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Analysing programs

As the complexity of software grows, identifying errors in programs
becomes harder and harder.
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Analysing programs

Designing sound and efficient program analysis methods is therefore
a matter of the utmost importance.
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The model-checking framework

Program Propertyverifies
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Pushdown systems

Pushdown systems (PDSs) are a natural model for sequential
programs [Esparza, Hansel, Rossmanith, and Schwoon, CAV’00]
with recursive procedure calls, as they can simulate the stack of a
program.

p γ1 γ2 γ3
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The model-checking framework

Program Property

PDS Formula

verifies

|=
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Contributions of this thesis

1 We consider the HyperLTL model-checking problem for
pushdown systems, we prove that it is unfortunately
undecidable, we introduce constraints to regain decidability,
then we use these to design under and over-approximation
algorithms.

2 We define a new PDS model, called pushdown system with an
upper stack (UPDS), that keeps track of the part of the
assembly stack that is above the stack pointer, and we
propose reachability algorithms for this model.

3 We introduce synchronized dynamic pushdown networks
(SDPNs) that model concurrent programs as a network of
pushdown systems, where each pushdown component can
spawn new threads and synchronize by rendez-vous with other
threads. We then propose reachability algorithms for this
model.
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Our first contribution:
HyperLTL model-checking for

pushdown systems
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The model-checking framework

Program Property

Pushdown systems ?

verifies

|=

The logics LTL and CTL may not suffice to express all interesting
properties.
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Expressing a property

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

π1 : . . .→ a0 → y1 → a2 → z3 → . . .

π2 : . . .→ b0 → v1 → b2 → w3 → . . .

This property cannot be expressed by LTL nor CTL.

Adrien Pommellet On Model-checking Pushdown System Models 10



Expressing a property

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

π1 : . . .→ a0 → y1 → a2 → z3 → . . .

π2 : . . .→ b0 → v1 → b2 → w3 → . . .

This property cannot be expressed by LTL nor CTL.

Adrien Pommellet On Model-checking Pushdown System Models 10



Expressing a property

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

π1 : . . .→ a0 → y1 → a2 → z3 → . . .

π2 : . . .→ b0 → v1 → b2 → w3 → . . .

We would like to express it this way:

ψ = ∀π1 ∈ Traces, ∃π2 ∈ Traces, G (aπ1 =⇒ bπ2)
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The logic HyperLTL

We want that, for every trace π1, there exists a trace π2 such that,
whenever a property a holds for π1, property b holds for π2 at the
same step.

ψ = ∀π1 ∈ Traces, ∃π2 ∈ Traces, G (aπ1 =⇒ bπ2)

This is actually a HyperLTL formula, where HyperLTL is a logic
that extends LTL with the universal and existential quantifications
of multiple path variables.
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Our first goal

HyperLTL model-checking for finite-state systems has already been
solved in [Clarkson et al., POST’14]. But what about pushdown
systems?
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Our first goal

Program Property

Pushdown systems HyperLTL

verifies

|=
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Defining pushdown systems

Definition
A pushdown system (PDS) is a tuple P = (P,Σ, Γ,∆, c0) such
that:

P is a finite set of control states;
Σ = 2AP a finite input alphabet, where AP is a finite set of
atomic propositions;
Γ a finite stack alphabet;
a finite set ∆ of transition rules of the form (p, γ)

a−→ (p′,w);
c0 = 〈p0,w0〉 an initial configuration in P × Γ∗.

From (p, γ)
a−→ (p′,w) ∈ ∆, we infer a transition relation on

configurations: ∀w ′ ∈ Γ∗, 〈p, γw ′〉 a−→P 〈p′,ww ′〉.
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Model-checking HyperLTL for pushdown systems

HyperLTL formulas can be used to synchronize traces of pushdown
systems.

ψ = ∀π1 ∈ Traces1, ∀π2 ∈ Traces2, (aπ1 ⇔ aπ2)
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Model-checking HyperLTL for pushdown systems

HyperLTL formulas can be used to synchronize traces of pushdown
systems. And traces of PDSs are context-free.

ψ = ∀π1 ∈
CFL︷ ︸︸ ︷

Traces1, ∀π2 ∈
CFL︷ ︸︸ ︷

Traces2, (aπ1 ⇔ aπ2)

But the emptiness of the intersection of two context-free languages
(CFLs) is well-known to be an undecidable problem. Hence:

Theorem
The model-checking problem of HyperLTL for pushdown systems is
undecidable.
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Model-checking HyperLTL for visibly pushdown systems

The input-driven sub-class of visibly pushdown systems [Alur et al.,
STOC’04] is such that we can decide the emptiness of the
intersection of two visibly context-free languages.

However, this constraint is not enough to regain decidability:

Theorem
The model-checking problem of HyperLTL for visibly pushdown
systems is undecidable.
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With a single context-free variable

Let Reg be a regular language and CFL a context-free language.
Intuitively, we know that we can decide CFL ∩ Reg = ∅.

We can prove that:

Theorem
We can decide formulas of the form:
ψ = {∀, ∃}π1 ∈ CFL, {∀,∃}π2 ∈ Reg2, . . . , {∀,∃}πn ∈ Regn, ϕ.
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Approximating the model-checking problem

If α is a regular over-approximation of the set of traces of a PDS,
we therefore can decide:

ψ = {∀, ∃}π1 ∈ Traces, ∀π2 ∈ α, . . . , ∀πn ∈ α,ϕ

If ψ holds, then this formula holds as well:

ψ′ = {∀,∃}π1 ∈ Traces, ∀π2 ∈ Traces, . . . ,∀πn ∈ Traces, ϕ
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Approximating the model-checking problem

In a similar manner, if α is a regular under-approximation of the set
of traces of a PDS, we therefore can decide:

ψ = {∀,∃}π1 ∈ Traces, ∃π2 ∈ α, . . . , ∃πn ∈ α,ϕ

If ψ doesn’t hold, then this formula does not hold as well:

ψ′ = {∀,∃}π1 ∈ Traces,∃π2 ∈ Traces, . . . ,∃πn ∈ Traces, ϕ
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Our first contribution

We showed that the model-checking problem of HyperLTL for
pushdown systems and visibly pushdown systems is
undecidable.

We can decide HyperLTL formulas if all variables are regular
except the first.
We can therefore approximate the answer to the
model-checking problem given some constraints on the use of
quantifiers in HyperLTL formulas.
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Our second contribution:
Reachability analysis of pushdown

systems with an upper stack
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The model-checking framework

Program Property

PDS HyperLTL

verifies

|=

Are pushdown systems accurate enough?
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The limits of pushdown systems

Pushdown systems (PDSs) can fail to accurately represent the
actual assembly stack.

The assembly stack
. . . 1 2 3 4 5 6 7 . . .

sp

The pushdown model 5 6 7 . . .

PDSs can’t model the part of the assembly stack that stands to the
left of the stack pointer.
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The limits of pushdown systems

How can we handle the assembly instruction mov eax [sp − 4]?

The assembly stack . . . 1 2 3 4 5 6 7 . . .

sp

sp - 4

The pushdown model 5 6 7 . . .
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A new model

How can we handle the assembly instruction mov eax [sp − 4]?

The assembly stack . . . 1 2 3 4 5 6 7 . . .

sp

sp - 4

Our new model . . . 1 2 3 4 5 6 7 . . .

Our intuition is to use another stack to model the memory section
left of the stack pointer.
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Pushdown systems with an upper stack

Definition
A pushdown system with an upper stack (UPDS) is a triplet
P = (P, Γ,∆) where:

P is a finite set of control states;
Γ is a finite stack alphabet;
a finite set ∆ of transition rules of the form (p, γ)→ (p′,w),
w ∈ Γ≤2;

We consider configurations of the form 〈p,wu,wl〉, with a
write-only upper stack that accurately models the left of the
assembly stack.
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Semantics of pop rules

A pop rule in the assembly stack amounts to:

. . . a b c d . . .

sp
⇒

. . . a b c d . . .

sp

Hence, for a pop rule δ = (p, b)→ (p′, ε) in the UPDS:

a p b c d
δ⇒ a b p’ c d
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Semantics of push rules

A push rule in the assembly stack amounts to:

. . . x y b c . . .

sp
⇒

. . . x a b c . . .

sp

For a push rule δ = (p, b)→ (p′, ab) in the UPDS:

x y p b c
δ⇒ x p’ a b c
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Semantics of push rules

A push rule in the assembly stack amounts to:

. . . x y b c . . .

sp
⇒

. . . x a b c . . .

sp

For a push rule δ = (p, b)→ (p′, ab) in the UPDS:

x y p b c
δ⇒ x p’ a b c
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The reachability problem

Are the sets of predecessors pre∗ and successors post∗ of a regular
set of configurations of a UPDS regular and effectively computable,
in a manner similar to PDSs?
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Reachability properties of UPDSs

Theorem
There exist a UPDS P and a regular set of configurations C for
which post∗ (C) is not regular.

Theorem
There exist a UPDS P and a regular set of configurations C for
which pre∗ (C) is not regular.

Theorem
Given a UPDS P and a regular set of configurations C, post∗ (C) is
context-sensitive, and its membership problem is therefore
decidable.
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Runs and the upper stack

The set of runs of a UPDS, being similar to a PDS’s, is
context-free. But what if this set is regular?

Theorem
For a UPDS P = (P, Γ,∆), a regular set of configurations C, and a
regular set of runs R of P from C, the set of upper stack
configurations reachable using runs in R is regular and effectively
computable.
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Computing a regular over-approximation of post∗

1 Compute a regular over-approximation R of the set of runs of
the PDS P from C;

2 compute the set U of upper stack configurations reachable
using R of P;

3 compute the exact set L of reachable lower stack
configurations, using a standard reachability algorithm for
PDSs [Esparza, Schwoon et al., CAV’00][Caucal,’92];

4 consider the product U × L of the upper and lower stack sets
to create an over-approximation of post∗ (C).
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Computing a regular under-approximation of pre∗

A UPDS can be simulated by a multi-stack pushdown system
(MPDS) with two stacks.

But the set of predecessors of a MPDS can be
under-approximated, using a phase-bounding constraint [Seth,
CAV’10].
Hence, we can under-approximate the set of predecessors pre∗

of a UPDS.
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Applications
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Stack overflow detection
Application 1

We want to prevent the stack from growing beyond a bound m + 1.
We put a symbol > on top of an upper stack of bounded height m
filled with # padding symbols.

> # . . .︸ ︷︷ ︸
m times

# a

If the symbol > is overwritten, we deduce that a stack overflow
malfunction happens.
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Reading the upper stack
Application 2

A register is assigned a value located in the upper stack: the
instruction mov eax [sp − 8] copies in the register eax the second
symbol above the stack pointer sp.

. . . 1 2 3 4 5 6 7 . . .

sp - 8 sp
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Changing the stack pointer
Application 3

If we apply the instruction sub sp 12, we change the stack pointer
sp, leading to a new stack configuration:

. . . 1 2 3 4 5 6 7 . . .

spsp - 12
→

. . . 1 2 3 4 5 6 7 . . .

sp

Adrien Pommellet On Model-checking Pushdown System Models 39



Our second contribution

We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS.

We show that the backward and forward reachability sets of
UPDSs are not regular, but that the latter is context-sensitive.
We can either under-approximate or over-approximate these
sets.
We have shown some potential applications of this model.
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Our third contribution:
Reachability analysis of synchronized

pushdown networks
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The model-checking framework

Sequential program Property

PDS, UPDS . . .

verifies

|=
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The model-checking framework

Concurrent program Property

? . . .

verifies

|=

What about concurrent programs?
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Dynamic pushdown networks

Pushdown systems (PDSs) are a natural model for sequential
programs.

Intuitively, one can model each thread of a program as a PDS.
A concurrent program can therefore be seen as a network of
PDSs.
Hence, we consider dynamic pushdown network (DPN) model
[Bouajjani, Müller-Olm, and Touili, CONCUR’05]. It is a
network of PDSs where each member can perform internal
actions and spawn other instances of PDSs.
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A synchronization issue

However, in an actual parallel program, threads can communicate,
but in a DPN, they can’t.
We need therefore a more accurate model that can handle
synchronization between threads. To this end, we extend DPNs
with synchronization by rendez-vous.
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Synchronization by rendez-vous

When two threads synchronize, one thread must send a signal a
and the other, its co-signal a.

T1 : c1 . . . T2 : c2
↓ a simultaneously ↓ a

T1 : c ′1 . . . T2 : c ′2

We define a set Act of actions that contains synchronization signals
as well as an internal action τ .
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Synchronized dynamic pushdown network

Definition
A synchronized dynamic pushdown network (SDPN) is a quadruplet
M = (Act,P, Γ,∆) where:

P is a finite set of control states;
Γ a finite stack alphabet disjoint from P ;
∆ a finite set of labelled transition rules featuring:

simple pushdown operations of the form pγ
l−→ p′w , l ∈ Act;

thread spawns of the form pγ
l−→ p2w2 . p1w1, l ∈ Act;

A configuration of a SDPN is a word in (PΓ∗)∗ that is a
concatenation of all the configurations of the PDSs in the network.
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The semantics: pushdown actions and spawns

If p1γ1
l−→ p′1w

′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

If p1γ1
l−→ p2w2 . p

′
1w
′
1 ∈ ∆, then:

. . . p1γ1w1 . . .
l−→M . . . p2w2p

′
1w
′
1w1 . . .

l can be a signal a, a co-signal ā, or an internal action τ .
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The semantics of synchronized transitions

If threads p1γ1w1 and p2γ2w2 can apply the pushdown rules
p1γ1

a−→ p′1w
′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆:

. . . p1γ1w1 . . . p2γ2w2 . . .
↓ a ↓ a

. . . p′1w
′
1w1 . . . p′2w

′
2w2 . . .

Then they can synchronize over the signal a:

. . . p1γ1w1 . . . p2γ2w2 . . .
↓ τ

. . . p′1w
′
1w1 . . . p′2w

′
2w2 . . .
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Invalid SDPN actions

In a real program, transitions of the form:

. . . p1γ1w1 . . .
l−→M . . . p′1w

′
1w1 . . .

are only allowed if l = τ is an internal action.

If l = a or l = ā, then the program must wait for a matching
synchronization action and the thread can’t execute such a
transition on its own.
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Characterizing valid execution paths

As a consequence, a valid execution path in a program can only use
internal transitions of the form:

. . . p1γ1w1 . . .
τ−→M . . . p′1w

′
1w1 . . .

Or, if p1γ1
a−→ p′1w

′
1 and p2γ2

a−→ p′2w
′
2 ∈ ∆, synchronized

transitions of the form:

. . . p1γ1w1 . . . p2γ2w2 . . .
τ−→M . . . p′1w

′
1w1 . . . p

′
2w
′
2w2 . . .

Valid execution paths therefore only use transitions labelled by τ .
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The reachability problem

Given a SDPN M and two regular sets of configuration C and C ′,
we consider the reachability problem: is there a valid path of M
leading from C to C ′?

This is equivalent to:

Paths(C ,C ′) ∩ τ∗ = ∅?
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An undecidable problem

The reachability problem for synchronization-sensitive pushdown
systems is undecidable [Ramalingam, ’00], hence, for SDPNs as
well. We cannot therefore compute Paths(C ,C ′).

But if we consider an over-approximation:

α(Paths(C ,C ′)) ⊇ Paths(C ,C ′)

Then:
α(Paths(C ,C ′)) ∩ τ∗ = ∅

implies that:
Paths(C ,C ′) ∩ τ∗ = ∅
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Characterizing Paths(C ,C ′)

We use finite-state automata AC and AC ′ to represent the
regular sets of configurations C and C ′.

By applying the saturation procedure of [Bouajjani et al.,
CONCUR’05] to AC ′ , we compute a finite-state automaton
Apre∗ accepting pre∗(C ′).
We add extra labels λ(t) to the edges t of the automaton
Apre∗ in such a manner that the relabelled automaton A′

accepts all the pairs (c , π) where c ∈ pre∗(C ′) and
π = Paths({c},C ′).
We consider the intersection of A′ and AC in order to compute
Paths(C ,C ′).
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Computing the labels

Following [Bouajjani, Esparza, and Touili, POPL’03], we want
to define a set of constraints whose least solution accurately
characterizes the set of paths leading to C ′.

Unlike [Bouajjani, Esparza, and Touili, POPL’03], we cannot
use sets of paths in 2Act∗ as labels because of the interleaving
of executions paths of children threads in spawn rules.
We show that, by using functions in 2Act∗ → 2Act∗ as labels,
we can accurately characterize the set of paths leading to C ′

with constraints.
This set of constraints can’t be solved because the reachability
problem is the undecidable.
We therefore solve it in a finite abstract domain D in order to
compute an over-approximation α(Paths(C ,C ′)).
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Finite-domain abstractions

We consider the domain D = 2W , where W is the set of words of
length smaller than n, and the n-th order prefix and suffix
abstractions:

Prefix: αprefix
n ({a1 . . . anan+1 . . . am}) = {a1 . . . an}

Suffix: αsuffix
n ({a1 . . . am−nam−n+1 . . . am}) = {am−n+1 . . . am}

Adrien Pommellet On Model-checking Pushdown System Models 56



An iterative abstraction scheme

1 We start from n = 1;

2 we compute α(Paths(C ,C ′)) for α = αprefix
n and α = αsuffix

n ;
3 we check if α(Paths(C ,C ′)) ∩ τ∗ = ∅; if this holds, then C ′

can’t be reached from C with a valid path;
4 otherwise, we check if our abstraction introduced a spurious

counter-example;
5 if the counter-example was spurious, we increment n and go

back to the step 2.
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Application to a Bluetooth driver

We use this iterative abstraction scheme to find an error in a
Bluetooth driver for Windows NT.

We model it as a SDPN and find that an erroneous configuration is
reachable using a prefix abstraction of size 12.
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Our third contribution

1 We defined a new model for concurrent programs called SDPN;

2 We proved that its set of paths was the least solution of a set
of constraints.

3 We used an abstraction framework in order to solve these
constraints.

4 We over-approximated the reachability problem for SDPNs.
5 We defined an iterative abstraction scheme for SDPNs and

applied it to a driver.
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Conclusion
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Summary

1 We showed that the model-checking problem of HyperLTL for
PDSs is undecidable, we proved some decidability results when
all variables are regular except the first, and we used these
results to approximate the model-checking problem.

2 We defined a new automaton model, called UPDS, that
models the stack of a program more accurately than a PDS,
we proved that its reachability sets are not regular but
context-sensitive, then we over and under-approximated these.

3 We defined a new model for concurrent programs called
SDPN, we abstracted its reachability problem, and we applied
this over-approximation in an iterative scheme.
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Future work

1 We plan to implement algorithms to approximate the
model-checking problem of HyperLTL for PDSs.

2 We know that the reachability sets of the UPDS model are not
regular; we want to determine whether they are context-free or
not.

3 We plan to program a tool that would implement the
abstraction framework for SDPNs designed in the third part of
this thesis.
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Thank you!
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Undecidability of HyperLTL
model-checking
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Proof of undecidability

Let L1 and L2 be two context-free languages accepted respectively
by two PDA P1 and P2.

p0

P1P2

{i1}

{i2}

We design a PDS P that can simulate either P1 or P2, depending
on its first transition.
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Proof of undecidability

We want to design a HyperLTL formula on P such that it would
characterize a common accepting run of P1 and P2.

ψ = ∃π1, ∃π2,ϕ

It will use two trace variables π1 and π2.
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Proof of undecidability

ψ = ∃π1, ∃π2, (i
1
π1
∧ i2π2

)

The trace variables π1 and π2 represent runs of P1 and P2
respectively.

π1 : {i1} → . . .

π2 : {i2} → . . .
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Proof of undecidability

ψ = ∃π1, ∃π2, (i
1
π1
∧ i2π2

)

∧ XG
∧

a∈AP

(aπ1 ⇔ aπ2)

The two traces are equal from their second letter onwards.

π1 : {i1} → {a} → . . .

π2 : {i2} → {a} → . . .
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Proof of undecidability

ψ = ∃π1, ∃π2, (i
1
π1
∧ i2π2

)

∧ XG
∧

a∈AP

(aπ1 ⇔ aπ2)

∧ FG (fπ1 ∧ fπ2)

The two traces are accepting.

π1 : {i1} → {a} → . . .→ {f } → {f } → . . .

π2 : {i2} → {a} → . . .→ {f } → {f } → . . .
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Proof of undecidability

P |= ψ if and only if there is an accepting run π common to P1
and P2. But such a run exists if and only if L1 ∩ L2 6= ∅.

Hence:

Theorem
The model-checking problem of HyperLTL for pushdown systems is
undecidable.
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Non-regularity of post∗ for UPDSs
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A counter-example of regularity for post∗

We consider the UPDS P :

(Ra) (p, a)→ (p, ε) (Rb) (p, b)→ (p, ε)
(C ) (p, a)→ (p, ab)

And the regular set C = {p} × {ε} × a (ba)∗.

p a b a b a
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A relevant subset of post∗

We consider the subset L =
{〈

p, an+1, bn
〉
, n ∈ N

}
⊆ post∗ (C).

p a b a b a
RaRb⇒ a b p a b a

C⇒

a p a b b a
RaRbRb⇒ a a b b p a

CC⇒

a a p a b b
Ra⇒ a a a p b b ∈ L

(Ra) (p, a)→ (p, ε) (Rb) (p, b)→ (p, ε)
(C ) (p, a)→ (p, ab)
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A constraint on post∗

For any reachable configuration 〈p,wu,wl〉 and the word
w = w̄uwl , the inequality |w |b + |w |b̄ + 1 ≥ |w |a + |w |ā holds.

The inequality holds on the starting configuration
C = {p} × {ε} × a (ba)∗.
The rules (Ra) = (p, a)→ (p, ε) and (Rb) = (p, b)→ (p, ε)
do not change the number of occurences of the letter a on the
whole stack.
The rule (C ) = (p, a)→ (p, ab) can make it smaller.
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Applying the pumping lemma

If we suppose that post∗ (C) is regular, let k be its pumping length.

We consider the word w = ak+1bk of the language L.
We apply the pumping lemma to w : w = xyz , |xy | ≤ k ,
|y | ≥ 1, and xy iz ∈ post∗ (C), ∀i ≥ 1, with x ∈ ā∗, y ∈ ā+

and z ∈
(
ā + b̄

)∗.
For i large enough, wi = xy iz ∈ post∗ (C) and
|wi |ā > |wi |b̄ + 1.

There is a contradiction and post∗ (C) is not regular.
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Computing the constraints for SDPNs
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Expressing the constraints

There are five different types on constraints, depending on whether
we are labelling a transition that was already in AC ′ or that was
added by a saturation rule matched to a switch, a pop, a push, or a
spawn.

We focus on the latter spawn case.
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The fifth constraint: spawn

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

p2 γ2 ε p1

γ1p
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The fifth constraint: spawn

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)) ⊆ λ(sp, γ, q)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ
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The fifth constraint: spawn

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)) ⊆ λ(sp, γ, q)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ
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An issue with sets of paths as labels

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)) ⊆ λ(sp, γ, q)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ ?

λ(s ′p1
, γ1, q) does not fully express Paths(Thread1)!
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Using functions as labels

For each rule pγ
a−→ p2γ2 . p1γ1 ∈ ∆:

a · (Paths(Thread2)� Paths(Thread1)) ⊆ Paths(Parent)

−→ a · (λ(sp2 , γ2, q
′)� λ(s ′p1

, γ1, q)(x)) ⊆ λ(sp, γ, q)(x)

s sp2

Thread 2

q′ s ′ s ′′p1

Thread 1

qsp

Parent

p2 γ2 ε p1

γ1p

γ x

We use functions in Π −→ Π with a variable x .

Adrien Pommellet On Model-checking Pushdown System Models 82



Five constraints

Initial: Id ⊆ λ(t)

Switch: a · λ(sp′ , γ
′, q)(x) ⊆ λ(sp, γ, q)(x)

Pop: {a} ⊆ λ(sp, γ, sp′)(x)

Push: a · (λ(sp′ , γ1, q
′)◦λ(q′, γ2, q)(x)) ⊆ λ(sp, γ, q)(x)

Spawn: a · (λ(sp2 , γ2, q
′)({ε})� λ(s ′p1

, γ1, q)(x)) ⊆ λ(sp, γ, q)(x)
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