Learning Computation Tree Logic
A SAT-based approach

Adrien Pommellet, Daniel Stan, Simon Scatton, LRE

January 16, 2025

Pommellet, Stan, Scatton (EPITA) January 16, 2025 1/33

Passive Learning

Also known as mining

What? Computing a theoretical model compatible with a labelled
dataset (e.g. desirable and undesirable behaviours).

!Daniel Neider and lvan Gavran. “Learning Linear Temporal Properties’. In: 2018
Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October
30 - November 2, 2018. Ed. by Nikolaj S. Bjgrner and Arie Gurfinkel. IEEE, 2018,
pp. 1-10. DOI: 10.23919/FMCAD.2018.8603016. URL:
https://doi.org/10.23919/FMCAD.2018.8603016.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 2/33

https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016

Passive Learning

Also known as mining

What? Computing a theoretical model compatible with a labelled
dataset (e.g. desirable and undesirable behaviours).

Why? Explainability, extrapolate tests, system design.

!Daniel Neider and lvan Gavran. “Learning Linear Temporal Properties’. In: 2018
Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October
30 - November 2, 2018. Ed. by Nikolaj S. Bjgrner and Arie Gurfinkel. IEEE, 2018,
pp. 1-10. DOI: 10.23919/FMCAD.2018.8603016. URL:
https://doi.org/10.23919/FMCAD.2018.8603016.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 2/33

https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016

Passive Learning

Also known as mining

What? Computing a theoretical model compatible with a labelled
dataset (e.g. desirable and undesirable behaviours).

Why? Explainability, extrapolate tests, system design.

How? Automata, logical formulas?.

!Daniel Neider and lvan Gavran. “Learning Linear Temporal Properties’. In: 2018
Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October
30 - November 2, 2018. Ed. by Nikolaj S. Bjgrner and Arie Gurfinkel. IEEE, 2018,
pp. 1-10. DOI: 10.23919/FMCAD.2018.8603016. URL:
https://doi.org/10.23919/FMCAD.2018.8603016.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 2/33

https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016

Computation Tree Logic

Linear time logic

Xa O—~(2)—0—0O >

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3/33

Computation Tree Logic

Linear time logic

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3/33

Computation Tree Logic

Linear time logic

Fa O—O—(a)—0

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3/33

Computation Tree Logic

Linear time logic

Fa O—O—(a)—0

W D@0

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3/33

Computation Tree Logic

Kripke structures and execution trees

Pommellet, Stan, Scatton (EPITA) January 16, 2025 4/33

Computation Tree Logic

Kripke structures and execution trees

Pommellet, Stan, Scatton (EPITA) January 16, 2025 4/33

Computation Tree Logic

Universal and existential quantifiers

YaUb

Pommellet, Stan, Scatton (EPITA) January 16, 2025 5/33

Computation Tree Logic

Universal and existential quantifiers

YaUb

dF a

Pommellet, Stan, Scatton (EPITA) January 16, 2025 5/33

Computation Tree Logic

Incomparable logics

VX [(ax b) A (3X c)}

Pommellet, Stan, Scatton (EPITA) January 16, 2025 6/33

Computation Tree Logic

Incomparable logics

VX [(ax b) A (3X c)}

Pommellet, Stan, Scatton (EPITA) January 16, 2025 6/33

Computation Tree Logic

Incomparable logics

VX [(ax b) A (3X c)}

start @ start a

() ONENO
ONNG ONNO

Pommellet, Stan, Scatton (EPITA) January 16, 2025 6/33

-
The Learning Problem

Sample of structures
A sample made of dissimilar positive and negative structures.

start start —»@ qj start —()q;

Pommellet, Stan, Scatton (EPITA) January 16, 2025 7/33

The Learning Problem

Formalizing various problems

The learning problem. Find a CTL formula ¢ verified by the positive
sample and unanimously rejected by the negative sample.

Pommellet, Stan, Scatton (EPITA)

January 16, 2025 8/33

The Learning Problem

Formalizing various problems

The learning problem. Find a CTL formula ¢ verified by the positive
sample and unanimously rejected by the negative sample.

Lcte. Any compatible formula ¢ will do.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 8/33

The Learning Problem

Formalizing various problems

The learning problem. Find a CTL formula ¢ verified by the positive
sample and unanimously rejected by the negative sample.

Lcte. Any compatible formula ¢ will do.

L%ﬂ- Formula ¢ must be of size < n.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 8/33

The Learning Problem

Formalizing various problems

The learning problem. Find a CTL formula ¢ verified by the positive
sample and unanimously rejected by the negative sample.

Lcte. Any compatible formula ¢ will do.
L%ﬂ- Formula ¢ must be of size < n.

MLcTL. Formula ¢ must be of minimal size.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 8/33

-
The Learning Problem

Formalizing various problems

Theorem

Lert (thus MLety) always admits a solution. J

2M.C. Browne, E.M. Clarke, and O. Griimberg. “Characterizing finite Kripke
structures in propositional temporal logic”. In: Theoretical Computer Science 59.1
(1988), pp. 115-131. 1ssN: 0304-3975. por:
https://doi.org/10.1016/0304-3975(88)90098-9. URL:

https://www.sciencedirect.com/science/article/pii/0304397588900989.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 9/33

https://doi.org/https://doi.org/10.1016/0304-3975(88)90098-9
https://www.sciencedirect.com/science/article/pii/0304397588900989

-
The Learning Problem

Formalizing various problems

Theorem

Lete (thus MLt) always admits a solution. J

Proof. Consider a CTL formula that encodes the dissimilarity of the
positive and the negative states.

2M.C. Browne, E.M. Clarke, and O. Griimberg. “Characterizing finite Kripke
structures in propositional temporal logic”. In: Theoretical Computer Science 59.1
(1988), pp. 115-131. 1ssN: 0304-3975. por:
https://doi.org/10.1016/0304-3975(88)90098-9. URL:

https://www.sciencedirect.com/science/article/pii/0304397588900989.
N T

https://doi.org/https://doi.org/10.1016/0304-3975(88)90098-9
https://www.sciencedirect.com/science/article/pii/0304397588900989

-
The Learning Problem

Formalizing various problems

Theorem

Lete (thus MLt) always admits a solution. J

Proof. Consider a CTL formula that encodes the dissimilarity of the
positive and the negative states.

This explicit answer is however of size O(|S™|-|S™| - k) where k is the
degree of K and c its characteristic number?

2M.C. Browne, E.M. Clarke, and O. Griimberg. “Characterizing finite Kripke
structures in propositional temporal logic”. In: Theoretical Computer Science 59.1
(1988), pp. 115-131. 1ssN: 0304-3975. por:
https://doi.org/10.1016/0304-3975(88)90098-9. URL:
https://www.sciencedirect.com/science/article/pii/0304397588900989.
January 16,205 0/33

https://doi.org/https://doi.org/10.1016/0304-3975(88)90098-9
https://www.sciencedirect.com/science/article/pii/0304397588900989

-
The Learning Problem

A hardness result

Bordais et al® proved that:

Theorem
%;L is NP-complete (assuming an unary encoding of n). J

3Benjamin Bordais, Daniel Neider, and Rajarshi Roy. Learning Temporal Properties
is NP-hard. 2023. arXiv: 2312.11403 [cs.LO].

Pommellet, Stan, Scatton (EPITA) January 16, 2025 10/33

https://arxiv.org/abs/2312.11403

-
The Learning Problem

A hardness result

Bordais et al® proved that:

Theorem J

E?L is NP-complete (assuming an unary encoding of n).

We will now design a SAT instance ®,, equivalent to L%;L.

3Benjamin Bordais, Daniel Neider, and Rajarshi Roy. Learning Temporal Properties
is NP-hard. 2023. arXiv: 2312.11403 [cs.LO].

Pommellet, Stan, Scatton (EPITA) January 16, 2025 10/33

https://arxiv.org/abs/2312.11403

-
The Learning Problem

Solving the minimal learning problem

Input: a KS K and a sample S.
Output: the smallest CTL formula ¢ consistent with S.
n <+ 0;
repeat
n<n+1;
compute O ;
until &, is satisfiable by some valuation v;
from v build and return ¢.

Algorithm 1: Solving MLc1 (K, S).

Pommellet, Stan, Scatton (EPITA) January 16, 2025 11/33

-
A Boolean Encoding

Representing CTL formulas

—aAVXa

Pommellet, Stan, Scatton (EPITA) January 16, 2025 12/33

-
A Boolean Encoding

Representing CTL formulas

—aAVXa

/N

—
—

Pommellet, Stan, Scatton (EPITA) January 16, 2025 12/33

-
A Boolean Encoding

Representing CTL formulas

—aAVXa

NN
| N/

Pommellet, Stan, Scatton (EPITA) January 16, 2025 12/33

-
A Boolean Encoding

Representing CTL formulas

—aAVXa
/A\ 3/A4\vx2
L %

Pommellet, Stan, Scatton (EPITA) January 16, 2025 12/33

-
A Boolean Encoding

A binary syntactic DAG

Pommellet, Stan, Scatton (EPITA) January 16, 2025 13/33

-
A Boolean Encoding

Encoding the syntactic tree

Variables. @ Node i has label o.

Pommellet, Stan, Scatton (EPITA)

January 16, 2025

14 /33

-
A Boolean Encoding

Encoding the syntactic tree

Variables. @ Node / has label o. TS
@ The left (resp. right) children of i is j. lijsrij

Pommellet, Stan, Scatton (EPITA) January 16, 2025 14 /33

-
A Boolean Encoding

Encoding the syntactic tree

Variables. @ Node / has label o. TS
@ The left (resp. right) children of i is j. lijsrij

Clauses. @ Each node has a single label.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 14 /33

A Boolean Encoding

Encoding the syntactic tree

Variables. @ Node / has label o. TS
The left (resp. right) children of i is j. lijsrij

Clauses. @ Each node has a single label.
Each node has at most one left (resp. right) child.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 14 /33

-
A Boolean Encoding

Encoding the syntactic tree

Variables. @ Node / has label o. TS
The left (resp. right) children of i is j. lijsrij

Clauses. @ Each node has a single label.
Each node has at most one left (resp. right) child.
Binary (resp. unary) operators have 2 (resp. 1) children.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 14 /33

-
A Boolean Encoding

Encoding the semantics

Variables. @ State g verifies sub-formula ¢; rooted in node /.

S

Pommellet, Stan, Scatton (EPITA) January 16, 2025 15/33

-
A Boolean Encoding

Encoding the semantics

Variables. @ State g verifies sub-formula ¢; rooted in node /.

S

Clauses. @ Each state in the positive sample verifies (.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 15/33

-
A Boolean Encoding

Encoding the semantics

S

Variables. @ State g verifies sub-formula ¢; rooted in node /.

Clauses. @ Each state in the positive sample verifies (.
@ Each state in the negative sample does not verify .

Pommellet, Stan, Scatton (EPITA) January 16, 2025 15/33

-
A Boolean Encoding

Encoding the semantics

S

Variables. @ State g verifies sub-formula ¢; rooted in node /.

Clauses. @ Each state in the positive sample verifies (.

Each state in the negative sample does not verify ¢.

If state g verifies ;, define ;'s semantics according to
the label of node i.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 15/33

-
A Boolean Encoding

Encoding VX's semantics

(77 Ariy)

If node / is labelled by operator ¥X and has right child j

Pommellet, Stan, Scatton (EPITA) January 16, 2025 16 /33

-
A Boolean Encoding

Encoding VX's semantics

(T,VX/\r,-Z,-) —— /\
qeQ

If node / is labelled by operator ¥X and has right child j

then for every state q,

Pommellet, Stan, Scatton (EPITA) January 16, 2025 16 /33

-
A Boolean Encoding

Encoding VX's semantics
(7 Ariy) = /\ (¢])
qeQ

If node / is labelled by operator ¥X and has right child j
then for every state q,

if state g verifies formula ;,

Pommellet, Stan, Scatton (EPITA) January 16, 2025 16 /33

-
A Boolean Encoding

Encoding VX's semantics

(A = N = N\ ¢
qeq q'€6(q)

If node / is labelled by operator ¥X and has right child j
then for every state q,
if state g verifies formula ;,

then every successor g’ of g must verify ;.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 16 /33

-
A Boolean Encoding

What about temporal operators?

(4EYGa) <= (gFa)n \ (¢ FYGa)

q'€d(q)

Pommellet, Stan, Scatton (EPITA) January 16, 2025 17 /33

-
A Boolean Encoding

What about temporal operators?

(3¢ A1) = N |¢] = {soi’A A sDZD

geR

Pommellet, Stan, Scatton (EPITA) January 16, 2025 17 /33

-
A Boolean Encoding

What about temporal operators?

(3¢ A1) = N |¢] = {soi’A A sDZD

geR

2
(2) vG @ZI —1 %’1 —0
d: J 2=1 =0
e ‘P%B_ Y2

e qs at L vz =0

Pommellet, Stan, Scatton (EPITA) January 16, 2025 17 /33

-
A Boolean Encoding

A circle of liars

How can we encode CTL's semantics?

Pommellet, Stan, Scatton (EPITA) January 16, 2025 18/33

Encoding Bounded Semantics

Another form of model-checking

Bounded model-checking (BMC): a CTL property holds for all
computation trees of depth k.

@
¥F2a ® (a)
O

Pommellet, Stan, Scatton (EPITA) January 16, 2025 19/33

Encoding Bounded Semantics

An upper bound for finite systems

Recurrence diameter a(q): the length (< |Q|) of the longest
non-repeating sequence of states starting from gq.

qo

Pommellet, Stan, Scatton (EPITA) January 16, 2025 20/33

Encoding Bounded Semantics

Equivalence with model-checking

Model-checking on Kripke structures
is equivalent to
BMC up to the system'’s recurrence diameter.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 21/33

Encoding Bounded Semantics

Defining bounded semantics

Base case. (q =x VFO) <= (g =k)

Pommellet, Stan, Scatton (EPITA) January 16, 2025 22/33

Encoding Bounded Semantics

Defining bounded semantics

Base case. (q =x VFO) <= (g =k)

Inductive case. (g =x VFU"lp) <= (q =k @) V(/5\()q’ Ex VFY ¢)
q'€d(q

Pommellet, Stan, Scatton (EPITA) January 16, 2025 22/33

Encoding Bounded Semantics

Defining bounded semantics

Base case. (q =x VFO) <= (g =k)

Inductive case. (g =x VFU"lp) <= (q =k @) V(/5\()q’ Ex VFY ¢)
q'€d(q

Equivalence with MC. (g =x VF) <= (g =x VF9) o)

Pommellet, Stan, Scatton (EPITA) January 16, 2025 22/33

Encoding Bounded Semantics

New variables and clauses for VF

New variables. State g verifies the temporal sub-formula ¢; rooted in node
i w.r.t. the u-bounded semantics, where u < «a(q). Pl

Pommellet, Stan, Scatton (EPITA) January 16, 2025 23/33

Encoding Bounded Semantics

New variables and clauses for VF

New variables. State g verifies the temporal sub-formula ¢; rooted in node
i w.r.t. the u-bounded semantics, where u < «a(q). Pl

Base case. ,o?q — goj-’

Pommellet, Stan, Scatton (EPITA) January 16, 2025 23/33

Encoding Bounded Semantics

New variables and clauses for VF

New variables. State g verifies the temporal sub-formula ¢; rooted in node
i w.r.t. the u-bounded semantics, where u < «a(q). Pl

Base case. ,o?q — goj-’

Inductive case. pf’j;l = <<p7'v A pfq/>
q'€d(q)

Pommellet, Stan, Scatton (EPITA) January 16, 2025 23/33

Encoding Bounded Semantics

New variables and clauses for VF

New variables. State g verifies the temporal sub-formula ¢; rooted in node
i w.r.t. the u-bounded semantics, where u < «a(q). Pl

Base case. ,o?q — goj-’

Inductive case. ,0“+1 — <<p Vo N ply)
q'€d(q)

Equivalence with MC. 77F = <<,0, — p?ff”)

Pommellet, Stan, Scatton (EPITA) January 16, 2025 23/33

Encoding Bounded Semantics

Estimating the instance’'s complexity

Variables. O(n? +n-|AP|+n-|Q|- d)
Clauses. O(n-|AP|+n3-|Q|-d+ n-|AP|-|Q|)

Pommellet, Stan, Scatton (EPITA) January 16, 2025 24 /33

Optimizations and Implementation

Approximating the recurrence diameter

0
-2 o]
alp)=1 #@)=2
Oé(q:a) —3 a(qﬁ) =0

Pommellet, Stan, Scatton (EPITA) January 16, 2025 25/33

Optimizations and Implementation

Approximating the recurrence diameter

0
-2 o]
alp)=1 #@)=2
Oé(q:a) —3 a(qﬁ) =0

e
.

1
|
2
J
1

Pommellet, Stan, Scatton (EPITA) January 16, 2025

25/33

Optimizations and Implementation

Approximating the recurrence diameter

0
-2 o]
a(q2) ~1 a(qS) =2
a(gs) =3 a(ge) =0
1 B(qo) = 4
C R
AN % Sy —3 Plas) =0

Pommellet, Stan, Scatton (EPITA) January 16, 2025 25/33

Optimizations and Implementation
Embedding negations

alu
YAERN
T —
J
X

QO — | —

Pommellet, Stan, Scatton (EPITA) January 16, 2025 26 /33

Optimizations and Implementation
Embedding negations

alu
VRN
T -
| ~3U
VX / \

QO — | —
-

—a

Pommellet, Stan, Scatton (EPITA) January 16, 2025 26 /33

Optimizations and Implementation

Testing various fragments

CTL = {—,A,V, VX, 3IX,VF,3JF,VG, 3G, VU, 3U}.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 27/33

Optimizations and Implementation

Testing various fragments

CTL = {—,A,V, VX, 3IX,VF,3JF,VG, 3G, VU, 3U}.
CTLy = {—,A,V,¥X,VF,VG,VU}.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 27/33

Optimizations and Implementation

Testing various fragments

CTL = {—,A,V, VX, 3IX,VF,3JF,VG, 3G, VU, 3U}.
CTLy = {—,A,V,¥X,VF,VG,VU}.
CTLy = {~,V,3X,3G,3U}.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 27/33

Optimizations and Implementation

Testing various fragments

CTL = {—,A,V,VX,3X,VF,3F,VG,3G,VU,3U}.
CTLy = {—,A,V,VX,VF,VG,VU}.
CTLy = {-,V,3X,3G,3U}.

Succinctness vs Number of clauses and variables

Pommellet, Stan, Scatton (EPITA) January 16, 2025 27/33

Optimizations and Implementation

A C++ implementation using Z3

B

CTLy
CTL
CTLy

50 | 46870
50 | 42658
46 | 31975

14 | 6493
8 | 5357
28 | 5064

4] 2271
5| 3370
41987

Timeouts (over 234 samples) | Arithmetic mean (ms)

Pommellet, Stan, Scatton (EPITA)

January 16, 2025

28/33

Further improvements

Topology-guided solving. Parallel enumeration of DAG shapes®.

*Heinz Riener. "Exact Synthesis of LTL Properties from Traces”. In: 2019 Forum for
Specification and Design Languages (FDL). 2019, pp. 1-6. DOI:
10.1109/FDL.2019.8876900.

5Nathanaél Fijalkow and Guillaume Lagarde. “The complexity of learning linear
temporal formulas from examples”. In: Proceedings of the 15th International Conference
on Grammatical Inference, 23-27 August 2021, Virtual Event. Ed. by Jane Chandlee
et al. Vol. 153. Proceedings of Machine Learning Research. PMLR, 2021, pp. 237-250.
URL: https://proceedings.mlr.press/v153/fijalkow2la.html.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 29/33

https://doi.org/10.1109/FDL.2019.8876900
https://proceedings.mlr.press/v153/fijalkow21a.html

Further improvements

Topology-guided solving. Parallel enumeration of DAG shapes®.

Hardness bounds. What about the minimal learning problem®?

*Heinz Riener. "Exact Synthesis of LTL Properties from Traces”. In: 2019 Forum for
Specification and Design Languages (FDL). 2019, pp. 1-6. DOI:
10.1109/FDL.2019.8876900.

5Nathanaél Fijalkow and Guillaume Lagarde. “The complexity of learning linear
temporal formulas from examples”. In: Proceedings of the 15th International Conference
on Grammatical Inference, 23-27 August 2021, Virtual Event. Ed. by Jane Chandlee
et al. Vol. 153. Proceedings of Machine Learning Research. PMLR, 2021, pp. 237-250.
URL: https://proceedings.mlr.press/v153/fijalkow2la.html.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 29/33

https://doi.org/10.1109/FDL.2019.8876900
https://proceedings.mlr.press/v153/fijalkow21a.html

Further improvements

Topology-guided solving. Parallel enumeration of DAG shapes®.
Hardness bounds. What about the minimal learning problem®?
State-of-the-art SAT solving. Looking at the SAT competition.

*Heinz Riener. "Exact Synthesis of LTL Properties from Traces”. In: 2019 Forum for
Specification and Design Languages (FDL). 2019, pp. 1-6. DOI:
10.1109/FDL.2019.8876900.

5Nathanaél Fijalkow and Guillaume Lagarde. “The complexity of learning linear
temporal formulas from examples”. In: Proceedings of the 15th International Conference
on Grammatical Inference, 23-27 August 2021, Virtual Event. Ed. by Jane Chandlee
et al. Vol. 153. Proceedings of Machine Learning Research. PMLR, 2021, pp. 237-250.
URL: https://proceedings.mlr.press/v153/fijalkow2la.html.

Pommellet, Stan, Scatton (EPITA) January 16, 2025 29/33

https://doi.org/10.1109/FDL.2019.8876900
https://proceedings.mlr.press/v153/fijalkow21a.html

N
That's all folks!

Thank you!

Pommellet, Stan, Scatton (EPITA) January 16, 2025 30/33

|
An Example

Working on an exclusion protocol

bool turn, flag[2];

// t ="turn”; m="ncrit>1"; ¢ = "ncrit>0"
byte ncrit;

active [2] proctype user()

assert(_pid = 0 || _pid = 1);

again:

flag[-pid] = 1;

turn = _pid;

(flag[l — _pid] = 0 || turn = 1 — _pid);
ncrit++;

assert(ncrit = 1); /% critical section x*/
ncrit ——;

flag[_-pid] = 0;
goto again

Pommellet, Stan, Scatton (EPITA) January 16, 2025

31/33

|
An Example

Introducing mutations

bool turn, flag[2];

// t ="turn”; m="ncrit>1"; ¢ = "ncrit>0"
byte ncrit;
active [2] proctype user()
assert(_pid = 0 || -pid = 1);
again:
flag[_pid] = 1; ml
m2

(flag[T — pid] = 0 |[turn = 1 — _pid)j m3
(neritari) m4

assert(ncrit = 1); /% critical section x*/
mb

goto again mb6

Pommellet, Stan, Scatton (EPITA) January 16, 2025 32/33

An Example

Characterizing errors

bool

byte

turn, flag[2];

// t ="turn”; m="ncrit>1"; ¢ = "ncrit>0"

ncrit;

active [2] proctype user()

assert(_pid = 0 || -pid = 1);

again:

flag[-pid] = 1; ml— — (vGo
urn = pidy m>
(flag[1 — _pid] =0 [| turn =1 — _pid); m3 VFc

nerit4; me

assert(ncrit = 1); /% critical section x*/
YG(~ VG VF t)

m5

flag[_pid] = 0
goto again mb——— (UG _dead

Pommellet, Stan, Scatton (EPITA)

January 16, 2025

33/33

