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Passive Learning
Also known as mining

What? Computing a theoretical model compatible with a labelled
dataset (e.g. desirable and undesirable behaviours).

Why? Explainability, extrapolate tests, system design.

How? Automata, logical formulas1.

1Daniel Neider and Ivan Gavran. “Learning Linear Temporal Properties”. In: 2018
Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October
30 - November 2, 2018. Ed. by Nikolaj S. Bjørner and Arie Gurfinkel. IEEE, 2018,
pp. 1–10. doi: 10.23919/FMCAD.2018.8603016. url:
https://doi.org/10.23919/FMCAD.2018.8603016.
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Computation Tree Logic
Linear time logic

X a a

G a a a a a

F a a

aU b a a b

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3 / 33



Computation Tree Logic
Linear time logic

X a a

G a a a a a

F a a

aU b a a b

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3 / 33



Computation Tree Logic
Linear time logic

X a a

G a a a a a

F a a

aU b a a b

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3 / 33



Computation Tree Logic
Linear time logic

X a a

G a a a a a

F a a

aU b a a b

Pommellet, Stan, Scatton (EPITA) January 16, 2025 3 / 33



Computation Tree Logic
Kripke structures and execution trees
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Computation Tree Logic
Universal and existential quantifiers
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Computation Tree Logic
Incomparable logics

∀X
[(
∃X b) ∧ (∃X c

)]

astart

a

b c

astart

a a

b c

Pommellet, Stan, Scatton (EPITA) January 16, 2025 6 / 33



Computation Tree Logic
Incomparable logics

∀X
[(
∃X b) ∧ (∃X c

)]

astart

a

b c

astart

a a

b c

Pommellet, Stan, Scatton (EPITA) January 16, 2025 6 / 33



Computation Tree Logic
Incomparable logics

∀X
[(
∃X b) ∧ (∃X c

)]

astart

a

b c

astart

a a

b c

Pommellet, Stan, Scatton (EPITA) January 16, 2025 6 / 33



The Learning Problem
Sample of structures

A sample made of dissimilar positive and negative structures.

q+1

start q+2start q−1start
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The Learning Problem
Formalizing various problems

The learning problem. Find a CTL formula φ verified by the positive
sample and unanimously rejected by the negative sample.

LCTL. Any compatible formula φ will do.

L≤n
CTL. Formula φ must be of size ≤ n.

MLCTL. Formula φ must be of minimal size.
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The Learning Problem
Formalizing various problems

Theorem

LCTL (thus MLCTL) always admits a solution.

Proof. Consider a CTL formula that encodes the dissimilarity of the
positive and the negative states.

This explicit answer is however of size O(|S+| · |S−| · kc) where k is the
degree of K and c its characteristic number2.

2M.C. Browne, E.M. Clarke, and O. Grümberg. “Characterizing finite Kripke
structures in propositional temporal logic”. In: Theoretical Computer Science 59.1
(1988), pp. 115–131. issn: 0304-3975. doi:
https://doi.org/10.1016/0304-3975(88)90098-9. url:
https://www.sciencedirect.com/science/article/pii/0304397588900989.
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The Learning Problem
A hardness result

Bordais et al3 proved that:

Theorem

L≤n
CTL is NP-complete (assuming an unary encoding of n).

We will now design a SAT instance Φn equivalent to L≤n
CTL.

3Benjamin Bordais, Daniel Neider, and Rajarshi Roy. Learning Temporal Properties
is NP-hard. 2023. arXiv: 2312.11403 [cs.LO].
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The Learning Problem
Solving the minimal learning problem

Input: a KS K and a sample S .
Output: the smallest CTL formula φ consistent with S .
n← 0;
repeat

n← n + 1;
compute Φn;

until Φn is satisfiable by some valuation v ;
from v build and return φ.

Algorithm 1: Solving MLCTL(K, S).
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A Boolean Encoding
Representing CTL formulas
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A Boolean Encoding
Representing CTL formulas
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A Boolean Encoding
A binary syntactic DAG
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A Boolean Encoding
Encoding the syntactic tree

Variables. Node i has label o. τoi

The left (resp. right) children of i is j . li ,j , ri ,j

Clauses. Each node has a single label.
Each node has at most one left (resp. right) child.
Binary (resp. unary) operators have 2 (resp. 1) children.
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A Boolean Encoding
Encoding the semantics

Variables. State q verifies sub-formula φi rooted in node i . φq
i

Clauses. Each state in the positive sample verifies φ.
Each state in the negative sample does not verify φ.
If state q verifies φi , define φi ’s semantics according to
the label of node i .
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A Boolean Encoding
Encoding ∀X’s semantics

(τ∀Xi ∧ ri ,j)

=⇒
∧
q∈Q

(φq
i

⇐⇒
∧

q′∈δ(q)

φq′

j

)

If node i is labelled by operator ∀X and has right child j

then for every state q,

if state q verifies formula φi ,

then every successor q′ of q must verify φj .
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A Boolean Encoding
What about temporal operators?
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A Boolean Encoding
A circle of liars

How can we encode CTL’s semantics?
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Encoding Bounded Semantics
Another form of model-checking

Bounded model-checking (BMC): a CTL property holds for all
computation trees of depth k .

∀F2 a a

a a
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Encoding Bounded Semantics
An upper bound for finite systems

Recurrence diameter α(q): the length (≤ |Q|) of the longest
non-repeating sequence of states starting from q.

q0
q1

q2

q3
q4

q5

q6
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Encoding Bounded Semantics
Equivalence with model-checking

Model-checking on Kripke structures
is equivalent to

BMC up to the system’s recurrence diameter.
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Encoding Bounded Semantics
Defining bounded semantics

Base case. (q |=K ∀F0 φ) ⇐⇒ (q |=K φ)

Inductive case. (q |=K ∀Fu+1 φ) ⇐⇒ (q |=K φ) ∨ (
∧

q′∈δ(q)
q′ |=K ∀Fu φ)

Equivalence with MC. (q |=K ∀Fφ) ⇐⇒ (q |=K ∀Fα(q) φ)
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Encoding Bounded Semantics
New variables and clauses for ∀F

New variables. State q verifies the temporal sub-formula φi rooted in node
i w.r.t. the u-bounded semantics, where u ≤ α(q). ρui ,q

Base case. ρ0i ,q ⇐⇒ φq
j

Inductive case. ρu+1
i ,q ⇐⇒

(
φq
j ∨

∧
q′∈δ(q)

ρui ,q′

)

Equivalence with MC. τ∀Fi =⇒

(
φq
i ⇐⇒ ρ

α(q)
i ,q

)
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Encoding Bounded Semantics
Estimating the instance’s complexity

Variables. O(n2 + n · |AP|+ n · |Q| · d)
Clauses. O(n · |AP|+ n3 · |Q| · d + n · |AP| · |Q|)
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Optimizations and Implementation
Approximating the recurrence diameter
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Optimizations and Implementation
Embedding negations

¬

∃U

⊤ ¬

∀X

¬

a

¬∃U

⊤ ¬∀X

¬a
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Optimizations and Implementation
Testing various fragments

CTL = {¬,∧,∨, ∀X, ∃X,∀F, ∃F, ∀G, ∃G,∀U, ∃U}.

CTL∀ = {¬,∧,∨, ∀X,∀F, ∀G,∀U}.
CTLU = {¬,∨,∃X,∃G,∃U}.

Succinctness vs Number of clauses and variables
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Optimizations and Implementation
A C++ implementation using Z3

- β β,¬
CTL∀ 50 | 46870 14 | 6493 4 | 2271
CTL 50 | 42658 8 | 5357 5 | 3370
CTLU 46 | 31975 28 | 5064 4 | 1987

Timeouts (over 234 samples) | Arithmetic mean (ms)
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Further improvements

Topology-guided solving. Parallel enumeration of DAG shapes4.

Hardness bounds. What about the minimal learning problem5?

State-of-the-art SAT solving. Looking at the SAT competition.

4Heinz Riener. “Exact Synthesis of LTL Properties from Traces”. In: 2019 Forum for
Specification and Design Languages (FDL). 2019, pp. 1–6. doi:
10.1109/FDL.2019.8876900.

5Nathanaël Fijalkow and Guillaume Lagarde. “The complexity of learning linear
temporal formulas from examples”. In: Proceedings of the 15th International Conference
on Grammatical Inference, 23-27 August 2021, Virtual Event. Ed. by Jane Chandlee
et al. Vol. 153. Proceedings of Machine Learning Research. PMLR, 2021, pp. 237–250.
url: https://proceedings.mlr.press/v153/fijalkow21a.html.
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That’s all folks!

Thank you!
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An Example
Working on an exclusion protocol

boo l turn , f l a g [ 2 ] ;
// t = ” tu rn ” ; m = ” n c r i t >1” ; c = ” n c r i t >0”
byte n c r i t ;
a c t i v e [ 2 ] proctype u s e r ( )
{

a s s e r t ( p i d == 0 | | p i d == 1 ) ;
aga in :
f l a g [ p i d ] = 1 ;
tu rn = p i d ;
( f l a g [ 1 − p i d ] == 0 | | t u rn == 1 − p i d ) ;

n c r i t ++;
a s s e r t ( n c r i t == 1 ) ; /∗ c r i t i c a l s e c t i o n ∗/
n c r i t −−;

f l a g [ p i d ] = 0 ;
goto aga in

}
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An Example
Introducing mutations

m1
m2

m3

m4

m5
m6

boo l turn , f l a g [ 2 ] ;
// t = ” tu rn ” ; m = ” n c r i t >1” ; c = ” n c r i t >0”
byte n c r i t ;
a c t i v e [ 2 ] proctype u s e r ( )
{

a s s e r t ( p i d == 0 | | p i d == 1 ) ;
aga in :
f l a g [ p i d ] = 1 ;
tu rn = p i d ;
( f l a g [ 1 − p i d ] == 0 | | t u rn == 1 − p i d ) ;

n c r i t ++;
a s s e r t ( n c r i t == 1 ) ; /∗ c r i t i c a l s e c t i o n ∗/
n c r i t −−;

f l a g [ p i d ] = 0 ;
goto aga in

}
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An Example
Characterizing errors

m1
m2

m3

m4

m5
m6

∀G¬m

∀F c

∀G(¬∀G ∀F t)

∀G¬dead

boo l turn , f l a g [ 2 ] ;
// t = ” tu rn ” ; m = ” n c r i t >1” ; c = ” n c r i t >0”
byte n c r i t ;
a c t i v e [ 2 ] proctype u s e r ( )
{

a s s e r t ( p i d == 0 | | p i d == 1 ) ;
aga in :
f l a g [ p i d ] = 1 ;
tu rn = p i d ;
( f l a g [ 1 − p i d ] == 0 | | t u rn == 1 − p i d ) ;

n c r i t ++;
a s s e r t ( n c r i t == 1 ) ; /∗ c r i t i c a l s e c t i o n ∗/
n c r i t −−;

f l a g [ p i d ] = 0 ;
goto aga in

}
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