of
the last iteration of the for loop where it eventually takes the value
—1. As a consequence, the algorithm accepts w and the induction
hypothesis holds for n + 1.

Then let us prove by induction that for any integer n € IN*, if the

algorithm accepts a word w of length n, then w is an element of 7.

If the algorithm accepts a word w of length 1, then w € A and w is
an element of 7 of order 0.

Let w be a word of length n + 1 accepted by the algorithm. The first
letter of w must be an operator op. Let k be its arity. After reading
op, the variable val is assigned the value k — 1. By the end of the
computation, val takes the value —1, and no sooner.

Note that val can be decremented by at most one per iteration of
the for loop. Thus, in order to reach —1 from an initial value k — 1,
the variable val must take the value k — 2. Let x; be the sequence
read until the first occurrence of the value k — 2, excluding the first
letter op. When the algorithm reads the word x;, the variable val
decreases from k — 1 to k — 2 by the end of this computation (and
no sooner).

As a consequence, if we execute the algorithm on the input x; alone,
the variable val decreases from 0 to —1 by the end of the for loop
(and no sooner). As a consequence, the algorithm accepts x;, and
by induction hypothesis, x; is an element of 7.

In similar manner, for i € {1,...,k — 1}, we consider the word x;,1
read by the algorithm until the first occurrence of the value k —1 —1,
excluding the prefix op x; ... x;. By induction hypothesis, x;,1 is an
element of 7. Thus, w = op x1 ... x; is an element of the inductive
set T, and the induction hypothesis holds for n + 1.

O

|

|

|

l

J
6 7
Figure 4: This is a plot of the values
taken by the variables i and val during
the execution of the algorithm on the al-
gebraic expression + + 11 + 1 1. Note
that val, after being assigned the value
1 on the first iteration of the for loop,
must take the value 0 in order to even-
tually reach its final value —1. We can
match the path between the initial value
1 and the first occurrence of 0 to the
word + 11, which is indeed an algebraic
expression.



Propositional Formulas

We will define in this chapter the semantics of propositional formulas,
built from simpler propositions using connectives and logical opera-
tors. These formulas can be evaluated as true or false depending on
the valuation of their Boolean variables.

An Inductive Definition of Propositional Formulas

Let the set of propositional variables V be a set of variable names defined
by combining letters of the Latin alphabet with integers.

Definition 3. The set Fi1 | - v, of propositional formulas on V
is defined inductively from:

— A=VU{T, L}
— C={~,A,V,=,&}. —isofarity 1, the other constructors are of arity 2.
— d = o0,

The usual notation is Fo = F(T | - p v,

Example 7. (A A (—B)) = Cand (=Z;) = (yV x7) are propositional
formulas, but (X =) is not.

Semantics of Propositional Formulas

In this section, we will adopt a classical notion of truth: we will assume
that any proposition is either true or false (but, of course, not both).

Definition 4. A valuation is a function v: V — {true, false}.

The following semantics are attributed to the mathematician Alfred
Tarski:

Definition 5. Given a valuation v, the truth assignment function | |, :
Fo — {true, false} is defined inductively as follows:

— |T|, = true.

— ||, = false.

For convenience’s sake, we are using the
classical infix notation instead of the Pol-

ish notation.

Figure 5: Alfred Tarski (1901-1983).
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— Givenx €V, |x|, = v(x).
— Given ¢ € Fy, |-¢|, = true if and only if |¢|, = false.
— Given @, € Fy:

— |@ V|, = true ifand only if ||, = true or |¢|, = true.
— |9 ANY|, = true if and only if |¢|, = true and ||, = true.
— |9 = ¢|, = true ifand only if |¢|, = true implies ||, = true.

— |¢ & ¢|, = true if and only if |¢|, = true is equivalent to ||, =
true.

The constructors V and A are obviously commutative and associative
with regards to Tarski’s semantics. By convention, = is right associa-
tived: @ = ¢ = x stands for ¢ = (¢ = x). This is also true of
<. Moreover, the order of precedence & <=< N < V < - applies by
convention.

Example 8.  The formula ((((-X)VY)AZ) = U) < V can be
rewritten (" XVYAZ=U) & V.

Definition 6. A propositional formula ¢ is said to be a tautology if for any
valuation v, |@|, = true. If for any valuation v, |@|, = false, then ¢ is
said to be an antilogy. If there exists a valuation v such that |@|, = true,
then @ is said to be satisfiable.

Propositional formulas can be split in three categories: antilogies,
tautologies, and satisfiable formulas that aren’t tautologies.

Semantic Equivalence

We define an equivalence relation on formulas that, given the same
input valuation, return the same Boolean output according to Tarski’s
semantics.

Definition 7. Two propositional formulas ¢ and ¢ are semantically equiv-
alent if for any valuation v, |¢|, = ||,. Then ¢ = ¢.

Example 9. Any tautology is semantically equivalent to T, and any
antilogy to L.

Property 2. The semantic equivalence = is an equivalence relation>.

Proof. Obvious by definition of =. O

Property 3. Let (o be a sub-formula® of a propositional formula @1. If P, €
Fo is such that 1 = o, then replacing 1 with ¥, in @1’s definition results
in a new formula @ € Fy (also written @[ip1/ o)) such that ¢1 = ¢».

The French logician Jean-Yves Girard de-
risively called Tarski’s definition of truth
"brocoli logic’. In a tautological manner,

Tarski claims that ‘(p’lp‘ = true if and
v

only if (|g|, = true) ® (|¢|, = true),
failing to provide the actual meaning of
the ® symbol.

4 Associativity is a mathematical prop-
erty. Left (or right) associativity is a syn-
tactical convention.

> Le. reflexive, symmetric, and transitive.

611 € Sub(g), as defined in Example 5.



Proof. By structural induction(see Definition 1) on ¢;. The full proof
is left as an exercise to the reader. O

Proposition 2. Given two propositional formulas ¢ and 1, ¢ = ¢ if and
only if (¢ < ) is a tautology.

Proof. 1If ¢ = ¢, then for any valuation v, |¢|, = true if and only if
||, = true. By Tarski’s definition, |¢ < 9|, = true. Thus, (¢ < )
is a tautology.

Reciprocally, let us consider that (¢ < o) is a tautology. Given
any valuation v, |¢ < ¢|, = true, thus, |¢|, = true if and only if
||, = true by Tarski’s definition. Hence, |¢|, = |¢|,. By definition,

o =1. O

Truth Tables

Definition 8. A truth table of a propositional formula ¢ sets out the values
of |@|, for each possible valuation v of its logical variables. We implicitly omit
irrelevant? variables that do not appear in ¢.

As a direct consequence of this definition:

Property 4. Two formulas are equivalent if and only if they have the same
truth table, assuming the same set of input variables is made explicit in both
tables.

Conventionally, we write true := 1 and false := 0 in truth tables.
The truth tables of the usual connectors are the following, assuming
generic variable names A and B:

A|B|ArB  A|B|AvB  A|B| A=B
(o) o (0] (o) o (0] (0] o 1
(0] 1 (0] (0] 1 1 [0) 1 1
(0] 1 [0) 1 (0] 1 1 o (0]
1 1 1 1 1 1 1 1 1

A|B|AeB

o|o 1 A || A

(0] 1 (0] (0] 1

1 (0] (0] o

1 1 1

We determine the truth table of complex formulas by first comput-
ing the table of its sub-formulas.

Exercise 1. Prove that the formula ¢y = P = Q = P is a tautology.

Answer. We compute the truth table of .

13

7 Obviously, a variable x € V that does
not appear in ¢ has no bearing on the
value of |¢],.

The valuations and the variable names
are conventionally sorted in lexicograph-
ical order.
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We can see that for any possible valuation v of its two variables,
||, = true. Thus, ¢ is a tautology. O

The proof of the following properties is left as an exercise® to the
careful reader:

Proposition 3 (Distributivity). For any P,Q,R € Fy:

PV(QAR)=(PVQ)A(PVR)
PA(QVR)=(PAQ)V(PAR)

Proposition 4 (De Morgan’s laws). For any P, Q € Fy:

ﬁ(PVQ)E—!P/\_'Q

Proposition 5 (Double negation). For any P € Fy:
—|(—\P) =P
Proposition 6 (Material implication). For any P,Q € Fy:

(P=Q)=(-PVQ)

Proposition 7 (Double implication). For any P,Q € Fy:

(P=Q)=(P=Q)A(Q=P)

Proposition 8 (Law of the excluded middle). For any P € Fy, PV =P isa
tautology and P A\ —P is an antilogy.

As a consequence of these properties, the following theorem triv-
ially holds:

Theorem 1. Given a formula ¢ € Fy, there exists € Fy| - ) such
that ¢ = 1.

This proof is said to be semantic. We will
soon introduce syntactic proofs.

8 Compute their truth tables.



The Boolean Satisfiability Problem

Determining whether a given propositional formula ¢ is satisfiable or
not is a computationally intensive problem common enough to spawn
a whole class of dedicated programs called SAT solvers.

Introducing SAT

Definition 9. Determining whether a given propositional formula ¢ is sat-
isfiable or not is called the satisfiability problem (SAT).

Note that if ¢ is satisfiable, then any formula ¥ such that ¢ = ¢ is
satisfiable as well.

Example 10. Let ¢ = A < (BV —=C) € Fy. Given a valuation v such
that A = true, B = false, and C = false, |¢|, = true. Thus, ¢ is
satisfiable.

The SAT problem is well-know to be computationally intensive.
Theorem 2 (Cook’s). SAT is NP-complete9.

However, heuristics for subclasses of propositional formulas have
been developed.

Definition 10. A propositional formula ¢ is said to be in negative normal
form (NNF) if and only if:

— The only constructors connecting sub-statements of ¢ are V and A.
— The — constructor only appears in front of atomic statements.

Definition 11. A propositional formula ¢ is said to be in conjunctive nor-
mal form (CNF) if it is of form ¢ = N\ ¢; j, where ; j = x; jor i j = —x; ;
i

for some variable x;; € A, i.e. ¢ isa conjunction of disjunction of variables
(or the negation thereof).

Example 11. The formulas (AV—-BV-C)A (-DVEVF),(AVB)AC,
AV B and A are in CNF, but the formulas —=(BV C) and (AAB)VC
are not.

9 Intuitively, it means that the validity
of a solution to the SAT problem can
be checked in polynomial time. We
don’t know, however, if it is possible to
find such a solution with a deterministic
polynomial algorithm. Were it the case,
then it would imply that P = NP. Check
the complexity course COMP for more
details.



16

Definition 12. A propositional formula ¢ is said to be in 3-CNF if it is of

form @ = N(i1V $iaV i3), where ¢;j = x;jor ;= —x;jor ;=T
1

forax;; e A

In a similar manner, a formula is said to be in disjunctive normal form
(DNF) if it is a disjunction of conjunctions.

Rewriting Formulas

Lemma 1. Given a propositional formula ¢, there exists € Fy in NNF
such that ¢ = .

Proof. We can easily prove'® this proposition by induction on ¢, using
De Morgan’s laws, double negation, material implication, and double
implication. O

As a consequence, the following transformation commonly used by
SAT solvers holds:

Theorem 3. Given a propositional formula ¢, there exists ¢ € Fg in CNF
such that ¢ = .

Proof. Let us prove this proposition by induction on ¢. By Lemma 1,
we can consider that ¢ is already in NNF.

— If ¢ € A, then ¢ is already in CNFE.

— Otherwise, ¢ is defined inductively from two propositional formu-
las 11 and ¢, and a constructor in {—, V, A }:

— If ¢ = —py, by definition of the NNE, ¢; € A and ¢ is already in
CNE

— If ¢ = i1 A ¢y, then by induction hypothesis, there exist 7r1, 71; €
Fo in CNF such that ¢ = 77 and ¢, = m,. By Proposition
3, 1 APp = m A mp. Since 7 A 1o is in CNF, the induction
hypothesis holds for ¢.

— If ¢ = 1 V 1P, then by induction hypothesis, there exist 711, 1o €
JFo in CNF such that ¢; = 711 and ¢ = 7p. Let us write 1y =
n% A...A\ 7} and M = 71% A... Ny, where nf is a disjunction

of variables (or the negation thereof). By distributive property of

V over A and A over V :

TV 7T (71?%/\ ATV
= (MVm)A...A (V)
n
= /\(n’l\/(n%/\ ATY))

Il
_

I
=
<=
EY
<
.3:':

Il
—
.
Il
—_

* The full proof is left as an exercise to
the diligent reader.



By Proposition 3, 1 V¢ = m V mp. Thus, since the formula

n m . .
A V (7 v 7)) is in CNF, the induction hypothesis holds for ¢.
i=1j=1

Hence, ¢ is always equivalent to a formula in CNF. O
In a similar manner, the following corollaries hold:

Corrolary 1. Given a propositional formula @, there exists p € Fq in 3-CNF
such that ¢ = 1.

Corrolary 2. Given a propositional formula @, there exists { € Fo in DNF
such that ¢ = .
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These transformations may provoke an
exponential blow-up of the size of the
formula. As a consequence, SAT solvers
often compute formulas that merely pre-
serve the satisfiability of the original ¢
instead.






Hilbert Calculus

Checking that a propositional formula is tautological can be computa-
tionally intensive: n Boolean variables result in 2" possible valuations.
Moreover, we will later consider formulas whose variables can range
over infinite domains: no truth table can prove their validity. Thus, we
introduce in this chapter a syntactic formalism for proofs.

Proof Systems

The following formalism was designed by the mathematician David
Hilbert:

Definition 13. An axiom a is a propositional formula ¢ that is considered
true a priori. We write it —¢ 141

Definition 14. An inference rule r consists in a finite set of premisses
{$1,...,Pn} and a conclusion ¢, where Y, ..., 1, and @ are propositional

formulas. We use the notation 1 Y [r] -
4

Note that, syntactically speaking, an axiom is nothing but an infer-

ence rule whose conclusion is the consequence of an empty set @ of
premisses.

Definition 15. A Hilbert proof system P is a set composed of a finite'"
number of axioms and a possibly infinite number of inference rules.

The symbols in V used in axioms and inference rules are meta-
variables that can be replaced by any propositional formula.

Definition 16. A propositional substitution is a partial function o : V —
Fo. Given ¢ € Fy, ¢|o] is the propositional formula obtained by replacing
any instance of a variable X € V in ¢ by the formula o(X) if it exists.

Example 12. If ¢ = AVBand 0(A) = =X, 0(B) = (T = Z), then
plo] ==XV (T = 2).

Assignments allow one to generalize axioms and inferences rules.
Thus, we can define a proof as a sequence of inference rules starting
from some axioms.

Figure 6: David Hilbert (1862-1943).

Intuitively, it means that the formula ¢ is
a consequence of the conjunction of the
formulas 1, ..., Py.

" Infinitely axiomatizable systems with an
infinite number of axioms exist but are
out of the scope of this course.

@[o] is called a substitution instance of ¢.
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Definition 17. Let T be a tree whose nodes are labelled by Fy. T is a
deduction under a Hilbert proof system ‘P if for any inner node of T labelled
by A with n children labelled by By, ..., By, there exist an inference rule

P1 ‘P P [r] in P and a propositional substitution o such that
A = @[o] and B; = ;[o] foralli € {1,...,n}.

The labels Hy, ..., Hy of T's leaves are called its hypotheses, and the
label C of its root, its conclusion.

A deduction is conventionally written starting with its hypotheses
at the top and finishing with its conclusion at the bottom while explic-
iting the inference rules used.

Example 13. Let us consider a proof system with two inference rules

[A] and AAi\/BB [V] . The following tree is a deduction:

ANB

(Y= 2))

/\

(Y= 2)

/\

Y=Z
But we favour the following notation:

Z Y=Z
ZAN(Y =2Z)

(ZA(Y = Z)VX

.

V]

Definition 18. Let T be a deduction under a Hilbert system P. A leaf of
T labelled by a formula ¢ € Foy is said to be cancelled if there exists a
propositional substitution o and an axiom ~¢~ [@] in P such that Y = ¢[o].

If there exists a deduction 7 under P with uncancelled hypotheses
{Ha,...,Hy} and conclusion C, we then write {Hy, ..., H,} Fp C.

Example 14. Let us consider a proof system with a single inference

rule A B "] and "4 = AVB [7] . The following tree is a

deduction such that {A} - AV B:

—— o7 4
A= AVB A
= vaB i

The leaf labelled by A = AV B is cancelled, but the other labelled by
A isn't.

Intuitively, A is a consequence of its chil-
dren By, ..., B, according to the rule r to
which the substitution o was applied.

Figure 7: A deduction tree such that
{Z, Y= 2), X} (ZAN(Y=Z)) VX

A hypothesis H; may label more than
one leaf but is only listed once.
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Definition 19. A proof under a Hilbert system P is a deduction T under

P whose leaves are all cancelled. Its conclusion C is then called a theorem of A deduction with an empty set of uncan-

P and we write -p C celled hypotheses, so to speak.

Let 0(P) be the set of theorems under the system P.

Example 15. Let us consider a proof system with two inference rules

AVE [r2] and a single axiom “Av —A [a] . The

B
~In] and g
following tree is a proof:

pv—p Y
~——p N
p= —p [

Note that, depending on the proof system, some theorems may not
make any sense intuitively. These conclusions are merely mechanical
consequences of syntactic inference rules.

The Hilbert System

For convenience’s sake, we will introduce a Hilbert proof system on
F{1,~v,—) instead of Fo. By Theorem 1, we know that this language
is just as expressive as Fy, but the smaller number of connectors and
atomic symbols involved makes further definitions and proofs simpler.

Definition 20. Hilbert calculus is a Hilbert proof system H containing a
single inference rule:

A= B A

B [Modus Ponens|

And the following axioms:

Z=ave VU 5= ave V2 AVES (ASC S (Boooc
ArBsa M AnB=B M ASB=Ang

mu} A=B=A =] (A=B=C)=(A=B)=A=C [=2]
A= 1)= -A [—1] m[ﬁz] m[ExcludedMiddle]

This unwieldy system, despite its convoluted axioms, can nonethe-
less be used to write proofs.

Exercise 2. Prove that 4 (X = X).
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Answer. We consider the following deduction (omitting the label of
the only inference rule Modus Ponens):

X=X=2X)=X)=>X=2X=X)=X=>X - X=X=X)=X

X=X=X)=X=X

Thus, (X = X) is a theorem. O



Proof Systems and Semantics

In a Hilbert proof system, logical symbols and connectors have no
intrinsic meaning; they are merely featured in axioms and inference
rules that allow one to build proofs. Thus, the intuitive interpretation
of a symbol depends on the theorems it can generate’.

On the other hand, Tarski’s semantics interpret individual connec-

tors and symbols first before introducing tautological truth. It remains
to be seen if these two formalisms are compatible.

Soundness

Definition 21. A proof system P is said to be sound with regards to the
propositional semantics of a set F if for any ¢ € F, \=p ¢ implies that ¢ is a
tautology.

Example 16. Consider the axiom (A= B) = (-A = —B) [a] . Any
proof system P featuring a is not sound: a is a theorem of P but not a
tautology.

Improper inference rules may also result in Hilbert systems that are
not sound. Fortunately, this is not the case of Hilbert Calculus.

Theorem 4. Hilbert calculus H is sound with regards to the propositional
semantics of Fy | — a1

Proof. In order to prove that the proof system H is sound, we first
need to show that the following properties hold:

— The axioms are tautological. To do so, we compute their truth tables.

A=>B A [Modus Ponens| preserves tau-

— The inference rule
tologies: if ¢ and ¢ = 1 are tautologies, then 1 must be one as well.
Looking at (A = B)’s truth table, it is obvious that if A = true and

(A = B) = true then B = true. Thus, ¥ is tautological.

Then we can prove by induction on the depth of proofs that any theo-
rem of H is a tautology. O

> As an example, H features two axioms
A1 and Ay because A’s commutativity is
not known a priori, but derived from the
axioms.

Soundness: all theorems are tautologies.
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Completeness

Definition 22. A proof system P is said to be complete with regards to the
propositional semantics of a set F if for any ¢ € F, @ is a tautology implies
that Fp ¢.

Proving the soundness of a proof system is usually a rather straight-
forward task, whereas proving its completeness is often very difficult.

Example 17. The proof system Z = H — {Excluded Middle} is called
intuitionistic logic. Being a sub-system of H, it is sound with regards to
the semantics of F(_ \ /-1

However, it is not complete. It can be proven that neither (A V —A)
nor (——A = A) are theorems of the system 7.

In order to prove that Hilbert calculus is complete, we need the
following theorem:

Theorem 5 (Herbrand’s deduction). Let {Hj,..., H,} be a finite set of
propositional formulas and C € Fo. {Hy,...,H,} Fy C if and only if
{H],...,H”,]} F'H H, = C.

Proof. Assume that {Hj,...,H,_1} F3% Hy = C holds. There exists a
deduction 7 of the form:

Hy Hy1
H,=C
We can therefore introduce a new deduction 7’ of form:
Hy Hy
H,=C H,

[Modus Ponens]

C
Thus, {le-~ .,Hn} l_'H C.

Proving the converse result is significantly harder. We will admit*3
thatif {Hy,...,Hy} Fy B then {Hy,...,H,_1} by Hy, = C. O

The completeness proof of Hilbert’s systems is too complex for an
introductory course. Thus, we will admit the following theorem: 4

Theorem 6. The Hilbert calculus H is complete with regards to the propo-
sitional semantics of Fy | - v,—}-

Completeness: all tautologies are theo-
rems.

Note that from a syntactic point of view,
only -3 has an intrinsic meaning. This
theorem proves that ='s intuitive defi-
nition is indeed compatible with deduc-
tions under Hilbert calculus.

B A full proof by Anita Wasilewska is
available here.

4 A full proof can be found in Chapter
5 of Anita Wasilewska’s book Logics for
Computer Science here.


https://www3.cs.stonybrook.edu/~cse541/chapter8.pdf
https://www3.cs.stonybrook.edu/~cse371/5bch5.pdf

Natural Deduction

The use of Hilbert’s calculus remains counter-intuitive: since it is not
possible to introduce new symbols with inference rules, the hypothe-
ses of a deduction must be significantly more complex than its conclu-
sion. Thus, the logician Gerhard Gentzen introduced another formal
proof system called natural deduction.

Proof Systems with Hypotheses

Proof systems with hypotheses share syntactic similarities with Hilbert
systems, but use different inference rules.

Definition 23. An inference rule with hypotheses r consists in a finite
set of premisses {41, ..., Pn}, a finite set of hypotheses {py,...,pun} and
a conclusion @, where 1, ..., P, are propositional formulas and yq, ..., Uy
belong to Fo U @.

(1] [n]
We use the notation - :
h o Py
@]
For convenience’s sake, we write ¢; instead of
i

Definition 24. A proof system with hypotheses P is a set™> of inference
rules with hypotheses.

Al
Example 18. The rule : means that if from A we can prove

B
A=p

B, then A = B holds.

Let us formalize this intuition.

Definition 25. Let T be a tree whose nodes are labelled by Fo. T is a
deduction under a proof system P with hypotheses if for any inner node A of
T labelled by A with n children labelled by By, . . ., By, there exist an inference

Figure 8: Gerhard Gentzen (1909-1945).

Intuitively, it means that if for all i, ; is
true or can be inferred from p;, then ¢
holds.

> That may be finite or infinite. We do
not use axioms.

The concept of proof has yet to be de-
fined formally for proof systems with
hypotheses.
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(1] [n]

rule with hypotheses : : in P and a propositional
¥ - Pn "]
P
substitution o such that A = @|c] and B; = ;[o] foralli € {1,...,n}.

Moreover, any leaf of T descending from the i-th child of A (it may be the
child itself) and labelled by ;|0 (assuming y; # @) is said to be cancelled
forallie{1,...,n}.

The labels Hy, ..., Hy of T's leaves are called its hypotheses, and the
label C of its root, its conclusion.

In a similar manner to Hilbert systems, if there exists a deduction
T under P with uncancelled hypotheses {Hj, ..., H,} and conclusion
C, we then write {Hy,...,H,} Fp C.

Definition 26. A proof under a proof system P with hypotheses is a deduc-
tion whose leaves are all cancelled. We then call its conclusion C a theorem
and write Fp C.

We represent deductions in a manner similar to Hilbert proof sys-
tems, but also use indices in order to match leaves that were cancelled
with the corresponding inference rules.

Al
Example 19. Consider a system with a single rule : . Then
A=B i
the following deduction is a proof:
A
A4
As A=Al
Each leaf is indeed cancelled.
[A]
Example 20. Consider a system with two rules : and
_B
el
% [*'] . Then the following deduction is not a proof:
A B
IS S b R P
AAB[%
A= ANB
The leaf labelled by B isn’t cancelled. A proper proof would be:
A B,
airp ')

=g "
B=A= AAB

Cancelled leaves are no longer matched
to axioms but to hypotheses of inference
rules instead.

Proofs no longer depend on axioms, but
on ensuring that each hypothesis has
been properly integrated in the resulting
theorem instead.

Note that different rules may cancel the
same leaf.



The proposition B = A = A A B would then be a theorem under this
proof system. Note that the hypothesis B had to be integrated into the
conclusion in order to cancel the last leaf.

Defining Natural Deduction

We will again introduce a proof system on Fy, _ , \ -} instead of Fy.
By Theorem 1, we know that Fy, _ , - is just as expressive as F
but uses less connectors.

Definition 27. Natural deduction N contains the following inference rules

with hypotheses:
Al
B
A= B =1
AAABB Al AQB [AL] AQB [AL]
[l [B]
A B r :
AV B [\/ZI] AV B [vﬂ AV B C C [\/E}
A -
A4 [
— ]
-A
A ] - 114

Natural deduction features introduction and elimination rules: the
former in the left column introduce new symbols, while the latter in
the right column remove them.

It wouldn’t be a viable alternative to Hilbert calculus if it were not
compatible with Tarski’s semantics. We admit'® the following theo-
rem:

Theorem 7. Natural deduction N is sound and complete with regards to
the propositional semantics of Fy | - 5,1
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Note that = is the modus ponens and —p
represents a proof by contradiction.

® A full proof by Stéphane Devismes,
Pascal Lafourcade, and Michel Lévy is
available here.


http://www-verimag.imag.fr/~wack/cours_inf242/node6.html




Properties of Natural Deduction

Gentzen's goal was to provide a formal system to write proofs that are
closer to the natural way of reasoning. We will in this chapter show
how to design and simplify proofs under natural deduction.

Applying Natural Deduction

We can find a proof under natural deduction by working backwards
from the conclusion or forward from some hypotheses that we guessed
first. In both cases, looking at the formula’s structure and the latest
symbol introduced may help us find the proper hypotheses and infer-
ence rules used.

Exercise 3. Prove thatt, (AAB) = (BAA).

Answer. Consider the following proof:

1

A28 [nyl ALE (A
BAA Mﬂl

(ANE) = (BAA) 1

Its conclusion (A A B) = (BA A) is a theorem under N. O

Exercise 4. Prove thatb, (A= B)A(B=C)= (A= C).

Answer. Consider the following proof:

: (A:&A@:C)xl o
(Aﬁ&Aw:o[N] A=B [E]Iqb}
B=C E B E
. [=E]
[=1]?

A=C
AsBABoo=@asg =

Its conclusion (A = B)A(B = C) = (A = C) is therefore a
theorem under N. 0O

Note that the rule [=]' cancels two
leaves with the same label.
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Exercise 5. Prove the law of the excluded middle -5 A V —A.

Answer. Consider the following proof:

—
Ay 1
av-a Vil Tavoay
T ; —E]
—A [_‘I}
[Vi] — !
AV A —(AV-A)
1 ] el
—(av-a)
avoa

Its conclusion A V —A is therefore a theorem under N

Normalizing Proofs

Definition 28. A cut in a deduction is the introduction of a connective im-

mediately followed by its elimination.

Example 21. Consider the following deduction featuring a cut:

A

A

This pattern looks unnecessary: in the above case, we could elimi-
nate it by merely considering the proposition A. This process is called

normalization.

Theorem 8 (Normalization). Given a deduction T on N, there exists an-
other deduction T' without cuts sharing the same conclusion and a subset of

the original hypotheses.

Proof. Let us normalize T by looking for cut patterns, i.e. sequences of
inference rules of the form [r;][rg], then simplifying them depending

on the connective r used:

A B
ANB

[A1]
[AE]

We know that Hilbert calculus H can’t
be complete without including AV —=A
or -—A = A as axioms. Thus, a proof
of the former proposition under N will
likely depend on the later, i.e. rule [-—].

The normalization process helps design-
ing monotonic proofs: the conclusion
of a deduction should be more complex
than its hypotheses if possible.



) 4w A
1 . ~ :
Ave VI _ C C vy :
Al -
B vil -
AV B _ C € 1y c

[A]
: [A]
L > .
A =i 1

T [—E]

By applying these normalization patterns, we can then inductively
modify any deduction in such a manner that cuts are removed. O

The normalization process removes redundant hypotheses and re-
duces the depth of the deduction tree. Thus, normalized deductions
are easier to write and understand
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First-order Logic

Propositional logic deals with simple declarative propositions, but fail
to covers predicates or existential and universal quantifiers on vari-
ables, hence, the need for first-order formulas.

First-order Formulas

Let V be a set of individual variables, M be a set of propositional vari-
ables'7, IC be a set of constants, ® be a set of functions, and R be a set of
relations (or predicates). To each function f € C (resp. relation r € R),
we match an arity ar(f) € IN (resp. ar(r) € N). Let L=KUSUR.

Definition 29. The set ® of terms on L is defined inductively from:

— A=VUK.
— C=9.
— d = 0.

Example 22. Let £ = N and let ® = {4+, —, x, =}. Then the words
— X 12 3 (in Polish notation) and (3 % 5) 4+ 12 (in usual infix notation)
are terms.

Terms in © can then be quantified by individual variables and com-
pared using relations in R in order to create formulas that we can then
combine using the usual logical connectors.

Definition 30. The set F1(L) of first-order formulas on L is defined in-
ductively from:

— A=A{r(ty,...,rn) |r € R,ar(r) =n,(t1,...,tn) €EO"}UMU{L}.
— C={-,AV,=}U{Vx |xeV}U{Ix |x eV}

— d = co.

Moreover, we can’t apply a quantifier VYx or 3x to a first-order formula ¢ if
the variable x is already quantified in ¢.

Example 23. Let K =N, ® = {+,—,x} and R = {=,>,<}. The
words (Ix- (x >y+2))ANAand Vx - (x xx > 0)VIx- (x x x = 0) are

7 Quantifiers can be applied to indi-
vidual variables, whereas propositional
variables are mostly relevant to inference
rules and proofs. The former are usu-
ally written in lower case and the latter
in upper case.

Note that the set of constructors is pos-
sibly infinite.
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first-order formulas, but the words Vx - 3x - (x > 0) and Vx - (x + 4)
are not.

The quantifiers Vx- and Jx- have the lowest priority, and the usual
order of precedence on logical operators applies otherwise. Note that
F{L,~ v~} is asubset of F1(L).

Bound and Free Variables

Definition 31. An individual variable x occurs in ¢ € F1(L) if the symbol
x appears on its own (i.e. not as part of the constructors Vx- or Ix-) in ¢.
An occurrence of this symbol is said to be quantified if it appears under the
scope™® of a quantifier symbol Vx- or Ix-, and free otherwise.

Example 24. The first occurence of x in ¢ = (x > 0) V3Ix- (x =y +2)
is free, but the second is quantified.

Definition 32. The set FV(¢) of free variables of a first-order formula ¢
is defined inductively as follows:

— FV(L1)=

— FV(k) =@ wherek e kK.

— FV(m) = @ where m € M.

— FV(x) = {x} where x € V.

— FV(u(¢y,...,¢n)) =FV(y1)U...UFV(¢,) where u € & UR.
R~ )

— PV Ag2) = FV (1) UFV ()
— FV(§1 V 2) = FV (1) UFV ()
— FVl = 4a) = FVp)UFV),
— FV(¥Vx-y) = FV(p) - {x}.

— FV(3x-y) = FV(p) - {x}.

Example 25. The set of free variables of ¢ = (x > y) = Vx -3z (x >

y+z)is FV(¢) = {x,y}.

Definition 33. An individual variable x is said to be bound in ¢ if all its
occurrences in @ are quantified. A first-order formula ¢ is said to be closed if
all the occurrences of its individual variables are bound; it is otherwise free.

Proposition 9. An individual variable x isn’t bound in ¢ if and only if x is
a free variable of ¢.

We introduce the substitution operation on free occurrences of a
variables in a first-order formula:

Definition 34. Let ¢ € Fj and x,y € V. We define inductively the substi-
tution @[x/y] of x by y in ¢:

#1.e the symbol occurs in a formula ¢
such that Vx - ¢ or 3x - ¢ is a sub-formula
of ¢.

Intuitively, a variable is free if it admits
at least one free occurrence. Note that an
occurrence of a free variable may not be
free.

This proof by induction is left as an ex-
ercise for the bored reader.

Intuitively, we replace all the free occur-
rences of x with y.



— x[x/yl =y

— z[x/y] =z wherez € VUK and z # x.

— u(yr, ..., ¥n) = u(Pr[x/y], ..., Yu[x/y]) whereu € ®UR.
— (Y1 AY2)[x/y] = Prlx/y] V a[x/y).

— (1 V) [x/y] = ¢alx/yIV ¢alx/y].

1= P2)[x/yl = lx/yl = pa[x/y].

Vx-y)[x/y] = (Vx-9).
— (Fx-9)x/yl = (Gx- ).

— (Vz-9)[x/y] = (

— (3z-¢)[x/y] = 3z ¢p[x/y]) wherez € V and z # «x.

(
(
Vz-¢[x/y]) wherez € V and z # x.

We then define inductively substitutions of multiple variables:

@lx1/y1, - Xnp1/Ynra] = (@Ix1/y1, - Xn/ Yn]) [Xns1/Yni1]

Example 26. Let ¢ = ((x > y) = Vx-3z-(x > y+z)) AB. Then
¢[x/a,y/b,z/c] = ((a>b)=Vx-3z-(x >b+2z)) AB.

Note that propositional variables in M are neither bound nor free:
the previous definitions only apply to individual variables. In a man-
ner similar to Hilbert systems, we can introduce first-order propositional
substitutions as partial functions of the form o : M — Fi(L).
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Extending Natural Deduction

Note that we can extend the definition of inference rules and proof
systems with hypotheses to first-order formulas by using first-order
propositional substitutions. However, natural deduction does not han-
dle quantifiers, and we therefore need to introduce new rules.

Universal and Existential Rules

Definition 35. Let the extended natural deduction N7 be the proof system
with hypotheses containing N and the following two rules for any term t:

Alx/t]
dx- A

3] % V]

As well as the following rule, assuming x is bound in every uncancelled

hypothesis of A:

A
. A Vi

And the following rule, assuming a variable x that is bound in A and its

uncancelled hypotheses:

[4]

dx- A

2 3]

Example 27. Consider the following proofs under N:

A

. A V] )
Ao vr A =1
And:

Vx-A !

L (V]

A [Vi]
AV B VI]

Vx-A=Vx-AVB

Note that A[x/x] = A is a mere syn-

Vx-A
1 [Ve] and

tactic rewriting, thus

A
-
5. 4 [P1] hold.

Rule [V;] means that if A holds no matter
the value of x then Vx - A holds.

Rule [Jg] means that if B is a conse-
quence of A no matter the value of the
variable x, and if A holds for some value
of x, then B holds.
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Finally, note that cuts involving existential and universal inference
rules can also be removed by a normalization process.

Alx/t]
eyl el Al/t] oo~ AR/
AL/ (3]
A
V1]

Applying Extended Natural Deduction

Proofs under N7 can be intuited in a similar manner to N

Exercise 6. Let P,Q € R be two relations of arity 1, x € V and
a € C. Prove that P(a) -y, 3x - (P(x) vV Q(x)).

Answer. Consider the following deduction:
P(a
# [\/ I]
P@Val o
Jx - P(x) vV Q(x) !
The property holds. O

Exercise 7. Let P,Q € R be two relations of arity 1 and x € V.
Prove that Vx - P(x) Fp; Vx - (P(x) V Q(x)).

Answer. Consider the following deduction:

The relation holds. O



Sequent Calculus

Most theorems are conditional truths, but the inference-based proof
systems we have used so far can only manipulate propositional formu-
las. Thus, Gerhard Gentzen designed a new formalism called sequent
calculus as well as a new proof system' LK based on conditional
tautologies.

Formalizing Sequent Calculus

Definition 36. A sequent is a pair (I, A) of finite sequences of F1(L). We
use the notation I' = A. T is called the set of antecedents, and A the set of
consequents.

Instead of writing (v1,..., Y1) F (d1,...,0m), we use the notation
Y15--5Yn F 615...;0m. We may split both components of a sequent
into sub-sequences, i.e. write I;I” F A; A’ where T,I”,A, A are se-
quences of formulas. Conventionally, sequences of formulas are writ-
ten using capital Greek letters, while first-order formulas use lower
case Greek letters and the Latin alphabet.

Axioms, inferences rules and deductions under sequent calculus are
similar to Hilbert’s definitions, but feature sequents instead of propo-
sitional formulas.

Definition 37. An axiom a under sequent calculus is a sequent I' = A that
is considered true a priori. We write it T |- A aj |

Definition 38. An inference rule r under sequent calculus consists in a
finite set of premisses {I'1 = Aq,...,Ty = Ay} and a conclusion T F A.
I'hEHN . I'nt Ay

W th tati .
e use the notation TEA 7]

Definition 39. A proof system P under sequent calculus is a set composed
of a finite number of axioms and a possibly infinite number of inference rules.

Intuitively, given a subset I' of F7(L£) and a first-order formula ¢,
I' - ¢ stands for ¢ is a consequence of T'. If I = @, then we write - ¢,
which stands for ¢ is true.

“Its full name is klassische Pridikaten-
logik, or classical predicate logic.

Intuitively, I' = A means that if all the
formulas in T’ are true, then one of the
formulas in A is true.

F stands for implies, while the semi-
colons to its left and right stand respec-
tively for and and or.

Intuitively, it means that the sequent I -
A is a consequence of the conjunction of
the sequents I'1 - Aq,..., T F A,
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Definition 4o. Let T be a tree whose nodes are labelled by sequents and P
be a proof system under sequent calculus.

T is a deduction under P if for any inner node of T labelled by Ag = By
with n children labelled by A1 & By,..., Ay & By, there exist an inference

IV HFAnV]qpmma

To = Ag
first-order propositional substitution o such that A; = T;[c] and B; = A;[0]

forallie {0,...,n}.

Moreover, a leaf of T labelled by a sequent A + B is said to be can-
celled if there exists a first-order propositional substitution o and an axiom
TFA 9] i P such that A = [[o] and B = Alo].

The label of Ts root is called its conclusion.

rule under sequent calculus

Deductions under sequent calculus are labelled by sequents instead
of formulas but are otherwise similar to deductions under Hilbert sys-
tems.

Definition 41. A proof under a proof system P is a deduction whose leaves
are all cancelled. If its conclusion is I’ = A, we then writeI' =p A. If O =p ¢
(written Fp @) for a formula ¢ € F1(L), then ¢ is a theorem.

I;AFB

I'HA=B
axiom “4 [ A [4]. Then the following deduction is a proof:

Example 28. Consider a system with a rule [r] and an

Al
FA= A
The conclusion A = A is a theorem.

The System LK1

Definition 42. The proof system LK1 contains the following axiom and
inference rule that make the identity group:

1 THAA  THARN

Cut
LT F A A (Cul

AFA

And for any two permutations y and T the following set of inference rules
called the logical group:

I'EA T'EA
—— = [XF — =X
w(T)FA [X+] I'F1(A) [~ X]
T'FA T'EA
IAEA W] T AA [ W]
INAAEA THAAA
IAEA [CF] T'HANA -]

These three pairs of rules are respec-
tively called exchange, weakening, and
contraction, on the left and on the right.
Left (resp. right) rules tend to change
or introduce new symbols in the an-
tecedents (resp. consequents) of a se-
quent.
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Rules of the form + t (resp. t ) intro-
duce an operator 1 to the right (resp. the
left) of the - symbol.

And the following set of inference rules called the structural group, assuming
in the rules [ V] and [3 F| that the individual variable x is such that x &
FV(T)UFV(A):

T'FAA TAEA
—_ _\I_ [ A — l——|
IL-AFA = I'--A4A -
I;A;BFA T'HANA '+ B; A
7 4 '_ 4 7 '_
IDAABEA (A H] ;T AAB; A A =
IAFA I B+ A ' A;B;A
I;T;AVBF A A [V I'-AVB;A [ V]
A A I''"BF A = I;AF B A =]
IT; A= BF AN I'-A= B;A
T;Alx/t]F A T AA
- - - - = I_
I;Vx-AFA [V F] T'EVx-AA [Vl
TAFA T+ Afx/t];A
|7
Idx-AFA B F] I'E3x-AA -3

Note that if we remove the rules [ V], [V ], [3 F] and [F J] from
LK1 and use sequents that feature formulas in F_ ., instead of
Fi(L), then we can define a proof system on Fy called LICy. We

admit®° the following theorem: 2 A full proof by David Baelde can be

found in Theorem 1 of his Proof Theory

Theorem 9. The proof system LK is sound and complete with regards to lecture notes here.

the propositional semantics of F(_, v -}


http://www.lsv.fr/~baelde/1213/iasi.pdf




Properties of Classical Predicate Logic

The classical predicate logic LK provides a better approximation to
the style of deduction favoured by mathematicians, but also always
allows one to write proofs that are monotonic.

Applying LK4

We can find a proof under LK of a theorem by building the an-
tecedents of a sequent through backwards application of right rules
on the conclusion, then guessing the axioms so that we can match
them to the aforementioned sequent through forward application of
left rules.

Exercise 8. Prove that,x, (A= A) = A= A.

Answer. Consider the following proof:

[1d]

(A=A)FA=A o]

FA=A) = A=A

Thus, (A = A) = A = A is a theorem. O

Exercise 9. Prove that-,x, (A= B)A(B=C) = A= (BAC).

Answer. Consider the following proof:

[1d] [1d] [1d] [1d]
AF A BF B BF B CkcC
: =t e ] : [=+]
A;(A=B)F B WH AFA B,(BéC)FC[ g

A;(A=B);(B=C)FB A;(A=B);(B=C)FC
A;(A=B);(B=C)F (BAC)

[= A

MﬁBMBﬁQFAﬁ@AQ[Hi
(AéBMNB@CHﬁ%#@AC)%h;

F(A=B)A(B=C)= A= (BAQ)

Thus, (A = B) A(B=C) = A = (BAC) is a theorem. 0O
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Cut Elimination

Proofs under natural deduction are not monotonic: elimination rules
allow simpler formulas to be derived from more complex ones by re-
moving symbols. While the proof system L£/K; isn’t monotonic either
because of its [Cut| rule, the following theorem?' holds:

Theorem 10 (Cut-elimination). For any conclusion of a proof under LK1,
there exists a proof with the same conclusion that does not use the rule [Cut].

We present an intuitive sketch?* of its proof:

Proof. Note that with the exception of the [Cut] rule, the premisses
of an inference rules in £X; can only use sub-formulas of its conse-
. / A/
I'-AA I+ B;A - Al; the
LT - AANB AN
consequent A; A of the first premiss is made of sub-formulas of the
consequent A A B; A; A

quence. As an example, consider

Let us consider a proof that uses cuts. Our intuition here is to reduce
complex cuts to simpler ones and to push them towards the leaves
until each cut rule has been reduced to an identity where the premisses
and the consequence are equal, and thus, can be replaced by the axiom
[Id]. To do so, we perform substitutions depending on the rules used
to produce the first premiss of the [Cut] rule.

I;BEF AA I;CHAA
IbBVCHE AA
I;BVGCT AN

[\/ }_] F/;A }_ A/

[Cut]

Is therefore replaced with:

;B A;A I"AF AN
;BT AN

ICH AA ;AR A
I;CI' - A A

[Cut] [Cut]

; ; [V H]
I;BVCGI'EAA
And we apply similar substitutions to cuts involving the other rules of
the logical group. We also handle the identity group by replacing:
Al A 1] IAEA
IDAFA

[Cut]

With I'; A = A. We handle weakening:

T'HA
INAFA I AEF AN
;T - A A

(W]

[Cut]

By replacing it with:

** Also called Gentzen’s Hauptsatz.

> The full proof is left as an exercise to
the mindful reader.

Note that the labels of the root and the
leaves do not change, although the struc-
ture of the tree does and the cut rules use
simpler formulas.
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TFA
nres
Lo sy

Dealing with the contraction rule is harder:

A A AR N
e N o )
IDAFA I''"AFEA
- - [V F]
T'EAA
We replace it with:
ThAAFA
———[CH] , ,
AAR AN I AE AN I A;AFA
; ; [Cut] —————[CH]
LT EAA I AEA
[Cut]

L;TGT F AN A
L;TT F AN
;T E A A

[-C]
[CH]

We deal with the exchange in a similar manner. Eventually, we can
inductively modify any proof in such a manner that cuts are pushed
to the leaves of the tree and removed. O

The theorem has many rich consequences, one of these being the
consistency of LICq: there exist no formula ¢ and no antecedent I' such
that T }_ClCl gand T }_ﬁlCl Q.






Lambda Calculus

Lambda calculus is a mathematical theory of functions introduced in
the 1930s by Alonzo Church as a way of formalizing the concept of
effective computability. It is the simplest (functional) Turing-complete
programming language.

Of A-calculus

Let V be a set of variables.

Definition 43. Pure untyped A-calculus is the language A\ generated by the
following grammar in Backus-Naur form:

< expression > := < variable >|< function >|< application >
< variable > = x¢cV
< function > := A< variable >- < expression >

< application > := (< expression >< expression >)

Its elements are called A-terms.

An inductive definition of A is also possible, using V as atoms,
functions (also called abstractions) and the application as constructors,
and an infinite induction depth.

We use the following syntactic conventions:
— We omit outer parentheses in applications. MN = (MN)
— Applications associate to the left. MNL = (MN)L
— Applications have priority over functions. ~ Ax- MN = Ax - (MN)
— We allow multiple arguments (Currying). Axy-M=Ax-Ay-M

Example 29. Consider the following simplification of a A-term thanks
to our syntactic conventions:

(An- (Af - (Ax- (F((1)2)))))
= (A (Af - (Ax- (f(nfx)))
= Anfx- f(nfx)

Figure 9: Alonzo Church (1903-1995).

Intuitively, Ax - M stands for a function
of one variable x and body M. The ex-
pression MN denotes the term N (con-
sidered as data) being passed as an input
to the term M (considered as algorithm).

We translate the evaluation of a func-
tion that takes multiple arguments into
evaluating a sequence of functions, each
with a single argument. Currying is a
staple of functional programming.
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Definition 44. The set of sub-terms of a A-term M is defined inductively:

sub(x) = {x}
sub(Ax - M) = {Ax-M} Usub(M)
sub(MN) = {MN}Usub(M)Usub(N)

Introducing x-conversion

If the Ax- operator is meant to represent a function of variable x, then
we need to properly define its scope. To do so, we need to discriminate
between free and bound variables.

Definition 45. We define the sets FV(M) and BV(M) of free and bound
variables of a A-term M inductively:

FV(x) = {x}

FV(Ax-M) = FV(M)\ {x}

FV(MN) = FV(M)UEV(N)
BV(x) = @

BV(Ax-M) = BV(M)U{x}

BV(MN) = BV(M)UBV(N)

IfFFV(M) = @, then M is said to be closed and called a combinator.

Given a A-term Ax - abx, if we assume that it stands for a function of
argument x and body abx, then it would make sense to consider that
the two functions Ax - abx and Ay - aby are similar. We formalize this
intuition by introducing an equivalence relation.

Definition 46. Given a A-term M and two variables x and y such that y ¢
FV(M)UBV(M) , we define the fresh substitution3 operation inductively:

xx /'yl =
zlx /y] = zwithx #z
(NL)[x /7yl = (N[x//yD)(Llx//y])
(Ax-N)[x//y] = Ax-N
(Az-N)[x//y] = Az-N[x//y]withz # x

Definition 47. We define the n-congruence (or n-conversion) relation =,
inductively:

— Ax-M =4 Ay-Mlx // y] fory ¢ FV(M) UBV(M).

— x=gxforx V.

» We replace here free occurrences of x
in M by a fresh variable y. Note that y
must be a new variable in order to avoid
introducing unforeseen interactions with
existing Ay- constructors.



— Ax-M=4Ax-Nif M=, N.

— MN =, M'N"if M=, M'and N =, N'.

Example 30. Consider the following relations:

Ax-x =y Ay-y
XAX X =4 XAY-y
Ax-(Ax-xz) =, Ay-(Ax-xz2)

=« Ay~ (Ay-y2)
XAx-x Ei yAy-y
Ay -Ax-xy FEy Ax-Ax-xx

N

Proposition 10. The a-congruence relation is an equivalence relation on
A.

Proof. Reflexivity is obvious by induction. Symmetry is implied by
definition of a fresh substitution. Transitivity stems from the fact that
a-congruent two terms may use different variables but remain struc-
turally identical. The full proof is left as an exercise to the meticulous
reader. O

We say that a A-term M follows Barendregt’s variable convention if
no variable is both free and bound, and if for any variable x € V the
symbol Ax- never occurs more than once in M.

Example 31. The terms xAz -z and Ax - Ay - xz verify Barenderegt’s
convention, but xAx - x and Ax - Ax - xz do not.

Theorem 11. Given a A-term M, there exists a A-term N verifying Baren-
dregt’s convention such that M =, N.

Proof. By structural induction on the A-term M. O

From now on, we will if possible use A-terms following Barendregt’s
convention for readability’s sake, and reason over whole x-congruence
classes instead of single A-terms.
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Reducing Lambda Terms

We can build an universal model of computation by interpreting A-
terms simultaneously as functions and data, feeding the latter as the
input to the former thanks to a mechanism called reduction.

Introducing B-reduction

We define a substitution operation that accounts for free and bound
variables.

Definition 48. We define inductively the substitution operation modulo «-
congruence** for a variable x € V and a term M € A:

x[x/M] = M
ylx/M] = ywithx #yandy eV
(NL)[x/M] (N[x/M])(L[x/M])
(Ay-N)[x/M] = Ay-N[x/M] with x # yandy ¢ FV(M)

Given two terms Ax - M and N such that x € FV(N), we perform
a prior a- conversion of Ax - M to Au - M[x // u] such that u ¢ FV(N)
before applying the substitution [x/N].

Example 32. Consider the A-term:

(Axy - zy)[z/yy]
o« (Axu-zu)lz/yy]
= Axu-(yy)u

We interpret passing an argument to a function as a substitution of
a variable by an input in the function’s body. The whole A-calculus
computation model hinges on this simple idea.

Definition 49. We define the -conversion relation modulo a-congruence:
(Ax-M)N B Mix/N]

The term (Ax - M)N is then called a redex.

* We match an equivalence class accord-
ing to =, to another.

In order to apply a substitution to an a-
congruence class, we pick a representa-
tive to which we can always apply the
last substitution rule.

The yy we introduce shouldn’t interact
with an existing Ay- operator.

Intuitively, p-conversion substitutes in
the term (Ax - M)N the variable x in the
body M of the function with the argu-
ment N.
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We can extend binary relations on terms in order to handle more
complex reduction sequences.

Definition 50. Given a binary relation p modulo x-congruence, its one-step
reduction is the smallest relation — , such that for all A-terms X, Y, and Z:

— IfXpYthenX —,Y.
— If X —p Ythen XZ —p YZ and ZX —, ZY .

— If X —p Ythen Ax- X —p Ax-Y.

*

p such

The reflexive, transitive closure of —, is the smallest relation —
that:

— X5 X
— X —pYthen X =, Y.
— X =, YandY —; Z then X —; Z.

The reflexive, transitive, symmetric closure of — is the smallest relation
=, following the three rules above as well as the following one:

— X=Ye Y= X

If M —; N, then the length of this reduction is the smallest number
of one-step reductions needed to reach N from M.

Example 33. Consider the following reduction:
(Ax - Af-xfy)(Az-z)(Aw - ww)

—p (Af-xfy)[x/(Az - 2)](Aw - ww)
= (Af-(Az2)fy)(A\w - ww)

—p (Af - fy)(Aw - ww)
—p (flf/ (Aw - ww)]

= (Aw - ww)y
B vy

Thus (Ax - Af - xfy)(Az - z)(Aw - ww) =5 Yy
Example 34. Consider the following reductions:

(Ax - xx)y —p Yy
(Ay-yy)(Ax-xx) —p

>
=

<xx)(Ax - xx)
-xx)(Az - zz)
~x(xx))((Ax - x(xx)) (Ax - x(xx)))
~x(xx)) ((Au - u(uu))(Av - v(vv)))

>~
&

4

(

(
(Ay-y(yy))(Ax-x(xx)) —p (A

(

>~
S R

4

Intuitively, the one step reduction re-
places a sub-term of a A-term with an-
other related one according to the binary
relation p.

By definition, %; is reflexive and transi-
tive.

By definition, =, is an equivalence rela-
tion.

At any point of a reduction sequence, we
can perform an a-conversion in order to
improve a term’s readability or apply a
substitution.



Example 35. The three following a-congruence classes are called the
Omega combinators on A-terms.

w =4 Ax-xx
QO =, ww
O =, Ax-x(xx)

Properties of B-reduction

B-reduction is meant to simulate computations. Does this process al-
ways end?

Definition 51. Given a binary relation p modulo a-congruence, a term M is
in p-normal form if there is no term N such that M —, N.

M is said to be p-normalizable if there exists N in p-normal form such
that M —; N.

M is said to be strongly p-normalizable if there exists no infinite one-step
reduction sequence starting from M.

Property 5. If M is strongly p-normalizable, then M is p-normalizable.

Proof. Strong normalization implies that any one-step reduction se-
quence starting from M ends in a term in p-normal form. The full
proof is left as an exercise to the rigorous reader. O

Example 36. [ = Ax:x is in B-normal form. II is strongly B-
normalizable and I —>E I

Definition 52. A binary relation p modulo x-congruence is weakly nor-
malizing (resp. strongly normalizing) if every term is p-normalizable (resp.
strongly p-normalizable).

Theorem 12. B-conversion is neither weakly nor strongly normalizing.

Proof. Q) = (Ax-xx)(Ay-yy) is not normalizable as () — Q) is its only
possible B-reduction. Thus, § is not normalizing, and can’t be strongly
normalizing either. O

Note that a term can be normalizable but not strongly normalizable.

Example 37. Let K= Ax - (Ay - x). Since Q —5 Q, KIQ —4 KIQ and
KIQ) is not strongly normalizable. However:

KIO)
= (Ax-(Ay-x))(Az-2)Q
—h (Ay- (Az-2))O)
—h Az-z
= I
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Note that these terms have no free vari-
ables and are indeed combinators.

This was to be expected since A-terms
are meant to represent programs that
may loop infinitely.
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Thus, KIQ) is normalizable.

Note that S-reduction is not a deterministic process. Can two re-
duction sequences starting from the same term diverge?

Definition 53. Let p be a binary relation modulo a-congruence.

—p satisfies the diamond property if, given three terms M, Ny and N,
such that M —, N1 and M —, N», there exists a term L such that Ny —, L
and Ny —, L.

M—— N

|

Ny —— L
—rp is Church-Rosser if —7 satisfies the diamond property.

M » Nq

—p has the unique normal form property if, given three terms M, Ny
and Np such that M —>2‘, Ny, M —>;‘, N, and Ny, N, are in p-normal form,
then N] = Nz.

Proposition 11. If —, satisfies the diamond property, then — is Church-
Rosser.

Proof. Let M, N1 and N be three terms such that M —>; Nj and M —>;
N;. Let n; be the length of the reduction sequence M —; N; for i €
{1,2}. Without loss of generality, we can assume that n; > n,. We
will prove by induction on n = max(ny,n) a stronger?> result than
Church-Rosser: there exists a term L such that N; —>; L and N, —>;§ L,
the former reduction sequence being of length smaller than np, and
the latter of length smaller than #;.

— Ifny = 0orny =0, the property is obvious as M =, N or M =, Nj.

— If ny = 1 and ny = 2, then the property holds because of the dia-
mond property.

— We assume that the inductions hypothesis holds for paths of length
n or lower. If n; > np and ny = n + 1, there exists a term A such
that M —; A —, Ny and. We first apply the induction hypothesis
to (M, A, Ny): there exists B such that A —; B and N, —; B. Then

Figure 10: The diamond property. The
straight arrows stand for —,

Figure 11: A Church-Rosser relation.

The dotted arrows stand for %;.

5 As a consequence, the diamond prop-
erty is significantly more restrictive than
Church-Rosser.

The second application of the induction
hypothesis would not be possible with a
mere Church-Rosser property.



we apply the induction hypothesis to (A, Ny, B): there exists L such
that Ny —>;§ L and B —>; L. Thus, Ny —>; L and N, —>; L, as shown
by Figure 12.

If ny = ny = n+1, the proof is slightly more complex but overall
similar and left as an exercise to the enthusiastic reader.

Thus, the proposition holds O

Property 6. If —, is Church-Rosser then it has the unique normal form
property.

Proof. Let M, N7 and N be three terms such that M —, N1, M —, N,
and Ny, N; are in normal form. Since —, is Church-Rosser, there exists
a term L such that N; —>; L and N, —>; L. However, N; and N>
are in p-normal form, and p is defined modulo a-congruence, thus
Ni =4 L =4 N,. O]

We will admit?® the following theorem:
Theorem 13 (Church-Rosser). — g is Church-Rosser.

Thus, each term has an unique S-normal form.
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Figure 12: Proving that —, is Church-
Rosser. The labels stand for the length
of the reduction sequence.

6 A full proof by Jean-Louis Krivine can
be found in Theorem 1.24 of his book
Lambda-calculus Types and Models here.


https://www.irif.fr/~krivine/articles/Lambda.pdf




Lambda Calculus as a Programming Language

We can model computations on A-terms as sequences of S-reductions
hopefully leading to an unique normal form. It remains to be seen
how this mechanism can be used to build deterministic programs and
represent common data types or operators.

Reductions Strategies

Note that B-reduction isn’t a deterministic process: at any given step,
we may be able to perform multiple one-step reductions on a given
A-term.

Definition 54. A reduction strategy s is a partial function f C A X A
such that, given a pair (X, f(X)) €5, X =4 f(X).

We then write X — f(X). Any term has an unique maximal re-
duction sequence according to f, which may be infinite or null.

Definition 55. The head reduction strategy h is defined as follows, given
two integers n,m > 0 and some A-terms M, N, L1, ... Ly:

/\xlxn()\yM)NLl eo. Ly —>hAx1...xn-M[y/N] L1 ... Ly

Note that any term in a Eduction sequence according to & is either
of the form A% - (Ay- M) L or AX -y L. Terms in a h-normal form
are of the latter type.

Example 38. Consider the following h-reduction sequence:

KIQ —, I
As well as:
KQI = (Ax-(Ay-x))wwl
= (Ay-w)wl
—n wl
—y, 1

—)hI

A reduction picks a A-term f(X) among
the set of possible B-reductions of X.

Remember that applications have prior-
ity over abstractions. The term described
here is an application if n = 0 and a
closed function of n variables otherwise.

U stands for Up ... Uy
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Note that some terms may not be reduced by / despite a f-reduction
still being possible: as an example, x(Ix) / xx. Thus, we consider
another reduction strategy:

Definition 56. The leftmost reduction strategy I performs a single step of
B-conversion on the leftmost Ax - M to which an argument can be matched.

Note that any h-reduction sequence is also a I-reduction sequence,
but the converse is not true.

Example 39. Consider the following /-reduction sequence:

x(Ix) = x((Ay-y)x)
— XX

We want our strategy to always lead to a A-term’s normal form if it
exists. We admit®” the following theorem:

Theorem 14. If M is a A-term with a B-normal form N, then M —] N. We
say that leftmost reduction is normalizing with regards to B-reduction.

Actual programming languages rely on various reduction strate-
gies. These may or may not succeed depending on the situation. The
C language uses a call by value strategy that fully evaluate arguments
(here, reduces them to their normal form) before passing them to func-
tions.

Other languages may use variants2® of the call by name strategy. The
arguments of a function are substituted as early as possible into the
body of said function and evaluated later, if ever. As an example,
there is no need to ever evaluate Y in order to reduce (Axy - x)XY.

Example 40. Consider the following call by value reduction sequence:

M = (Ax-Ay-yx)((Au-u)a)(Av-v)
—p  (Ax-Ay-yx)(a)(Av- o)

—p  (Ay-ya)(Av-o)

—p (Av-v)a

B
And the following call by name reduction sequence on the same term:

M = (Ax-Ay-yx)((Au-u)a)(Av-v)
—p  (Ax-Ay-yx)(a)(Av- o)
—p  (Ay-ya)(Av-v)
—p (Av-v)a

B

*7 A full proof by Jean-Louis Krivine can
be found in Theorem 2.1 of his book
Lambda-calculus Types and Models here.

# A common memoized variant is the
call by need strategy. In order to avoid
copying then evaluating a given argu-
ment multiple times in the body of a
function, the first evaluation of said ar-
gument is memorized and reused.


https://www.irif.fr/~krivine/articles/Lambda.pdf

Church Encoding

Church encoding is a mean to represent data types that are usually con-
sidered primitive in programming languages. Let us first consider
Booleans.

Definition 57 (Church Booleans). The two following A-terms are respec-
tively called the true and false terms:

True = Axy-x
False = Axy-y

Given X,Y € A, note that TrueXY —>Z X and FalseXY —>E Y. Thus,
if B is a 'boolean’ term such that B =, True or B =, False, BXY
simulates if B then X else Y.

We will now encode integer types.

Definition 58 (Church Integers). Given an integer n, the following A-term
(and any term in its a-congruence class) is called the n-th Church integer:

n = Afx-f'x

Note that both the Church Booleans and integers are in normal
form, as expected of terminal values.

Example 41. Consider the following integers:

= Afx-x
Afx-(f(fx))
Afx-(f(f(fx)))

We can define tests on integer values that produce Boolean answers.

w N o
I

Lemma 2. There exists a term Zero such that, for n € IN*:

Zero 0 —>E True

Zeron —>:§ False
Proof. Consider Zero = Ax - x(Ay - False) True.
ZeroQ = (Ax-x(Ay-False)True)(Afz-z)
—p (Afz-z)(Ay - False)True

—p  (Az-z)True
—p True

59

f"x stands for f(f(...(fx))). Function f
—_—

n times
is applied n times to x.
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Now, consider:

Zero2 = (Ax-x(Ay-False)True)(Afz- f(fz))
—p  (Afz- f(fz))(Ay - False)True
—p  (Az-(Ay - False)((\y - False)z))True
—p  (Az- (Ay - False)False)True
—p (Ay - False)True

—p False

By induction on n, we can prove than for all n € IN*, Zero n — B False.
The full proof is left as an exercise to the astute reader. O

We want to be able to perform simple arithmetic operations on these
integers.

Definition 59. The two following A-terms are respectively called the succes-
sor and plus terms:

Succ = Ayfx- f(yfx)
Plus = Ay-ySucc

Theorem 15. Given two integers n and m:

Succ n —>;§ n+1

Plusn m —>E n+m
Proof. Consider the following reduction:

Succn = (Ayfx-f(yfx))n
g Afxflufx)
= Afx- f((Auv-u"v)fx)
Sh A
— Afx-(f)
= ntl

As well as:

Plusmm = (Ay-ySucc)nm
—p 1 Succ m
= (Afx-f"x)Succm
—p  (Ax-Succ"x) m
—p Succ" m

*
_)ﬂ n—+m

Note that by design, nFM will apply the
function F n times to a term M.

Adding a positive integer n to m is
merely applying the successor function
n times to m.



Thus, the theorem holds. O

We can extend this encoding to subtraction, multiplication, division,
exponentiation, and signed integers. However, in order to encode ra-
tional numbers, we first need to define pairs.

Definition 60 (Church Pairs). We define the following A-terms:
Pair = Axyf- fxy

First = Ap-pTrue
Second = Ap-pFalse

Theorem 16. Given two A-terms A and B:
First(PairAB) -5 A
Second(PairAB) —% B
Proof. Consider the following reductions:
First(PairAB) = (Ap- pTrue)(PairAB)

—p  (PairAB)True
= ((Axyf - fxy)AB)True
—>:§ TrueAB
—p A

In a similar manner:

Second(PairAB) —% FalseAB
*
—g B

=

Thus the theorem holds. O

Fixed-point Combinators

Definition 61. Given two terms A, B € A, if there exists C € A such that

A —>2§ Cand B —>E C, we then write that A HE B.

Definition 62. A fixed point of A € A is a term M such that AM <7 M.

B

In order to compute fixed points, we define a class of A-terms called
fixed-point combinators.

Definition 63. A fixed-point combinator is a term M € A such that for any

A-term A, MA < A(MA).

Definition 64. We introduce Curry’s Y combinator:

Y =Af-(Ax- f(xx))(Ay - f(yy))

61
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Proposition 12. Y is a fixed-point combinator.
Proof. Consider the reduction sequence:

YA = (Af-(Ax-f(xx))(Ay- f(yy)))A
—p  (Ax-Axx))(Ay - Ayy))

—p Al(Ay-Alyy))(Ay - Alyy)))
=« A((Ax- A(xx))(Ay - Alyy)))
A(YA) = A(Af - (Ax-flxx) (A - fyy)))A)
—p Al(Ax-Axx))(Ay - Alyy)))
Thus, the property holds. O

Fixed-point combinators must return some fixed point of their ar-
gument function if one exists.

Theorem 17. Any term A € A admits at least one fixed point.
Proof. YA <4 A(YA), thus YA is a fixed point of A. O

Fixed-point combinators can be used to define recursive functions.
This is, however, out of the scope of this course.



Simply Typed Lambda Calculus

What is the meaning of Ax - xx? In an actual program, we can’t ap-
ply anything to anything: a function and its argument have different
behaviours. Thus, we need to introduce typing.

Introducing Types

Let TV be a set of types variables.
Definition 65. We define the set of types T inductively:
— A=TV.
— C = {—}, where — is of arity 2.
— d = oo
By convention, — is right associative.
Example 42. Fora,f € TV, a, a — pand (« — B) — « are types.
We want to associate types to A-terms.

Definition 66. A statement is a pair M : o where M is a A-term called the
subject and o is a type in T called the predicate.

Typing A-terms

Let M be a set of meta-variables. We allow?9 the use of these meta-
variables in A-terms and types. Let A’ (resp. T”) be the set of A-terms
(resp. types) with meta-variables. A’ x T is called the set of meta-
statements. A A-substitution (resp. type substitution) is a partial function

M — A (resp. M — T).

Definition 67. A type inference rule t consists in a finite set of premisses
{My : 0q,...,My : 04}, a finite set of hypotheses {Ny : p1,...,Nu : un},
and a conclusion M : o, where My : 01,..., My, : 0, and M : o are meta-
statements, and Ny : yy,..., Ny 1 Uy are either meta-statements or equal to
Q.

« — f stands for a function whose input
is of type « and its output of type p.

It means that M is of type o.

*» Technically, we add M to the set of
atomic elements in the inductive defini-
tion of these sets.

These variables can’t be quantified by
the A operator. They are mostly used to
write generic type inference rules.
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[N1 @ ] [Ni  pin]
We use the notation :
Mlial M, oy [t]
M:o
(@]
For convenience’s sake, we write M; : 0; instead of :
Ml' L0

Definition 68. A type ruleset R is a set of type inference rules.

Types rulesets may then be used to type A-terms using tree-like
derivations.

Definition 69. Let D be a tree whose nodes are labelled by statements. D
is a type derivation under a type ruleset R if for any inner node A of D
labelled by A : a with n children labelled by By : B1,...,By : Bn, there
[N1 = ] [Nn ¢ pin]
exist a type inference rule M : o N M, o, inR, aA-
[£]

substitution s and a type substitution s’ such that A : & = M][s] : o[s'] and
B;: Bi = M;[s] : o;[¢/] foralli € {1,...,n}.

Foralli € {1,...,n}, any leaf of D descending from the i-th child of A (it
may be the child itself) and labelled by Nj[s] : p;[s'] is said to be cancelled.

Moreover, the labelling of the tree D must be coherent: there cannot be
two nodes labelled by M : o and M : T such that o # T.

The labels Hy : %1,...,Hy : 1m of D’s leaves are called its hypotheses,

and the label C : y of its root, its conclusion.
We represent type derivations in a manner similar3° to deductions
under proof systems with hypotheses.

If there exists a type derivation D under R with uncancelled hy-
potheses {H; : #1,...,Hy @ ym} and conclusion C, we then write
{Hy:9m1,...,Hy:im} Fr C: .

Definition 70. A meta-statement M : o is derivable under a type ruleset
‘R if there exists a type derivation D under R such that D’s leaves are all
cancelled and D’s conclusion is M : ¢.

We then write b M : 0. D (resp. ) is called a type derivation (resp. a
type) of M.

The Simple Type System

Definition 71. The simple type system S features two type inference rules:

[Xf(ﬂ

: M:oc—=t N:O'[A]
M:T N MN : T
Ax - M:o—t1 ]

A term cannot be assigned two different
types in D.

3° With trees.

[A] and [A] are respectively called ab-
straction and application.



The simple type system is the default type ruleset. Thus, we write
F M : o instead of g M : 0. We may omit labelling rules of type
derivations under the simple type system given S features only two
type inference rules that can easily be determined.
Exercise 10. Prove that-Ax-x:0 — 0.
Answer. Consider the following proof:
-1
X:0 1
Ax-x:0—=0
Thus - Ax-x:0 — 0. O
Exercise 11. Prove that - Ax-x: (0 — u) — (0 — p).

Answer. Consider the following proof:

X0 > !
Ax-x:(0c—pu) = (0 —n)

1

Thus - Ax-x: (0 = p) = (0 — p). O

Exercise 12. Prove that-Axy-x:0— 17— 0.
Answer. Consider the following proof:
— 1
x:o
Ay -x:T—=0
AXy-x:10 =T —=0

Thus - Axy-x:0 =17 —= 0. O

Exercise 13. Prove that - Afx- f(fx): (c - 0) =0 — 0.

Answer. Consider the following proof:

-1 9
fio—=0 xX:o

fx:o
e
Ax-f(fx):0—=0
Afx-f(fx):(c—0)—=0—0

Thus - Afx - f(fx):(c —0) =0 — 0. O

1

fio—=0

1

In order to prove that a meta-statement is derivable, we often try to
guess the type of its atomic variables first.
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Note that ¢ isn’t necessarily an actual
primitive type matched to the variable x.
A derivable statement merely describes
the structure of a term’s type.

We may match more than one type to
a given term. M : v should actually
be interpreted as v being one out of
many possible types of M. Note how-
ever that the current type is a substitu-
tion instance of the type found in Exer-
cise 10 by the function s(c) = ¢ — .

The typing of the variable y is implicit
as we insert the operator Ay-. There is
no need to introduce a leaf labelled by

YT

This term represents a function with two
arguments: a function f : ¢ — ¢ and a
variable x of type o. It returns the value

f(f(x)) of type 0.






Type Assignments

In order to make sense of A-calculus as a programming language, the
simple type system must be compatible with the reduction mecha-
nisms outlined previously.

Typable Terms

Definition 72. A A-term M is said to be typable if there exists a type o
such that = M : 0. The type o is then inhabited.

The usual notation for the set of typable A-terms is A™". Note that
A7 is a strict non-empty subset of A.

Proposition 13. K and I are typable.

Proof. Check Exercises 10 and 12. O

Proposition 14. w is not typable.

Proof. Let us assume that w is typable. We consider a type deriva-
tion D of w = Ax-xx. Note that the subject of the conclusion of a
simple type inference rule is always more complex than its hypothe-
ses; unlike natural deduction, S does not feature elimination rules. As
a consequence, the latest symbol inserted in the conclusion’s subject
determines the latest type inference rule applied.

Thus, the only type inference rule that can be applied to the root of
D is of the form:

[x: 0]

XX :T
AX Xxx:0—>T

Moreover, the only rule that can be applied to the node labelled by
xx : T must be of the form:

XU —=T XU
XX T




68

Both leaves labelled by x : 4 — T and x : y must be cancelled, but the
only abstraction rule available is the one described previously. And
this rule can’t cancel both leaves at the same time: either ¢ = u or
oc=u— 1, but p # u — t. Thus, D can’t be a type derivation of w,
and w is not typable. O

Lemma 3. If M is a typable A-term, then so is any closed sub-term N of M.

Proof. By Theorem 18, we may assume without loss of generality that
both M and N follow Barendregt’s convention. Consider a type deriva-
tion D of M. There exists a subtree D’ of D of conclusion N, as type
derivations follow the inductive structure of A-terms. Moreover, the
leaves of D are all cancelled, thus, the leaves of D’ as well.

However, it remains to be seen if the leaves of D’ are actually can-
celled by its own internal nodes. Note that a cancelled leaf is always
of the form x : v for x € V and must be cancelled by an abstraction
rule introducing a Ax-. By Barendregt’s convention, there is only one
such Ax- in M, and such an abstraction rule can only appear once in
the whole tree D.

If this Ax- appeared outside of D', then any occurrence of x in N
would be free, and there is at least one such occurrence because of
the leaf labelled by x : v. Therefore, x would be a free variable of N.
However, N is closed and has no free variables. Thus, the matching
abstraction rule appears inside D’ instead. The leaves of the tree D’
standing on its own are all cancelled; it is therefore a type derivation
of N, and N is typable. O

As a consequence of Lemma 3, the following proposition holds.
Proposition 15. Q, Q) and Y are not typable.

Proof. If () were typable, so would its closed sub-term w by Lemma
3. But it would contradict Proposition 14. Thus (2 is not typable. The
rest of the proof is left as an exercise to the curious reader. O

Typing and Reductions

The type of a A-term does not change if we merely rename variables.
Theorem 18 (x-invariance). If = M : 0 and M =, N then = N : 0.

Proof. If M =, N, then the two terms are structurally similar and
merely use different variables names. As a consequence, a type deriva-
tion for = M : ¢ can be transformed into a derivation for = N : ¢ by
merely relabelling the variables names. O



If we want to implement typed A-calculus as a programming lan-
guage, B-reduction should preserve typing: it would make no sense
for a A-term’s type to change in the middle of a computation. We
admit3* the following theorem:

Theorem 19 (Subject reduction). If - M : 0 and M —pg N then = N : 0.

Note that the converse does not hold: KIQ — I and [ is typable
but KIQ) isn’t; otherwise, its closed sub-term () would be typable by
Lemma 3, but this is not the case by Proposition 15.

Last but not least, we admit3* the following theorem that makes
B-reduction a viable formalism for functional programming;:

Theorem 20 (Strong B-normalization). All terms in A~ are strongly B-
normalizing.

Since B-reduction is Church-Rosser, it has the unique normal form
property by Property 6: a S-reduction sequence on any typable term
can never be infinite but will instead converge to its unique normal
form.

Thus, the set A™ makes for a reasonable programming model:
each term is properly typed and always converges to an unique value
through a reduction mechanism.

Decidability of Type Assignment

Several questions may be asked about type assignments.
Definition 73. We introduce the following problems:
Type checking. Given M € A, 0 € T, doest M : ¢?
Typability. Given M € A, is therea o € T such that = M : 0?2
Inhabitation. Given o € T, is therea M € A such that - M : ¢?
We admit the following result found by Curry and Hindley in 1969:

Theorem 21. Typability is decidable33. Moreover, any term M € A~ has
a computable principal type T such that for any type o of M, o = t[s| where
s is a type substitution.

The principal type of a term can be seen as a form of template, from
which all the other possible types are derived.

Example 43. ¢ — o is a principal typeof Ax-x,and (¢ - 0) -0 — 0
is merely a substitution instance of it.

Corrolary 3. Type-checking is decidable.

Proof. Determine if M is typable, compute its principal type T, then
check that ¢ is a substitution instance of 7. O
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3t A full proof is available in Theorem
5.11 of Barendregt and Barendsen’s In-
troduction to Lambda Calculus here.

32 A full proof by Barendregt is available
in Section 4.3 of his book Lamba Calculi
with Types here.

3 There exists an algorithm that can an-
swer any instance of this problem.


http://www.nyu.edu/projects/barker/Lambda/barendregt.94.pdf
ftp://ftp.cs.ru.nl/pub/CompMath.Found/HBK.ps




The Curry-Howard Isomorphism

We may have convincingly shown that simply typed A-calculus is a be-
lievable programming model. Its correspondence with modern logics
has yet to be explored, though.

Proofs and Types

Definition 74. We assume that there exists an isomorphism x between the
set of propositional variables V and the set of type variables TV. We then
define inductively a function C : Fy_y — T.

— C(x) =«(x) for x € V.
— C(A= B)=C(A) — C(B).

The inductive definitions of F (=1 and 7 being similar, the follow-
ing property holds:

Property 7. C is an isomorphism.
Let N = {=, =} be the implication subset of natural deduction.

Theorem 22 (Curry-Howard isomorphism). P € §(N=.) if and only there
exists M € A~ such that = M : C(P).

Proof. The type inference rules of S and the inference rules of N, are

similar:
[A] [x: 0]
B M:T
A= B =] Ax M:o—>T1 A
A=B A M:oc—=T N:o
B (=l MN: T 4]

Moreover, the sets 7 and F/_., are isomorphic. We can therefore trans-
form any proof under N-. of a theorem P into a type derivation of a
typable term M. Conversely, we can also transform any type deriva-
tion of a typable term into a proof. O

Otherwise, what would be the point of
teaching both in the same course?
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Example 44. The following proof under natural deduction and type
derivation are isomorphic:

1 — 1

A X0 A
m[jl] Ay-x:r%a[]/\l
A=B=A =] /\x‘1/~,\':(7—>T—>(T[]

Note that a normalization process similar to natural deduction can
be applied to type derivations:

[x: 0]
; [x: 0]
Ax-M:UT—>TW N:O'[A] M:T

(Ax-M)N : T

We can actually use this result to prove subject reduction, that is,
Theorem 19. Indeed, from a type derivation tree of root (Ax - M)N : T,

X:0
we can extract a type derivation | : | . Assuming N : o, substitut-
M:t
[N : 0]
ing N to x in the previous tree yields a type derivation :
M[x/N]: 1

. Hence, B-reduction preserves types.

Extending the Isomorphism

We would like to extend the simply typed A-calculus in order to ap-
ply Curry-Howard'’s isomorphism to richer logics featuring other con-
structors than =.

We first introduce pairs in order to handle conjunctions.

— We add a constructor () of arity 2 and two constructors Iy, I, of
arity 1 to the set of terms A.

— We add a constructor x of arity 2 to the set of types 7.

— We extend p-reduction with the following relations:
IL((M,N)) B M
L(M,N)) g N

— We define C(AAB) =C(A) x C(B).

— We add the type inference rules in the right column of the following
table to the simple type system:

Think of the C data type struct.



A B [/\] M:o N:t
ANB U (M,N):0xT
A E Hl(M) (o
ANB [AL] M:oxTt
B E HQ(M):T

We then match disjunctions to unions.

Think of the C data type union.

We add a constructor & of arity 3 and two constructors Ki, K, of

arity 1 to A.

We add a constructor U of arity 2 to 7.

We extend B-reduction with the following relations:

SAu-U AoV, K (M) B Uu/M]
®(Au-U,Av-V,Ky(M)) B Vv/M]

We define C(AV B) = C(A) UC(B).
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These reduction rules simulate polymor-

phism. Depending on whether M is a

We add the type inference rules in the right column of the following

table to the simple type system:

B
Tvp Vi
[{1] B]
AVB Cc € vy

Where u,v ¢ FV(M).

We deal with L by using the empty type.
We add a constructor ¢ of arity 1 to A.
We add an atomic element @ to 7.

We define C(L) = @.

M:o [ l]
Ki(M):ocut 1
M : r
KQ(M):ZUT il

[MS(T} [UT]

M:oUT U:u Vi

&Au-U A v-V,M):u

We add the type inference rule on the right to the simple type sys-

tem:

[UE]

term of type o or T that has been up-
graded to the union type using respec-
tively either Ky or Ky, we will apply ei-
ther U or V to M.
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M:Q

L M@
e(M): 0o

1 [LE] (DF]

Note that we can’t define a proper equivalent of the — symbol.
While we could consider that a term M is of type —c if and only if
M is not of type o, it is not possible to define this relation using only
the inductive definitions of A and S.

As a consequence, we can only extend the Curry-Howard isomor-
phism to proofs of formulas in Fy, - under the intuitionistic nat-
ural deduction NI = N — {=},—g,——} and to inhabited types of the
extended A-calculus Agy;.

Theorem 23. P € O(NZ) if and only there exists M € A}, such that
FM:C(P).

We can apply Theorem 23 to prove that a given type is inhabited.

Exercise 14. Prove that -y AA B = AV B, then deduce that the
type ¢ x T — ¢ U T is inhabited and show a term M of the aforemen-
tioned type.

Answer. Consider the following proof of AAB = AV Bunder N'I:

JEE—
AVvB !
ANB= AVB

[=1]*

Note that C(AAB = AV B) = 0 x 7 — o UT. We design a type
derivation whose structure, rules and predicates are similar to the
proof above. We compute the matching subjects by labelling leaves
with simple variables34 then building in a monotonic fashion new

terms.
1
X:0XT [ 1]
(x):o 7 F
/ (V1]
Ki(TTi(x)):ocUT "
Ax-Ki(TTi(x)):oxT—0UT =]
Therefore F Ax - Ky (IT;(x)) : o x T — o UT. O

The extended B-reduction can be matched to similar3> cut patterns:

Remember that the whole point of
proofs is to define truth in a constructive
manner. Computing truth is not enough,
we also want to be able to explain it with
proofs.

3¢ Repeating a variable if needs be so that
the leaves can be properly cancelled.

3 To the subject of the conclusion of a
type derivation with cuts, we match a
simpler tree whose conclusion features
its B-reduced form of similar type.



X:0o Y:T[ 1

X
(X,Y):oxT ; — X0
TL((X,Y):0 E
X:0o Y:1 [x1]
M—:U”[X ~ Y:T
IL((XY):t F
[xfff] [yfT] M o]
L[ a X' Y: —- :
Ki(M):oUT U u -
SO0 XAy Y KM g E X[x/M] : p
x:o] ] M1
T Xk Y0 Y/M)

SAx-X,Ay-Y,Kx(M)) 1 u

In a similar manner to logical operators, we apply by convention
the order of preference —< x < U.

A Practical Summary

We can establish the following correspondences between logics, A-
calculus, and functional programming;:

Logic A-calculus Functional programming
Proof Typable term Halting program
Cut elimination Reduction Execution step
Normalization Normal form Value
Formula Type Interface
= Functional type Functions
A X Pairs
\ U Unions

Extending the Curry-Howard isomorphism to first-order logics is
possible but out of the scope of this course.
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Going Further

This introductory course to the theory of logic and A-calculus is now
over. Readers eager for more practical applications should be looking
for material on the following topics:

Proof assistants Also called interactive theorem provers, these tools as-
sist with the development of formal proofs. First released by the
INRIA in 1989, Coq is a French proof assistant that can also extract
a certified program from the constructive proof of its formal speci-
fication. L’Atelier B features similar capabilities.

Functional programming There exist a significant number of program-
ming languages that are based on the mathematics of the A-calculus.
Functional programming used to be rooted in academia, but lan-
guages such as Common Lisp or OCaml are nonetheless seeing prac-
tical use.

The following reading material is recommended:

Introduction to Lambda Calculus By Barendregt, Henk and Barendsen,
Erik. A classical, pleasant introduction to A-calculus by a renowned
Dutch logician.

Logics for Computer Science - Classical and Non-Classical By Wasilewska,
Anita. An in-depth, comprehensive survey of fundamental of logics
for computer scientists

Lambda-calcul, types et modéles By Krivine, Jean-Louis. One of the most
popular A-calculus textbooks, written in French.

Le point aveugle - Cours de logique By Girard, Jean-Yves. An opinion-
ated and hilarious take on modern logics that often waxes philo-
sophical.

Not to be mistaken with fully automated
theorem provers that require next to no
human input.
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