
On Model-checking Pushdown System Models
PhD defence - July 5, 2018

Adrien Pommellet

Université Paris-Diderot, IRIF, and LIPN

Thesis directed by Tayssir Touili.

Adrien Pommellet On Model-checking Pushdown System Models 1

Analysing programs

As the complexity of software grows, identifying errors in programs
becomes harder and harder.

Adrien Pommellet On Model-checking Pushdown System Models 2

Analysing programs

Designing sound and efficient program analysis methods is therefore
a matter of the utmost importance.

Adrien Pommellet On Model-checking Pushdown System Models 3

The model-checking framework

Program Propertyverifies

Adrien Pommellet On Model-checking Pushdown System Models 4

The model-checking framework

Program Property

Model Formula

verifies

|=

Adrien Pommellet On Model-checking Pushdown System Models 4

The model-checking framework

Program Property

? Formula

verifies

|=

Adrien Pommellet On Model-checking Pushdown System Models 4

Pushdown systems

Pushdown systems (PDSs) are a natural model for sequential
programs [Esparza, Hansel, Rossmanith, and Schwoon, CAV’00]
with recursive procedure calls, as they can simulate the stack of a
program.

p γ1 γ2 γ3

Adrien Pommellet On Model-checking Pushdown System Models 5

The model-checking framework

Program Property

PDS Formula

verifies

|=

Adrien Pommellet On Model-checking Pushdown System Models 6

Contributions of this thesis

1 We consider the HyperLTL model-checking problem for
pushdown systems, we prove that it is unfortunately
undecidable, we introduce constraints to regain decidability,
then we use these to design under and over-approximation
algorithms.

2 We define a new PDS model, called pushdown system with an
upper stack (UPDS), that keeps track of the part of the
assembly stack that is above the stack pointer, and we
propose reachability algorithms for this model.

3 We introduce synchronized dynamic pushdown networks
(SDPNs) that model concurrent programs as a network of
pushdown systems, where each pushdown component can
spawn new threads and synchronize by rendez-vous with other
threads. We then propose reachability algorithms for this
model.

Adrien Pommellet On Model-checking Pushdown System Models 7

Contributions of this thesis

1 We consider the HyperLTL model-checking problem for
pushdown systems, we prove that it is unfortunately
undecidable, we introduce constraints to regain decidability,
then we use these to design under and over-approximation
algorithms.

2 We define a new PDS model, called pushdown system with an
upper stack (UPDS), that keeps track of the part of the
assembly stack that is above the stack pointer, and we
propose reachability algorithms for this model.

3 We introduce synchronized dynamic pushdown networks
(SDPNs) that model concurrent programs as a network of
pushdown systems, where each pushdown component can
spawn new threads and synchronize by rendez-vous with other
threads. We then propose reachability algorithms for this
model.

Adrien Pommellet On Model-checking Pushdown System Models 7

Contributions of this thesis

1 We consider the HyperLTL model-checking problem for
pushdown systems, we prove that it is unfortunately
undecidable, we introduce constraints to regain decidability,
then we use these to design under and over-approximation
algorithms.

2 We define a new PDS model, called pushdown system with an
upper stack (UPDS), that keeps track of the part of the
assembly stack that is above the stack pointer, and we
propose reachability algorithms for this model.

3 We introduce synchronized dynamic pushdown networks
(SDPNs) that model concurrent programs as a network of
pushdown systems, where each pushdown component can
spawn new threads and synchronize by rendez-vous with other
threads. We then propose reachability algorithms for this
model.

Adrien Pommellet On Model-checking Pushdown System Models 7

Our first contribution:
HyperLTL model-checking for

pushdown systems

Adrien Pommellet On Model-checking Pushdown System Models 8

The model-checking framework

Program Property

Pushdown systems ?

verifies

|=

The logics LTL and CTL may not suffice to express all interesting
properties.

Adrien Pommellet On Model-checking Pushdown System Models 9

Expressing a property

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

π1 : . . .→ a0 → y1 → a2 → z3 → . . .

π2 : . . .→ b0 → v1 → b2 → w3 → . . .

This property cannot be expressed by LTL nor CTL.

Adrien Pommellet On Model-checking Pushdown System Models 10

Expressing a property

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

π1 : . . .→ a0 → y1 → a2 → z3 → . . .

π2 : . . .→ b0 → v1 → b2 → w3 → . . .

This property cannot be expressed by LTL nor CTL.

Adrien Pommellet On Model-checking Pushdown System Models 10

Expressing a property

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

π1 : . . .→ a0 → y1 → a2 → z3 → . . .

π2 : . . .→ b0 → v1 → b2 → w3 → . . .

We would like to express it this way:

ψ = ∀π1 ∈ Traces, ∃π2 ∈ Traces, G (aπ1 =⇒ bπ2)

Adrien Pommellet On Model-checking Pushdown System Models 11

The logic HyperLTL

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

ψ = ∀π1 ∈ Traces, ∃π2 ∈ Traces, G (aπ1 =⇒ bπ2)

This is actually a HyperLTL formula, where HyperLTL is a logic
that extends LTL with the universal and existential quantifications
of multiple path variables.

Adrien Pommellet On Model-checking Pushdown System Models 12

Our first goal

HyperLTL model-checking for finite-state systems has already been
solved in [Clarkson et al., POST’14]. But what about pushdown
systems?

Adrien Pommellet On Model-checking Pushdown System Models 13

Our first goal

Program Property

Pushdown systems HyperLTL

verifies

|=

Adrien Pommellet On Model-checking Pushdown System Models 14

Defining pushdown systems

Definition
A pushdown system (PDS) is a tuple P = (P,Σ, Γ,∆, c0) such
that:

P is a finite set of control states;
Σ = 2AP a finite input alphabet, where AP is a finite set of
atomic propositions;
Γ a finite stack alphabet;
a finite set ∆ of transition rules of the form (p, γ)

a−→ (p′,w);
c0 = 〈p0,w0〉 an initial configuration in P × Γ∗.

From (p, γ)
a−→ (p′,w) ∈ ∆, we infer a transition relation on

configurations: ∀w ′ ∈ Γ∗, 〈p, γw ′〉 a−→P 〈p′,ww ′〉.

Adrien Pommellet On Model-checking Pushdown System Models 15

Model-checking HyperLTL for pushdown systems

HyperLTL formulas can be used to synchronize traces of pushdown
systems.

ψ = ∀π1 ∈ Traces1, ∀π2 ∈ Traces2, (aπ1 ⇔ aπ2)

Adrien Pommellet On Model-checking Pushdown System Models 16

Model-checking HyperLTL for pushdown systems

HyperLTL formulas can be used to synchronize traces of pushdown
systems. And traces of PDSs are context-free.

ψ = ∀π1 ∈
CFL︷ ︸︸ ︷

Traces1, ∀π2 ∈
CFL︷ ︸︸ ︷

Traces2, (aπ1 ⇔ aπ2)

But the emptiness of the intersection of two context-free languages
(CFLs) is well-known to be an undecidable problem. Hence:

Theorem
The model-checking problem of HyperLTL for pushdown systems is
undecidable.

Adrien Pommellet On Model-checking Pushdown System Models 17

Model-checking HyperLTL for pushdown systems

HyperLTL formulas can be used to synchronize traces of pushdown
systems. And traces of PDSs are context-free.

ψ = ∀π1 ∈
CFL︷ ︸︸ ︷

Traces1, ∀π2 ∈
CFL︷ ︸︸ ︷

Traces2, (aπ1 ⇔ aπ2)

But the emptiness of the intersection of two context-free languages
(CFLs) is well-known to be an undecidable problem.

Hence:

Theorem
The model-checking problem of HyperLTL for pushdown systems is
undecidable.

Adrien Pommellet On Model-checking Pushdown System Models 17

Model-checking HyperLTL for pushdown systems

HyperLTL formulas can be used to synchronize traces of pushdown
systems. And traces of PDSs are context-free.

ψ = ∀π1 ∈
CFL︷ ︸︸ ︷

Traces1, ∀π2 ∈
CFL︷ ︸︸ ︷

Traces2, (aπ1 ⇔ aπ2)

But the emptiness of the intersection of two context-free languages
(CFLs) is well-known to be an undecidable problem. Hence:

Theorem
The model-checking problem of HyperLTL for pushdown systems is
undecidable.

Adrien Pommellet On Model-checking Pushdown System Models 17

Model-checking HyperLTL for visibly pushdown systems

The input-driven sub-class of visibly pushdown systems [Alur et al.,
STOC’04] is such that we can decide the emptiness of the
intersection of two visibly context-free languages.

However, this constraint is not enough to regain decidability:

Theorem
The model-checking problem of HyperLTL for visibly pushdown
systems is undecidable.

Adrien Pommellet On Model-checking Pushdown System Models 18

Model-checking HyperLTL for visibly pushdown systems

The input-driven sub-class of visibly pushdown systems [Alur et al.,
STOC’04] is such that we can decide the emptiness of the
intersection of two visibly context-free languages.

However, this constraint is not enough to regain decidability:

Theorem
The model-checking problem of HyperLTL for visibly pushdown
systems is undecidable.

Adrien Pommellet On Model-checking Pushdown System Models 18

With a single context-free variable

Let Reg be a regular language and CFL a context-free language.
Intuitively, we know that we can decide CFL ∩ Reg = ∅.

We can prove that:

Theorem
We can decide formulas of the form:
ψ = {∀, ∃}π1 ∈ CFL, {∀,∃}π2 ∈ Reg2, . . . , {∀,∃}πn ∈ Regn, ϕ.

Adrien Pommellet On Model-checking Pushdown System Models 19

With a single context-free variable

Let Reg be a regular language and CFL a context-free language.
Intuitively, we know that we can decide CFL ∩ Reg = ∅.

We can prove that:

Theorem
We can decide formulas of the form:
ψ = {∀, ∃}π1 ∈ CFL, {∀,∃}π2 ∈ Reg2, . . . , {∀, ∃}πn ∈ Regn, ϕ.

Adrien Pommellet On Model-checking Pushdown System Models 19

Approximating the model-checking problem

If α is a regular over-approximation of the set of traces of a PDS,
we therefore can decide:

ψ = {∀, ∃}π1 ∈ Traces, ∀π2 ∈ α, . . . , ∀πn ∈ α,ϕ

If ψ holds, then this formula holds as well:

ψ′ = {∀,∃}π1 ∈ Traces, ∀π2 ∈ Traces, . . . ,∀πn ∈ Traces, ϕ

Adrien Pommellet On Model-checking Pushdown System Models 20

Approximating the model-checking problem

In a similar manner, if α is a regular under-approximation of the set
of traces of a PDS, we therefore can decide:

ψ = {∀,∃}π1 ∈ Traces, ∃π2 ∈ α, . . . , ∃πn ∈ α,ϕ

If ψ doesn’t hold, then this formula does not hold as well:

ψ′ = {∀,∃}π1 ∈ Traces,∃π2 ∈ Traces, . . . ,∃πn ∈ Traces, ϕ

Adrien Pommellet On Model-checking Pushdown System Models 21

Our first contribution

We showed that the model-checking problem of HyperLTL for
pushdown systems and visibly pushdown systems is
undecidable.

We can decide HyperLTL formulas if all variables are regular
except the first.
We can therefore approximate the answer to the
model-checking problem given some constraints on the use of
quantifiers in HyperLTL formulas.

Adrien Pommellet On Model-checking Pushdown System Models 22

Our first contribution

We showed that the model-checking problem of HyperLTL for
pushdown systems and visibly pushdown systems is
undecidable.
We can decide HyperLTL formulas if all variables are regular
except the first.

We can therefore approximate the answer to the
model-checking problem given some constraints on the use of
quantifiers in HyperLTL formulas.

Adrien Pommellet On Model-checking Pushdown System Models 22

Our first contribution

We showed that the model-checking problem of HyperLTL for
pushdown systems and visibly pushdown systems is
undecidable.
We can decide HyperLTL formulas if all variables are regular
except the first.
We can therefore approximate the answer to the
model-checking problem given some constraints on the use of
quantifiers in HyperLTL formulas.

Adrien Pommellet On Model-checking Pushdown System Models 22

Our second contribution:
Reachability analysis of pushdown

systems with an upper stack

Adrien Pommellet On Model-checking Pushdown System Models 23

The model-checking framework

Program Property

PDS HyperLTL

verifies

|=

Are pushdown systems accurate enough?

Adrien Pommellet On Model-checking Pushdown System Models 24

The limits of pushdown systems

Pushdown systems (PDSs) can fail to accurately represent the
actual assembly stack.

The assembly stack
. . . 1 2 3 4 5 6 7 . . .

sp

The pushdown model 5 6 7 . . .

PDSs can’t model the part of the assembly stack that stands to the
left of the stack pointer.

Adrien Pommellet On Model-checking Pushdown System Models 25

The limits of pushdown systems

Pushdown systems (PDSs) can fail to accurately represent the
actual assembly stack.

The assembly stack
. . . 1 2 3 4 5 6 7 . . .

sp

The pushdown model 5 6 7 . . .

PDSs can’t model the part of the assembly stack that stands to the
left of the stack pointer.

Adrien Pommellet On Model-checking Pushdown System Models 25

The limits of pushdown systems

How can we handle the assembly instruction mov eax [sp − 4]?

The assembly stack . . . 1 2 3 4 5 6 7 . . .

sp

sp - 4

The pushdown model 5 6 7 . . .

Adrien Pommellet On Model-checking Pushdown System Models 26

A new model

How can we handle the assembly instruction mov eax [sp − 4]?

The assembly stack . . . 1 2 3 4 5 6 7 . . .

sp

sp - 4

Our new model . . . 1 2 3 4 5 6 7 . . .

Our intuition is to use another stack to model the memory section
left of the stack pointer.

Adrien Pommellet On Model-checking Pushdown System Models 27

Pushdown systems with an upper stack

Definition
A pushdown system with an upper stack (UPDS) is a triplet
P = (P, Γ,∆) where:

P is a finite set of control states;
Γ is a finite stack alphabet;
a finite set ∆ of transition rules of the form (p, γ)→ (p′,w),
w ∈ Γ≤2;

We consider configurations of the form 〈p,wu,wl〉, with a
write-only upper stack that accurately models the left of the
assembly stack.

Adrien Pommellet On Model-checking Pushdown System Models 28

Semantics of pop rules

A pop rule in the assembly stack amounts to:

. . . a b c d . . .

sp
⇒

. . . a b c d . . .

sp

Hence, for a pop rule δ = (p, b)→ (p′, ε) in the UPDS:

a p b c d
δ⇒ a b p’ c d

Adrien Pommellet On Model-checking Pushdown System Models 29

Semantics of pop rules

A pop rule in the assembly stack amounts to:

. . . a b c d . . .

sp
⇒

. . . a b c d . . .

sp

Hence, for a pop rule δ = (p, b)→ (p′, ε) in the UPDS:

a p b c d
δ⇒ a b p’ c d

Adrien Pommellet On Model-checking Pushdown System Models 29

Semantics of push rules

A push rule in the assembly stack amounts to:

. . . x y b c . . .

sp
⇒

. . . x a b c . . .

sp

For a push rule δ = (p, b)→ (p′, ab) in the UPDS:

x y p b c
δ⇒ x p’ a b c

Adrien Pommellet On Model-checking Pushdown System Models 30

Semantics of push rules

A push rule in the assembly stack amounts to:

. . . x y b c . . .

sp
⇒

. . . x a b c . . .

sp

For a push rule δ = (p, b)→ (p′, ab) in the UPDS:

x y p b c
δ⇒ x p’ a b c

Adrien Pommellet On Model-checking Pushdown System Models 30

The reachability problem

Are the sets of predecessors pre∗ and successors post∗ of a regular
set of configurations of a UPDS regular and effectively computable,
in a manner similar to PDSs?

Adrien Pommellet On Model-checking Pushdown System Models 31

Reachability properties of UPDSs

Theorem
There exist a UPDS P and a regular set of configurations C for
which post∗ (C) is not regular.

Theorem
There exist a UPDS P and a regular set of configurations C for
which pre∗ (C) is not regular.

Theorem
Given a UPDS P and a regular set of configurations C, post∗ (C) is
context-sensitive, and its membership problem is therefore
decidable.

Adrien Pommellet On Model-checking Pushdown System Models 32

Runs and the upper stack

The set of runs of a UPDS, being similar to a PDS’s, is
context-free. But what if this set is regular?

Theorem
For a UPDS P = (P, Γ,∆), a regular set of configurations C, and a
regular set of runs R of P from C, the set of upper stack
configurations reachable using runs in R is regular and effectively
computable.

Adrien Pommellet On Model-checking Pushdown System Models 33

Computing a regular over-approximation of post∗

1 Compute a regular over-approximation R of the set of runs of
the PDS P from C;

2 compute the set U of upper stack configurations reachable
using R of P;

3 compute the exact set L of reachable lower stack
configurations, using a standard reachability algorithm for
PDSs [Esparza, Schwoon et al., CAV’00][Caucal,’92];

4 consider the product U × L of the upper and lower stack sets
to create an over-approximation of post∗ (C).

Adrien Pommellet On Model-checking Pushdown System Models 34

Computing a regular over-approximation of post∗

1 Compute a regular over-approximation R of the set of runs of
the PDS P from C;

2 compute the set U of upper stack configurations reachable
using R of P;

3 compute the exact set L of reachable lower stack
configurations, using a standard reachability algorithm for
PDSs [Esparza, Schwoon et al., CAV’00][Caucal,’92];

4 consider the product U × L of the upper and lower stack sets
to create an over-approximation of post∗ (C).

Adrien Pommellet On Model-checking Pushdown System Models 34

Computing a regular over-approximation of post∗

1 Compute a regular over-approximation R of the set of runs of
the PDS P from C;

2 compute the set U of upper stack configurations reachable
using R of P;

3 compute the exact set L of reachable lower stack
configurations, using a standard reachability algorithm for
PDSs [Esparza, Schwoon et al., CAV’00][Caucal,’92];

4 consider the product U × L of the upper and lower stack sets
to create an over-approximation of post∗ (C).

Adrien Pommellet On Model-checking Pushdown System Models 34

Computing a regular over-approximation of post∗

1 Compute a regular over-approximation R of the set of runs of
the PDS P from C;

2 compute the set U of upper stack configurations reachable
using R of P;

3 compute the exact set L of reachable lower stack
configurations, using a standard reachability algorithm for
PDSs [Esparza, Schwoon et al., CAV’00][Caucal,’92];

4 consider the product U × L of the upper and lower stack sets
to create an over-approximation of post∗ (C).

Adrien Pommellet On Model-checking Pushdown System Models 34

Computing a regular under-approximation of pre∗

A UPDS can be simulated by a multi-stack pushdown system
(MPDS) with two stacks.

But the set of predecessors of a MPDS can be
under-approximated, using a phase-bounding constraint [Seth,
CAV’10].
Hence, we can under-approximate the set of predecessors pre∗

of a UPDS.

Adrien Pommellet On Model-checking Pushdown System Models 35

Computing a regular under-approximation of pre∗

A UPDS can be simulated by a multi-stack pushdown system
(MPDS) with two stacks.
But the set of predecessors of a MPDS can be
under-approximated, using a phase-bounding constraint [Seth,
CAV’10].

Hence, we can under-approximate the set of predecessors pre∗

of a UPDS.

Adrien Pommellet On Model-checking Pushdown System Models 35

Computing a regular under-approximation of pre∗

A UPDS can be simulated by a multi-stack pushdown system
(MPDS) with two stacks.
But the set of predecessors of a MPDS can be
under-approximated, using a phase-bounding constraint [Seth,
CAV’10].
Hence, we can under-approximate the set of predecessors pre∗

of a UPDS.

Adrien Pommellet On Model-checking Pushdown System Models 35

Applications

Adrien Pommellet On Model-checking Pushdown System Models 36

Stack overflow detection
Application 1

We want to prevent the stack from growing beyond a bound m + 1.
We put a symbol > on top of an upper stack of bounded height m
filled with # padding symbols.

> # . . .︸ ︷︷ ︸
m times

a

If the symbol > is overwritten, we deduce that a stack overflow
malfunction happens.

Adrien Pommellet On Model-checking Pushdown System Models 37

Reading the upper stack
Application 2

A register is assigned a value located in the upper stack: the
instruction mov eax [sp − 8] copies in the register eax the second
symbol above the stack pointer sp.

. . . 1 2 3 4 5 6 7 . . .

sp - 8 sp

Adrien Pommellet On Model-checking Pushdown System Models 38

Changing the stack pointer
Application 3

If we apply the instruction sub sp 12, we change the stack pointer
sp, leading to a new stack configuration:

. . . 1 2 3 4 5 6 7 . . .

spsp - 12
→

. . . 1 2 3 4 5 6 7 . . .

sp

Adrien Pommellet On Model-checking Pushdown System Models 39

Our second contribution

We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS.

We show that the backward and forward reachability sets of
UPDSs are not regular, but that the latter is context-sensitive.
We can either under-approximate or over-approximate these
sets.
We have shown some potential applications of this model.

Adrien Pommellet On Model-checking Pushdown System Models 40

Our second contribution

We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS.
We show that the backward and forward reachability sets of
UPDSs are not regular, but that the latter is context-sensitive.

We can either under-approximate or over-approximate these
sets.
We have shown some potential applications of this model.

Adrien Pommellet On Model-checking Pushdown System Models 40

Our second contribution

We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS.
We show that the backward and forward reachability sets of
UPDSs are not regular, but that the latter is context-sensitive.
We can either under-approximate or over-approximate these
sets.

We have shown some potential applications of this model.

Adrien Pommellet On Model-checking Pushdown System Models 40

Our second contribution

We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS.
We show that the backward and forward reachability sets of
UPDSs are not regular, but that the latter is context-sensitive.
We can either under-approximate or over-approximate these
sets.
We have shown some potential applications of this model.

Adrien Pommellet On Model-checking Pushdown System Models 40

Our third contribution:
Reachability analysis of synchronized

pushdown networks

Adrien Pommellet On Model-checking Pushdown System Models 41

The model-checking framework

Sequential program Property

PDS, UPDS . . .

verifies

|=

Adrien Pommellet On Model-checking Pushdown System Models 42

The model-checking framework

Concurrent program Property

? . . .

verifies

|=

What about concurrent programs?

Adrien Pommellet On Model-checking Pushdown System Models 43

Dynamic pushdown networks

Pushdown systems (PDSs) are a natural model for sequential
programs.

Intuitively, one can model each thread of a program as a PDS.
A concurrent program can therefore be seen as a network of
PDSs.
Hence, we consider dynamic pushdown network (DPN) model
[Bouajjani, Müller-Olm, and Touili, CONCUR’05]. It is a
network of PDSs where each member can perform internal
actions and spawn other instances of PDSs.

Adrien Pommellet On Model-checking Pushdown System Models 44

Dynamic pushdown networks

Pushdown systems (PDSs) are a natural model for sequential
programs.
Intuitively, one can model each thread of a program as a PDS.
A concurrent program can therefore be seen as a network of
PDSs.

Hence, we consider dynamic pushdown network (DPN) model
[Bouajjani, Müller-Olm, and Touili, CONCUR’05]. It is a
network of PDSs where each member can perform internal
actions and spawn other instances of PDSs.

Adrien Pommellet On Model-checking Pushdown System Models 44

Dynamic pushdown networks

Pushdown systems (PDSs) are a natural model for sequential
programs.
Intuitively, one can model each thread of a program as a PDS.
A concurrent program can therefore be seen as a network of
PDSs.
Hence, we consider dynamic pushdown network (DPN) model
[Bouajjani, Müller-Olm, and Touili, CONCUR’05]. It is a
network of PDSs where each member can perform internal
actions and spawn other instances of PDSs.

Adrien Pommellet On Model-checking Pushdown System Models 44

A synchronization issue

However, in an actual parallel program, threads can communicate,
but in a DPN, they can’t.
We need therefore a more accurate model that can handle
synchronization between threads. To this end, we extend DPNs
with synchronization by rendez-vous.

Adrien Pommellet On Model-checking Pushdown System Models 45

Synchronization by rendez-vous

When two threads synchronize, one thread must send a signal a
and the other, its co-signal a.

T1 : c1 . . . T2 : c2
↓ a simultaneously ↓ a

T1 : c ′1 . . . T2 : c ′2

We define a set Act of actions that contains synchronization signals
as well as an internal action τ .

Adrien Pommellet On Model-checking Pushdown System Models 46

Synchronized dynamic pushdown network

Definition
A synchronized dynamic pushdown network (SDPN) is a quadruplet
M = (Act,P, Γ,∆) where:

P is a finite set of control states;
Γ a finite stack alphabet disjoint from P ;
∆ a finite set of labelled transition rules featuring:

simple pushdown operations of the form pγ
l−→ p′w , l ∈ Act;

thread spawns of the form pγ
l−→ p2w2 . p1w1, l ∈ Act;

A configuration of a SDPN is a word in (PΓ∗)∗ that is a
concatenation of all the configurations of the PDSs in the network.

Adrien Pommellet On Model-checking Pushdown System Models 47

The semantics: pushdown actions and spawns

If p1γ1
l−→ p′1w

′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

If p1γ1
l−→ p2w2 . p

′
1w
′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p2w2p

′
1w
′
1w1 . . .

l can be a signal a, a co-signal ā, or an internal action τ .

Adrien Pommellet On Model-checking Pushdown System Models 48

The semantics: pushdown actions and spawns

If p1γ1
l−→ p′1w

′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

If p1γ1
l−→ p2w2 . p

′
1w
′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p2w2p

′
1w
′
1w1 . . .

l can be a signal a, a co-signal ā, or an internal action τ .

Adrien Pommellet On Model-checking Pushdown System Models 48

The semantics: pushdown actions and spawns

If p1γ1
l−→ p′1w

′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

If p1γ1
l−→ p2w2 . p

′
1w
′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p2w2p

′
1w
′
1w1 . . .

l can be a signal a, a co-signal ā, or an internal action τ .

Adrien Pommellet On Model-checking Pushdown System Models 48

The semantics of synchronized transitions

If threads p1γ1w1 and p2γ2w2 can apply the pushdown rules
p1γ1

a−→ p′1w
′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆:

. . . p1γ1w1 . . . p2γ2w2 . . .
↓ a ↓ a

. . . p′1w
′
1w1 . . . p′2w

′
2w2 . . .

Then they can synchronize over the signal a:

. . . p1γ1w1 . . . p2γ2w2 . . .
↓ τ

. . . p′1w
′
1w1 . . . p′2w

′
2w2 . . .

Adrien Pommellet On Model-checking Pushdown System Models 49

The semantics of synchronized transitions

If threads p1γ1w1 and p2γ2w2 can apply the pushdown rules
p1γ1

a−→ p′1w
′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆:

. . . p1γ1w1 . . . p2γ2w2 . . .
↓ a ↓ a

. . . p′1w
′
1w1 . . . p′2w

′
2w2 . . .

Then they can synchronize over the signal a:

. . . p1γ1w1 . . . p2γ2w2 . . .
↓ τ

. . . p′1w
′
1w1 . . . p′2w

′
2w2 . . .

Adrien Pommellet On Model-checking Pushdown System Models 49

Invalid SDPN actions

In a real program, transitions of the form:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

are only allowed if l = τ is an internal action.

If l = a or l = ā, then the program must wait for a matching
synchronization action and the thread can’t execute such a
transition on its own.

Adrien Pommellet On Model-checking Pushdown System Models 50

Invalid SDPN actions

In a real program, transitions of the form:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

are only allowed if l = τ is an internal action.

If l = a or l = ā, then the program must wait for a matching
synchronization action and the thread can’t execute such a
transition on its own.

Adrien Pommellet On Model-checking Pushdown System Models 50

Characterizing valid execution paths

As a consequence, a valid execution path in a program can only use
internal transitions of the form:

. . . p1γ1w1 . . .
τ−→M . . . p′1w

′
1w1 . . .

Or, if p1γ1
a−→ p′1w

′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆, synchronized

transitions of the form:

. . . p1γ1w1 . . . p2γ2w2 . . .
τ−→M . . . p′1w

′
1w1 . . . p

′
2w
′
2w2 . . .

Valid execution paths therefore only use transitions labelled by τ .

Adrien Pommellet On Model-checking Pushdown System Models 51

Characterizing valid execution paths

As a consequence, a valid execution path in a program can only use
internal transitions of the form:

. . . p1γ1w1 . . .
τ−→M . . . p′1w

′
1w1 . . .

Or, if p1γ1
a−→ p′1w

′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆, synchronized

transitions of the form:

. . . p1γ1w1 . . . p2γ2w2 . . .
τ−→M . . . p′1w

′
1w1 . . . p

′
2w
′
2w2 . . .

Valid execution paths therefore only use transitions labelled by τ .

Adrien Pommellet On Model-checking Pushdown System Models 51

Characterizing valid execution paths

As a consequence, a valid execution path in a program can only use
internal transitions of the form:

. . . p1γ1w1 . . .
τ−→M . . . p′1w

′
1w1 . . .

Or, if p1γ1
a−→ p′1w

′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆, synchronized

transitions of the form:

. . . p1γ1w1 . . . p2γ2w2 . . .
τ−→M . . . p′1w

′
1w1 . . . p

′
2w
′
2w2 . . .

Valid execution paths therefore only use transitions labelled by τ .

Adrien Pommellet On Model-checking Pushdown System Models 51

The reachability problem

Given a SDPN M and two regular sets of configuration C and C ′,
we consider the reachability problem: is there a valid path of M
leading from C to C ′?

This is equivalent to:

Paths(C ,C ′) ∩ τ∗ = ∅?

Adrien Pommellet On Model-checking Pushdown System Models 52

The reachability problem

Given a SDPN M and two regular sets of configuration C and C ′,
we consider the reachability problem: is there a valid path of M
leading from C to C ′?

This is equivalent to:

Paths(C ,C ′) ∩ τ∗ = ∅?

Adrien Pommellet On Model-checking Pushdown System Models 52

An undecidable problem

The reachability problem for synchronization-sensitive pushdown
systems is undecidable [Ramalingam, ’00], hence, for SDPNs as
well. We cannot therefore compute Paths(C ,C ′).

But if we consider an over-approximation:

α(Paths(C ,C ′)) ⊇ Paths(C ,C ′)

Then:
α(Paths(C ,C ′)) ∩ τ∗ = ∅

implies that:
Paths(C ,C ′) ∩ τ∗ = ∅

Adrien Pommellet On Model-checking Pushdown System Models 53

An undecidable problem

The reachability problem for synchronization-sensitive pushdown
systems is undecidable [Ramalingam, ’00], hence, for SDPNs as
well. We cannot therefore compute Paths(C ,C ′).

But if we consider an over-approximation:

α(Paths(C ,C ′)) ⊇ Paths(C ,C ′)

Then:
α(Paths(C ,C ′)) ∩ τ∗ = ∅

implies that:
Paths(C ,C ′) ∩ τ∗ = ∅

Adrien Pommellet On Model-checking Pushdown System Models 53

Characterizing Paths(C ,C ′)

We use finite-state automata AC and AC ′ to represent the
regular sets of configurations C and C ′.

By applying the saturation procedure of [Bouajjani et al.,
CONCUR’05] to AC ′ , we compute a finite-state automaton
Apre∗ accepting pre∗(C ′).
We add extra labels λ(t) to the edges t of the automaton
Apre∗ in such a manner that the relabelled automaton A′

accepts all the pairs (c , π) where c ∈ pre∗(C ′) and
π = Paths({c},C ′).
We consider the intersection of A′ and AC in order to compute
Paths(C ,C ′).

Adrien Pommellet On Model-checking Pushdown System Models 54

Characterizing Paths(C ,C ′)

We use finite-state automata AC and AC ′ to represent the
regular sets of configurations C and C ′.
By applying the saturation procedure of [Bouajjani et al.,
CONCUR’05] to AC ′ , we compute a finite-state automaton
Apre∗ accepting pre∗(C ′).

We add extra labels λ(t) to the edges t of the automaton
Apre∗ in such a manner that the relabelled automaton A′

accepts all the pairs (c , π) where c ∈ pre∗(C ′) and
π = Paths({c},C ′).
We consider the intersection of A′ and AC in order to compute
Paths(C ,C ′).

Adrien Pommellet On Model-checking Pushdown System Models 54

Characterizing Paths(C ,C ′)

We use finite-state automata AC and AC ′ to represent the
regular sets of configurations C and C ′.
By applying the saturation procedure of [Bouajjani et al.,
CONCUR’05] to AC ′ , we compute a finite-state automaton
Apre∗ accepting pre∗(C ′).
We add extra labels λ(t) to the edges t of the automaton
Apre∗ in such a manner that the relabelled automaton A′

accepts all the pairs (c , π) where c ∈ pre∗(C ′) and
π = Paths({c},C ′).

We consider the intersection of A′ and AC in order to compute
Paths(C ,C ′).

Adrien Pommellet On Model-checking Pushdown System Models 54

Characterizing Paths(C ,C ′)

We use finite-state automata AC and AC ′ to represent the
regular sets of configurations C and C ′.
By applying the saturation procedure of [Bouajjani et al.,
CONCUR’05] to AC ′ , we compute a finite-state automaton
Apre∗ accepting pre∗(C ′).
We add extra labels λ(t) to the edges t of the automaton
Apre∗ in such a manner that the relabelled automaton A′

accepts all the pairs (c , π) where c ∈ pre∗(C ′) and
π = Paths({c},C ′).
We consider the intersection of A′ and AC in order to compute
Paths(C ,C ′).

Adrien Pommellet On Model-checking Pushdown System Models 54

Characterizing Paths(C ,C ′)

We use finite-state automata AC and AC ′ to represent the
regular sets of configurations C and C ′.
By applying the saturation procedure of [Bouajjani et al.,
CONCUR’05] to AC ′ , we compute a finite-state automaton
Apre∗ accepting pre∗(C ′).
We add extra labels λ(t) to the edges t of the automaton
Apre∗ in such a manner that the relabelled automaton A′

accepts all the pairs (c , π) where c ∈ pre∗(C ′) and
π = Paths({c},C ′).
We consider the intersection of A′ and AC in order to compute
Paths(C ,C ′).

Adrien Pommellet On Model-checking Pushdown System Models 54

Computing the labels

Following [Bouajjani, Esparza, and Touili, POPL’03], we want
to define a set of constraints whose least solution accurately
characterizes the set of paths leading to C ′.

Unlike [Bouajjani, Esparza, and Touili, POPL’03], we cannot
use sets of paths in 2Act∗ as labels because of the interleaving
of executions paths of children threads in spawn rules.
We show that, by using functions in 2Act∗ → 2Act∗ as labels,
we can accurately characterize the set of paths leading to C ′

with constraints.
This set of constraints can’t be solved because the reachability
problem is the undecidable.
We therefore solve it in a finite abstract domain D in order to
compute an over-approximation α(Paths(C ,C ′)).

Adrien Pommellet On Model-checking Pushdown System Models 55

Computing the labels

Following [Bouajjani, Esparza, and Touili, POPL’03], we want
to define a set of constraints whose least solution accurately
characterizes the set of paths leading to C ′.
Unlike [Bouajjani, Esparza, and Touili, POPL’03], we cannot
use sets of paths in 2Act∗ as labels because of the interleaving
of executions paths of children threads in spawn rules.

We show that, by using functions in 2Act∗ → 2Act∗ as labels,
we can accurately characterize the set of paths leading to C ′

with constraints.
This set of constraints can’t be solved because the reachability
problem is the undecidable.
We therefore solve it in a finite abstract domain D in order to
compute an over-approximation α(Paths(C ,C ′)).

Adrien Pommellet On Model-checking Pushdown System Models 55

Computing the labels

Following [Bouajjani, Esparza, and Touili, POPL’03], we want
to define a set of constraints whose least solution accurately
characterizes the set of paths leading to C ′.
Unlike [Bouajjani, Esparza, and Touili, POPL’03], we cannot
use sets of paths in 2Act∗ as labels because of the interleaving
of executions paths of children threads in spawn rules.
We show that, by using functions in 2Act∗ → 2Act∗ as labels,
we can accurately characterize the set of paths leading to C ′

with constraints.

This set of constraints can’t be solved because the reachability
problem is the undecidable.
We therefore solve it in a finite abstract domain D in order to
compute an over-approximation α(Paths(C ,C ′)).

Adrien Pommellet On Model-checking Pushdown System Models 55

Computing the labels

Following [Bouajjani, Esparza, and Touili, POPL’03], we want
to define a set of constraints whose least solution accurately
characterizes the set of paths leading to C ′.
Unlike [Bouajjani, Esparza, and Touili, POPL’03], we cannot
use sets of paths in 2Act∗ as labels because of the interleaving
of executions paths of children threads in spawn rules.
We show that, by using functions in 2Act∗ → 2Act∗ as labels,
we can accurately characterize the set of paths leading to C ′

with constraints.
This set of constraints can’t be solved because the reachability
problem is the undecidable.

We therefore solve it in a finite abstract domain D in order to
compute an over-approximation α(Paths(C ,C ′)).

Adrien Pommellet On Model-checking Pushdown System Models 55

Computing the labels

Following [Bouajjani, Esparza, and Touili, POPL’03], we want
to define a set of constraints whose least solution accurately
characterizes the set of paths leading to C ′.
Unlike [Bouajjani, Esparza, and Touili, POPL’03], we cannot
use sets of paths in 2Act∗ as labels because of the interleaving
of executions paths of children threads in spawn rules.
We show that, by using functions in 2Act∗ → 2Act∗ as labels,
we can accurately characterize the set of paths leading to C ′

with constraints.
This set of constraints can’t be solved because the reachability
problem is the undecidable.
We therefore solve it in a finite abstract domain D in order to
compute an over-approximation α(Paths(C ,C ′)).

Adrien Pommellet On Model-checking Pushdown System Models 55

Finite-domain abstractions

We consider the domain D = 2W , where W is the set of words of
length smaller than n, and the n-th order prefix and suffix
abstractions:

Prefix: αprefix
n ({a1 . . . anan+1 . . . am}) = {a1 . . . an}

Suffix: αsuffix
n ({a1 . . . am−nam−n+1 . . . am}) = {am−n+1 . . . am}

Adrien Pommellet On Model-checking Pushdown System Models 56

An iterative abstraction scheme

1 We start from n = 1;

2 we compute α(Paths(C ,C ′)) for α = αprefix
n and α = αsuffix

n ;
3 we check if α(Paths(C ,C ′)) ∩ τ∗ = ∅; if this holds, then C ′

can’t be reached from C with a valid path;
4 otherwise, we check if our abstraction introduced a spurious

counter-example;
5 if the counter-example was spurious, we increment n and go

back to the step 2.

Adrien Pommellet On Model-checking Pushdown System Models 57

An iterative abstraction scheme

1 We start from n = 1;
2 we compute α(Paths(C ,C ′)) for α = αprefix

n and α = αsuffix
n ;

3 we check if α(Paths(C ,C ′)) ∩ τ∗ = ∅; if this holds, then C ′

can’t be reached from C with a valid path;
4 otherwise, we check if our abstraction introduced a spurious

counter-example;
5 if the counter-example was spurious, we increment n and go

back to the step 2.

Adrien Pommellet On Model-checking Pushdown System Models 57

An iterative abstraction scheme

1 We start from n = 1;
2 we compute α(Paths(C ,C ′)) for α = αprefix

n and α = αsuffix
n ;

3 we check if α(Paths(C ,C ′)) ∩ τ∗ = ∅; if this holds, then C ′

can’t be reached from C with a valid path;

4 otherwise, we check if our abstraction introduced a spurious
counter-example;

5 if the counter-example was spurious, we increment n and go
back to the step 2.

Adrien Pommellet On Model-checking Pushdown System Models 57

An iterative abstraction scheme

1 We start from n = 1;
2 we compute α(Paths(C ,C ′)) for α = αprefix

n and α = αsuffix
n ;

3 we check if α(Paths(C ,C ′)) ∩ τ∗ = ∅; if this holds, then C ′

can’t be reached from C with a valid path;
4 otherwise, we check if our abstraction introduced a spurious

counter-example;

5 if the counter-example was spurious, we increment n and go
back to the step 2.

Adrien Pommellet On Model-checking Pushdown System Models 57

An iterative abstraction scheme

1 We start from n = 1;
2 we compute α(Paths(C ,C ′)) for α = αprefix

n and α = αsuffix
n ;

3 we check if α(Paths(C ,C ′)) ∩ τ∗ = ∅; if this holds, then C ′

can’t be reached from C with a valid path;
4 otherwise, we check if our abstraction introduced a spurious

counter-example;
5 if the counter-example was spurious, we increment n and go

back to the step 2.

Adrien Pommellet On Model-checking Pushdown System Models 57

Application to a Bluetooth driver

We use this iterative abstraction scheme to find an error in a
Bluetooth driver for Windows NT.

We model it as a SDPN and find that an erroneous configuration is
reachable using a prefix abstraction of size 12.

Adrien Pommellet On Model-checking Pushdown System Models 58

Our third contribution

1 We defined a new model for concurrent programs called SDPN;

2 We proved that its set of paths was the least solution of a set
of constraints.

3 We used an abstraction framework in order to solve these
constraints.

4 We over-approximated the reachability problem for SDPNs.
5 We defined an iterative abstraction scheme for SDPNs and

applied it to a driver.

Adrien Pommellet On Model-checking Pushdown System Models 59

Our third contribution

1 We defined a new model for concurrent programs called SDPN;
2 We proved that its set of paths was the least solution of a set

of constraints.

3 We used an abstraction framework in order to solve these
constraints.

4 We over-approximated the reachability problem for SDPNs.
5 We defined an iterative abstraction scheme for SDPNs and

applied it to a driver.

Adrien Pommellet On Model-checking Pushdown System Models 59

Our third contribution

1 We defined a new model for concurrent programs called SDPN;
2 We proved that its set of paths was the least solution of a set

of constraints.
3 We used an abstraction framework in order to solve these

constraints.

4 We over-approximated the reachability problem for SDPNs.
5 We defined an iterative abstraction scheme for SDPNs and

applied it to a driver.

Adrien Pommellet On Model-checking Pushdown System Models 59

Our third contribution

1 We defined a new model for concurrent programs called SDPN;
2 We proved that its set of paths was the least solution of a set

of constraints.
3 We used an abstraction framework in order to solve these

constraints.
4 We over-approximated the reachability problem for SDPNs.

5 We defined an iterative abstraction scheme for SDPNs and
applied it to a driver.

Adrien Pommellet On Model-checking Pushdown System Models 59

Our third contribution

1 We defined a new model for concurrent programs called SDPN;
2 We proved that its set of paths was the least solution of a set

of constraints.
3 We used an abstraction framework in order to solve these

constraints.
4 We over-approximated the reachability problem for SDPNs.
5 We defined an iterative abstraction scheme for SDPNs and

applied it to a driver.

Adrien Pommellet On Model-checking Pushdown System Models 59

Conclusion

Adrien Pommellet On Model-checking Pushdown System Models 60

Summary

1 We showed that the model-checking problem of HyperLTL for
PDSs is undecidable, we proved some decidability results when
all variables are regular except the first, and we used these
results to approximate the model-checking problem.

2 We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS,
we proved that its reachability sets are not regular but
context-sensitive, then we over and under-approximated these.

3 We defined a new model for concurrent programs called
SDPN, we abstracted its reachability problem, and we applied
this over-approximation in an iterative scheme.

Adrien Pommellet On Model-checking Pushdown System Models 61

Summary

1 We showed that the model-checking problem of HyperLTL for
PDSs is undecidable, we proved some decidability results when
all variables are regular except the first, and we used these
results to approximate the model-checking problem.

2 We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS,
we proved that its reachability sets are not regular but
context-sensitive, then we over and under-approximated these.

3 We defined a new model for concurrent programs called
SDPN, we abstracted its reachability problem, and we applied
this over-approximation in an iterative scheme.

Adrien Pommellet On Model-checking Pushdown System Models 61

Summary

1 We showed that the model-checking problem of HyperLTL for
PDSs is undecidable, we proved some decidability results when
all variables are regular except the first, and we used these
results to approximate the model-checking problem.

2 We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS,
we proved that its reachability sets are not regular but
context-sensitive, then we over and under-approximated these.

3 We defined a new model for concurrent programs called
SDPN, we abstracted its reachability problem, and we applied
this over-approximation in an iterative scheme.

Adrien Pommellet On Model-checking Pushdown System Models 61

Future work

1 We plan to implement algorithms to approximate the
model-checking problem of HyperLTL for PDSs.

2 We know that the reachability sets of the UPDS model are not
regular; we want to determine whether they are context-free or
not.

3 We plan to program a tool that would implement the
abstraction framework for SDPNs designed in the third part of
this thesis.

Adrien Pommellet On Model-checking Pushdown System Models 62

Future work

1 We plan to implement algorithms to approximate the
model-checking problem of HyperLTL for PDSs.

2 We know that the reachability sets of the UPDS model are not
regular; we want to determine whether they are context-free or
not.

3 We plan to program a tool that would implement the
abstraction framework for SDPNs designed in the third part of
this thesis.

Adrien Pommellet On Model-checking Pushdown System Models 62

Future work

1 We plan to implement algorithms to approximate the
model-checking problem of HyperLTL for PDSs.

2 We know that the reachability sets of the UPDS model are not
regular; we want to determine whether they are context-free or
not.

3 We plan to program a tool that would implement the
abstraction framework for SDPNs designed in the third part of
this thesis.

Adrien Pommellet On Model-checking Pushdown System Models 62

Thank you!

Adrien Pommellet On Model-checking Pushdown System Models 63

Publications

Adrien Pommellet and Tayssir Touili, Model-checking
HyperLTL for pushdown systems, 25th International
Symposium on Model Checking of Software (SPIN’18).
Adrien Pommellet, Marcio Diaz, and Tayssir Touili,
Reachability analysis of pushdown systems with an upper
stack, 11th International Conference on Language and
Automata Theory and Applications (LATA’17).
Adrien Pommellet and Tayssir Touili, Static analysis of
multi-threaded recursive programs communicating via
rendez-vous, 15th Asian Symposium on Programming
Languages and Systems (APLAS’17).

Adrien Pommellet On Model-checking Pushdown System Models 64

Undecidability of HyperLTL
model-checking

Adrien Pommellet On Model-checking Pushdown System Models 65

Proof of undecidability

Let L1 and L2 be two context-free languages accepted respectively
by two PDA P1 and P2.

p0

P1P2

{i1}

{i2}

We design a PDS P that can simulate either P1 or P2, depending
on its first transition.

Adrien Pommellet On Model-checking Pushdown System Models 66

Proof of undecidability

We want to design a HyperLTL formula on P such that it would
characterize a common accepting run of P1 and P2.

ψ = ∃π1, ∃π2,ϕ

It will use two trace variables π1 and π2.

Adrien Pommellet On Model-checking Pushdown System Models 67

Proof of undecidability

ψ = ∃π1, ∃π2, (i
1
π1
∧ i2π2

)

The trace variables π1 and π2 represent runs of P1 and P2
respectively.

π1 : {i1} → . . .

π2 : {i2} → . . .

Adrien Pommellet On Model-checking Pushdown System Models 68

Proof of undecidability

ψ = ∃π1, ∃π2, (i
1
π1
∧ i2π2

)

∧ XG
∧

a∈AP

(aπ1 ⇔ aπ2)

The two traces are equal from their second letter onwards.

π1 : {i1} → {a} → . . .

π2 : {i2} → {a} → . . .

Adrien Pommellet On Model-checking Pushdown System Models 69

Proof of undecidability

ψ = ∃π1, ∃π2, (i
1
π1
∧ i2π2

)

∧ XG
∧

a∈AP

(aπ1 ⇔ aπ2)

∧ FG (fπ1 ∧ fπ2)

The two traces are accepting.

π1 : {i1} → {a} → . . .→ {f } → {f } → . . .

π2 : {i2} → {a} → . . .→ {f } → {f } → . . .

Adrien Pommellet On Model-checking Pushdown System Models 70

Proof of undecidability

P |= ψ if and only if there is an accepting run π common to P1
and P2. But such a run exists if and only if L1 ∩ L2 6= ∅.

Hence:

Theorem
The model-checking problem of HyperLTL for pushdown systems is
undecidable.

Adrien Pommellet On Model-checking Pushdown System Models 71

Non-regularity of post∗ for UPDSs

Adrien Pommellet On Model-checking Pushdown System Models 72

A counter-example of regularity for post∗

We consider the UPDS P :

(Ra) (p, a)→ (p, ε) (Rb) (p, b)→ (p, ε)
(C) (p, a)→ (p, ab)

And the regular set C = {p} × {ε} × a (ba)∗.

p a b a b a

Adrien Pommellet On Model-checking Pushdown System Models 73

A relevant subset of post∗

We consider the subset L =
{〈

p, an+1, bn
〉
, n ∈ N

}
⊆ post∗ (C).

p a b a b a
RaRb⇒ a b p a b a

C⇒

a p a b b a
RaRbRb⇒ a a b b p a

CC⇒

a a p a b b
Ra⇒ a a a p b b ∈ L

(Ra) (p, a)→ (p, ε) (Rb) (p, b)→ (p, ε)
(C) (p, a)→ (p, ab)

Adrien Pommellet On Model-checking Pushdown System Models 74

A constraint on post∗

For any reachable configuration 〈p,wu,wl〉 and the word
w = w̄uwl , the inequality |w |b + |w |b̄ + 1 ≥ |w |a + |w |ā holds.

The inequality holds on the starting configuration
C = {p} × {ε} × a (ba)∗.
The rules (Ra) = (p, a)→ (p, ε) and (Rb) = (p, b)→ (p, ε)
do not change the number of occurences of the letter a on the
whole stack.
The rule (C) = (p, a)→ (p, ab) can make it smaller.

Adrien Pommellet On Model-checking Pushdown System Models 75

Applying the pumping lemma

If we suppose that post∗ (C) is regular, let k be its pumping length.

We consider the word w = ak+1bk of the language L.
We apply the pumping lemma to w : w = xyz , |xy | ≤ k ,
|y | ≥ 1, and xy iz ∈ post∗ (C), ∀i ≥ 1, with x ∈ ā∗, y ∈ ā+

and z ∈
(
ā + b̄

)∗.
For i large enough, wi = xy iz ∈ post∗ (C) and
|wi |ā > |wi |b̄ + 1.

There is a contradiction and post∗ (C) is not regular.

Adrien Pommellet On Model-checking Pushdown System Models 76

Computing the constraints for SDPNs

Adrien Pommellet On Model-checking Pushdown System Models 77

Expressing the constraints

There are five different types on constraints, depending on whether
we are labelling a transition that was already in AC ′ or that was
added by a saturation rule matched to a switch, a pop, a push, or a
spawn.

We focus on the latter spawn case.

Adrien Pommellet On Model-checking Pushdown System Models 78

The fifth constraint: spawn

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

p2 γ2 ε p1

γ1p

Adrien Pommellet On Model-checking Pushdown System Models 79

The fifth constraint: spawn

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)) ⊆ λ(sp, γ, q)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ

Adrien Pommellet On Model-checking Pushdown System Models 80

The fifth constraint: spawn

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)) ⊆ λ(sp, γ, q)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ

Adrien Pommellet On Model-checking Pushdown System Models 80

An issue with sets of paths as labels

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)) ⊆ λ(sp, γ, q)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ ?

λ(s ′p1
, γ1, q) does not fully express Paths(Thread1)!

Adrien Pommellet On Model-checking Pushdown System Models 81

Using functions as labels

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)(x)) ⊆ λ(sp, γ, q)(x)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ x

We use functions in Π −→ Π with a variable x .

Adrien Pommellet On Model-checking Pushdown System Models 82

Five constraints

Initial: Id ⊆ λ(t)

Switch: a · λ(sp′ , γ
′, q)(x) ⊆ λ(sp, γ, q)(x)

Pop: {a} ⊆ λ(sp, γ, sp′)(x)

Push: a · (λ(sp′ , γ1, q
′)◦λ(q′, γ2, q)(x)) ⊆ λ(sp, γ, q)(x)

Spawn: a · (λ(sp2 , γ2, q
′)({ε})� λ(s ′p1

, γ1, q)(x)) ⊆ λ(sp, γ, q)(x)

Adrien Pommellet On Model-checking Pushdown System Models 83

