
THÈSE DE DOCTORAT DE L’UNIVERSITÉ SORBONNE PARIS CITÉ

PRÉPARÉE À L’UNIVERSITÉ PARIS DIDEROT

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE
PARIS-CENTRE - ED 386

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

LABORATOIRE D’INFORMATIQUE DE PARIS NORD

On Model-checking Pushdown
System Models

Vérification de modèles de systèmes à pile

THÈSE DE DOCTORAT D’INFORMATIQUE

Par ADRIEN POMMELLET

Dirigée par TAYSSIR TOUILI

SOUTENUE PUBLIQUEMENT LE 5 JUILLET 2018 À VILLETANEUSE

Jury

Ahmed Bouajjani Examinateur Prof. Université Paris Diderot
Didier Caucal Président Prof. Université Paris-Est Marne-la-Vallée
Javier Esparza Examinateur Prof. Technische Universität München
Jérôme Leroux Rapporteur DR Université de Bordeaux
Stefan Schwoon Rapporteur MdC ENS Paris-Saclay
Tayssir Touili Directrice DR Université Paris 13
Tomáš Vojnar Examinateur Prof. Brno University of Technology

http://www.sorbonne-paris-cite.fr/fr
https://www.univ-paris-diderot.fr/
https://www.irif.fr/
https://lipn.univ-paris13.fr/

i

Présentation de la thèse

Cette thèse introduit différentes méthodes de vérification (ou model-
checking) sur des modèles de systèmes à pile. En effet, les systèmes à pile
(pushdown systems) modélisent naturellement les programmes séquen-
tiels grâce à une pile infinie qui peut simuler la pile d’appel du logiciel.

La première partie de cette thèse se concentre sur la vérification sur des
systèmes à pile de la logique HyperLTL, qui enrichit la logique tem-
porelle LTL de quantificateurs universels et existentiels sur des vari-
ables de chemin. Il a été prouvé que le problème de la vérification
de la logique HyperLTL sur des systèmes d’états finis est décidable ;
nous montrons que ce problème est en revanche indécidable pour les
systèmes à pile ainsi que pour la sous-classe des systèmes à pile visibles
(visibly pushdown systems). Nous introduisons donc des algorithmes
d’approximation de ce problème, que nous appliquons ensuite à la
vérification de politiques de sécurité.

Dans la seconde partie de cette thèse, dans la mesure où la représen-
tation de la pile d’appel par les systèmes à pile est approximative, nous
introduisons les systèmes à surpile (pushdown systems with an upper stack)
; dans ce modèle, les symboles retirés de la pile d’appel persistent dans
la zone mémoire au dessus du pointeur de pile, et peuvent être plus
tard écrasés par des appels sur la pile. Nous montrons que les en-
sembles de successeurs post∗ et de prédécesseurs pre∗ d’un ensemble
régulier de configurations ne sont pas réguliers pour ce modèle, mais
que post∗ est toutefois contextuel (context-sensitive), et que l’on peut
ainsi décider de l’accessibilité d’une configuration. Nous introduisons
donc des algorithmes de sur-approximation de post∗ et de sous-appro-
ximation de pre∗, que nous appliquons à la détection de débordements
de pile et de manipulations nuisibles du pointeur de pile.

Enfin, dans le but d’analyser des programmes avec plusieurs fils d’exé-
cution, nous introduisons le modèle des réseaux à piles dynamiques syn-
chronisés (synchronized dynamic pushdown networks), que l’on peut voir
comme un réseau de systèmes à pile capables d’effectuer des change-
ments d’états synchronisés, de créer de nouveaux systèmes à piles, et
d’effectuer des actions internes sur leur pile. Le problème de l’accessi-
bilité étant naturellement indécidable pour un tel modèle, nous calcu-
lons une abstraction des chemins d’exécutions entre deux ensembles

ii

réguliers de configurations. Nous appliquons ensuite cette méthode à
un processus itératif de raffinement des abstractions.

Mots-clés

— vérification

— systèmes à pile

— automates à pile

— LTL

— hyper-propriétés

— automates à surpile

— pointeur de pile

— réseaux d’automates à pile synchronisés

— abstraction de Kleene

iii

Abstract

In this thesis, we propose different model-checking techniques for
pushdown system models. Pushdown systems (PDSs) are indeed known
to be a natural model for sequential programs, as they feature an un-
bounded stack that can simulate the assembly stack of an actual pro-
gram.

Our first contribution consists in model-checking the logic HyperLTL
that adds existential and universal quantifiers on path variables to LTL
against pushdown systems (PDSs). The model-checking problem of
HyperLTL has been shown to be decidable for finite state systems. We
prove that this result does not hold for pushdown systems nor for the
subclass of visibly pushdown systems. Therefore, we introduce approx-
imation algorithms for the model-checking problem, and show how
these can be used to check security policies.

In the second part of this thesis, as pushdown systems can fail to ac-
curately represent the way an assembly stack actually operates, we in-
troduce pushdown systems with an upper stack (UPDSs), a model where
symbols popped from the stack are not destroyed but instead remain
just above its top, and may be overwritten by later push rules. We
prove that the sets of successors post∗ and predecessors pre∗ of a reg-
ular set of configurations of such a system are not always regular, but
that post∗ is context-sensitive, hence, we can decide whether a single
configuration is forward reachable or not. We then present methods to
overapproximate post∗ and under-approximate pre∗. Finally, we show
how these approximations can be used to detect stack overflows and
stack pointer manipulations with malicious intent.

Finally, in order to analyse multi-threaded programs, we introduce
in this thesis a model called synchronized dynamic pushdown networks
(SDPNs) that can be seen as a network of pushdown processes exe-
cuting synchronized transitions, spawning new pushdown processes,
and performing internal pushdown actions. The reachability problem
for this model is obviously undecidable. Therefore, we compute an
abstraction of the execution paths between two regular sets of config-
urations. We then apply this abstraction framework to a iterative ab-
straction refinement scheme.

iv

Keywords

— model-checking

— pushdown systems

— pushdown automata

— LTL

— hyper-properties

— pushdown systems with an upper stack

— stack pointer

— synchronized dynamic pushdown networks

— Kleene abstraction

v

Résumé de la thèse

De la nécessité de la vérification automatique

Si les systèmes purement mécaniques souffrent de pannes parfois
imprévisibles causées par l’usure et le vieillissement du matériel,
l’utilisation de logiciels introduit la possibilité d’erreurs systématiques.
Une seule faute au sein d’un système industriel complexe peut alors
avoir des conséquences catastrophiques : une erreur de conversion
d’un nombre flottant codé sur 64 bits vers un entier relatif codé sur 16
bits a provoqué en 1996 l’autodestruction de la fusée Arianne V, cau-
sant près de 500 millions de dollars de pertes.

La complexité toujours croissante des logiciels rend l’identification de
telles erreurs de plus en plus compliquée. Les systèmes embarqués les
plus récents utilisent plusieurs millions de lignes de code exécutées si-
multanément par des centaines de processeurs. Il est donc essentiel de
concevoir des méthodes d’analyse des programmes qui soient fiables
et efficaces.

Les techniques d’analyse dynamique reposent sur une étude du com-
portement d’un programme lors de son exécution. Les tests en sont
l’une des formes les plus courantes et les plus simples : on compare le
résultat de l’exécution d’un programme sur un jeu de données précis
avec un résultat attendu. Afin d’empêcher un logiciel nuisible ou mal
conçu d’endommager le système effectuant l’analyse, il est courant
d’utiliser un environnement émulé.

On peut par exemple détecter des fuites de mémoire avec une telle
méthode. Son efficacité toutefois dépend de l’adéquation du jeu de
données de test utilisé: il n’est en particulier pas possible d’analyser
l’exécution d’un programme ayant une infinité d’entrées possibles.

L’analyse statique s’effectue en revanche sans exécuter la moindre ligne
de code, par une étude du code source ou du code machine si ce dernier
n’est pas disponible. Idéalement, de telles méthodes doivent prendre
en compte la sémantique du programme, et ne pas se résumer à une
simple recherche de motifs syntaxiques.

Il est hélas impossible de toujours déterminer si un programme quel-
conque ayant la puissance de calcul d’une machine de Turing vérifie

vi

une spécification précise telle que l’absence d’erreurs lors de l’exécu-
tion : un tel problème est indécidable, par une simple réduction au
problème de l’arrêt.

Pour cette raison, le model-checking (ou vérification automatique) s’est
imposé comme l’une des pierres angulaires des méthodes modernes
d’analyse statique. Dans ce cadre, le programme est représenté par un
modèle mathématique abstrait qui approxime le comportement du pro-
gramme au prix de son incomplétude : toute propriété vérifiée par le
programme ne l’est pas nécessairement par le modèle, mais ce dernier
peut malgré tout s’avérer utile s’il ne vérifie que des propriétés qui sont
également vraies pour le programme original.

Les comportements interdits et les propriétés désirables du programme
sont ensuite exprimées par des formules dans un cadre logique claire-
ment défini, puis l’on vérifie si elles s’appliquent bien au modèle ab-
strait du programme.

La logique temporelle

Le model-checking repose ainsi sur deux éléments: un modèle formel
du programme assez précis pour représenter fidèlement certains as-
pects de son comportement tels que la récursion ou la propagation de
variables, et une spécification précise des propriétés de sûreté ou de
sécurité que l’on souhaite vérifier.

La logique temporelle a été introduite par Amir Pnueli dans [Pnu77].
Ce terme fait référence à différents systèmes de règles symboliques
pour représenter et raisonner sur des propositions qualifiées en ter-
mes de temps. Pnueli a en particulier conçu la logique temporelle linaire,
plus connue sous le nom de LTL, et montré comment elle pouvait être
vérifiée sur des automates d’états finis. Les formules LTL représentent
des propriétés sur le futur des chemins d’exécution, c’est-à-dire les
suites de configuration que le modèle peut parcourir. LTL peut par
exemple servir à représenter des propriétés de vivacité ou de sûreté.

Clarke et al. ont plus tard introduit et vérifié sur des automates d’états
finis la logique du temps arborescent CTL. Cette logique s’applique a des
arbres d’exécution, et peut imposer simultanément une contrainte à
de multiples chemins d’exécution partant d’une même configuration.
Certaines propriétés peuvent être exprimées par CTL mais pas par LTL,
et vice-versa.

Le model-checking de LTL et de CTL a ainsi été le sujet de multiples
études depuis 25 ans [GV08, Var96, KYV01, QS82].

vii

Une formule LTL ne quantifie toutefois qu’un seul chemin d’exécution
du système : ni LTL, ni CTL ne peuvent exprimer de propriétés sur de
multiples traces simultanées et synchronisées d’un même programme.
De tels propriétés sont appelées hyperpropriétés, et peuvent servir à ex-
primer de nombreuses règles de sécurité ou de sûreté, en particulier
dans le cadre de l’analyse de flux d’informations. Ainsi, la règle de non-
interférence impose de ne pas pouvoir distinguer les sorties publiques
de deux exécutions ayant les mêmes variables publiques d’entrée,
quand bien même leurs entrées privées diffèrent. Une telle relation
entre deux exécutions du même modèle ne peut être exprimée par une
simple formule LTL.

HyperLTL est une logique introduite par Clarkson et al. dans [CFK+14]
qui étend LTL en autorisant la quantification universelle et existentielle
de multiples variables de chemin évoluant dans l’ensemble des traces
d’exécution du système, permettant ainsi l’expression d’hyperpropri-
étés. Par exemple, la formule ∀π1, ∀π2, (aπ1 ∧ aπ2) ⇒ X((bπ1 ∧ bπ2) ∨
(cπ1 ∧ cπ2)) signife que pour deux variables de chemin π1 et π2 dans
l’ensemble des traces d’exécution infinies d’un système, si π1 et π2
vérifient a à une étape donnée, alors elles doivent vérifier b ou c à
l’étape suivante.

Clarkson et al. ont montré que le problème S |= ψ du model-checking
d’HyperLTL, c’est-à-dire vérifier si les traces d’un système S vérifient
la formule HyperLTL ψ, est décidable si S est un système de transitions
fini (équivalent à un automate d’états finis). Différents algorithmes ont
plus tard été présentés par Finkbeiner et al. dans [FRS15].

Toutefois, les automates d’états finis ne peuvent simuler les program-
mes effectuant un nombre non-borné d’appels récursifs à d’autres
procédures. Il faut pour cela utiliser la classe des automates à pile (ou
PDSs, pour pushdown systems). Un tel automate dispose d’une pile
non bornée qui lui permet de simuler la pile d’appel d’un programme,
où sont stockées les informations sur les procédures actives du pro-
gramme telles que les adresses de retour, les paramètres, et les vari-
ables locales.

Comme indiqué précédemment, la logique temporelle permet souvent
d’exprimer des propriétés de correction des programmes. Il est donc
important de proposer des techniques de model-checking pour les au-
tomates à pile. Des algorithmes efficaces pour LTL ont été introduits
dans [BEM97, EHRS00, Wal01]. La vérification de CTL sur les auto-
mates à pile a d’abord été proposée par Walukiewicz et al. dans [Wal00]
; une approche basée sur l’emploi d’automates a plus tard été utilisée
par Song et al. dans [ST11]. La vérification de HyperLTL sur les auto-
mates à pile n’a toutefois jamais encore été considérée.

viii

Vérification de la logique HyperLTL sur
les automates à piles

Nous nous intéressons dans la première partie de cette thèse au pro-
blème du model-checking de la logique HyperLTL sur les PDSs.

Nous montrons que ce problème est hélas indécidable : l’ensemble des
traces d’un PDS est un langage hors-contexte, et il est indécidable de
déterminer si l’intersection de deux langages hors-contexte est vide ;
on réduit le précédent problème à celui du model-checking en utilisant
une formule HyperLTL permettant de synchroniser des traces.

Il est toutefois décidable de déterminer si l’intersection de langages vis-
iblement hors-contexte est vide. Cette famille de langages est engendrée
par les automates visiblement à pile, une sous-classe des automates à pile
introduite par Alur et al. dans [AM04] et qui dépend de ses entrées :
à chaque étape d’une exécution, la prochaine opération effectuée sur
la pile dépend de la lettre du mot d’entrée lue, selon une partition
de l’alphabet d’entrée. Nous étudions le problème du model-checking
de HyperLTL sur les systèmes visiblement à pile (visibly pushdown sys-
tems, ou VPDSs) et prouvons son indécidabilité par une réduction au
problème du vide sur les automates visiblement à deux piles, que l’on
sait indécidable grâce aux travaux de Carotenuto et al. dans [CMP07].

Toutefois, il est décidable de déterminer si l’intersection d’un langage
hors-contexte et d’un ensemble régulier est vide ; nous considérons
donc le cas d’une formule dont seule une unique variable appartient à
l’ensemble des traces Tracesω(P) d’un PDS, les autres variables appar-
tenant à une sur-approximation régulière α(Tracesω(P)). En utilisant
une approche basée sur la théorie des automates, nous pouvons par-
tiellement décider le problème du model-checking de formules dont
toutes les variables sont universellement quantifiées à l’exception d’au
plus une : si une telle formule est vérifiée en sur-approximant les traces,
il en sera de même pour le système original. De même, en considérant
des sous-approximations régulières des traces sauf pour une seule vari-
able au plus, on peut partiellement vérifier une formule HyperLTL
n’utilisant que des quantificateurs existentiels ∃ : si la sous-approxima-
tion ne vérifie pas la formule, il en est de même du programme originel.

Nous montrons également que le problème du model-checking sur des
PDSs de formules HyperLTL n’utilisant que des quantificateurs exis-
tentiels ∀ peut être approximé en effectuant une vérification à phases
bornées d’une formule LTL sur un automate multi-piles ; une phase est
une partie d’un chemin d’exécution durant laquelle on ne peut retirer
les symboles que d’une seule pile au plus, comme définie par La Torre
et al. dans [TMP07].

ix

. . . a b c d . . .

sp

FIGURE 1: La
pile originelle.

. . . a b c d . . .

sp

FIGURE 2: La
pile après un

pop.

b c d . . .

FIGURE 3: La
pile originelle

du PDS.

c d . . .

FIGURE 4: La
pile du PDS
après un pop.

Ces résultats ont été publiés dans [PT18].

Les automates à surpile

Dans la seconde partie de cette thèse, nous étendons le modèle des au-
tomes à pile de manière à prendre en compte la section de la mémoire
localisée au-dessus de la pile.

Le but des PDSs est en effet de modéliser avec précision la pile d’appel
du programme : il s’agit d’une structure de données sous forme de pile
permettant de stocker les informations liées aux procédures actives du
programme telles que les adresses de retour, les paramètres passés en
argument, et les variables locales. Elle est généralement implémentée
en utilisant un registre pour le pointeur de pile (sp) qui indique la posi-
tion du sommet de la pile dans la mémoire.

Ainsi, si l’on considère que la pile s’étend vers des adresses mémoire
décroissantes, quand l’on pose (push) un nouvel élément sur la pile,
le pointeur (sp) est décrémenté avant d’écrire le nouvel élément. Par
exemple, dans le cas de l’architecture x86, la valeur de (sp) est réduite
de 4 (on ajoute 4 octets). Quand l’on retire (pop) un élément de la pile,
(sp) est incrémenté, de 4 par exemple dans le cas de l’architecture x86.

Toutefois, dans un PDS, ni les push, ni les pop ne suivent vraiment le
fonctionnement de la pile en assembleur. En effet, durant un vrai pop,
l’élément retiré reste en mémoire et le pointeur de pile est simplement
incrémenté, comme montré dans les Figures 1 et 2, tandis qu’un PDS
se contente de détruire le sommet de la pile, comme montré dans les
Figures 3 et 4

Cette différence subtile prend son importance si l’on veut analyser des
programmes en assembleur manipulant directement le pointeur de

x

. . . a b c d . . .

FIGURE 5: La
pile originelle de

l’UPDS.

. . . a b c d . . .

FIGURE 6: La
pile de l’UPDS
après un pop.

pile. En effet, il est possible de manipuler le registre contenant sp.
Par exemple, l’instruction mov eax [sp− 4] permet de copier la valeur
pointée par l’adresse sp− 4 dans le registre général eax. Dans la mesure
où l’adresse sp− 4 est située après le pointeur de pile, il est impossible
d’évaluer la valeur copiée vers eax sans une forme d’enregistrement
des précédents éléments qui ont été retirés de la pile mais pas en-
core écrasés. De telles instructions peuvent être utilisées par des pro-
grammes nuisibles afin de dissimuler de manière inattendue leurs in-
tentions aux méthodes d’analyse statique.

Il est donc important d’enregistrer la section de la mémoire située juste
au-dessus du pointeur de pile. Nous étendons à cette fin les PDSs de
manière à prendre en compte cette surpile: nous introduisons un nou-
veau modèle appelé automate à surpile (ou pushdown system with an up-
per stack, ou UPDS) qui étend la sémantique des PDSs. Dans un UPDS,
quand l’on retire un symbole du sommet de la pile (que l’on précisera
du dessous à partir de maintenant), il est ajouté à la base d’une surpile
en lecture seule, ce qui permet de simuler la décrémentation du poin-
teur de pile, comme montré dans les Figures 5 et 6, où, après avoir été
retiré de la pile du dessous (à droite), b est ajouté à la pile du dessus
(à gauche) au lieu d’être simplement effacé. La surpile et la pile de
dessous se rejoignent au niveau du pointeur de pile.

Nous prouvons les propriétés suivantes sur les UPDSs :

— l’ensemble des prédécesseurs et celui des successeurs d’un en-
semble régulier de configurations ne sont pas toujours régulier ;
celui des successeurs est toutefois hors-contexte ;

— l’ensemble des prédécesseurs est régulier si l’on impose une lim-
ite de k phases sur les exécutions, une phase étant une partie
d’une exécution où l’on interdit soit les push, soit les pop ; c’est
une sous-approximation du véritable ensemble ;

— on peut sur-approximer l’ensemble des successeurs à partir d’une
abstraction des exécutions.

Nous montrons ensuite que les UPDSs et les approximations de leurs
ensembles d’accessibilité décrites précédemment peuvent être utilisés
pour localiser des erreurs et des brèches de sécurité dans des program-
mes.

xi

Ces résultats ont été publiés dans [PDT17].

Les réseaux dynamiques à pile synchronisés

Dans la troisième partie de cette thèse, nous nous concentrons sur le
problème du model-checking pour les programmes concurrents.

L’utilisation de programmes parallèles s’est popularisée ces quinze
dernières années, mais ces derniers n’en restent pas moins souvent in-
stables et vulnérables à des problèmes spécifiques tels que l’interblo-
cage. Des méthodes d’analyse statique adaptées à de tels programmes
sont donc plus nécessaires que jamais.

Comme précisé précédemment dans [EHRS00], les automates à pile
sont un modèle naturel pour les programmes séquentiels utilisant des
appels récursifs à des procédures. Il est donc naturel de vouloir modé-
liser un programmes concurrent par un réseau de systèmes à pile,
chaque PDS modélisant l’une des composantes séquentielles du tout.
C’est dans ce contexte que Bouajjani et al. ont introduit dans [BMOT05]
les réseaux dynamiques à pile (dynamic pushdown networks, ou DPNs).

Intuitivement, cette famille d’automates est constituée d’un réseau de
systèmes à piles exécutés indépendamment en parallèle. Chaque mem-
bre d’un DPN peut, après une transition, engendrer un nouveau PDS
qui devient lui aussi membre du réseau. Les DPNs permettent ainsi
de représenter un réseau de fils d’exécution, chaque fil pouvant ap-
peler des procédures, effectuer des actions internes, et engendrer un
nouveau fil.

Toutefois, ce modèle ne peut représenter la synchronisation de multi-
ples fils ou composants parallèles. Afin de modéliser la communica-
tion inter-fils, Bouajjani et al. ont introduit dans [BET03] les systèmes
à pile communiquant(communicating pushdown systems, ou CPDSs), que
l’on peut présenter comme un tuple de systèmes à pile se synchronisant
par rendez-vous sur leurs chemins d’exécution. Toutefois, les CPDSs
ne disposent que d’un nombre constant de processus, et ne peuvent
donc gérer la création dynamique de nouveaux fils.

Nous introduisons donc un modèle plus précis appelé réseau dynamique
à pile synchronisé (synchronized dynamic pushdown networks, ou SDPNs)
qui introduit dans les DPNs un mode de synchronisation par rendez-
vous afin de gérer en même temps la communication inter-fils et la
création dynamique de fils.

Un SDPN peut être vu comme un DPN dont les processus modélisés
par des PDSs peuvent se synchroniser par rendez-vous en envoyant et
recevant des messages : il est possible d’effectuer des actions internes

xii

étiquetées par une lettre τ sans se synchroniser, comme dans un DPN,
mais aussi de se synchroniser via des canaux dédiés.

Pour ce faire, chaque canal est représentée par une paire de lettres a et a
qui étiquettent certaines transitions. Si un fil d’exécution peut effectuer
une action étiquetée par a, et un autre fil, une action étiquetée par a,
alors les deux fils peuvent se synchroniser et effectuer simultanément
leurs actions en une seule étape que l’on étiquettera par τ.

Nous considérons ensuite le problème de l’accessibilité pour la classe
des SDPNs, c’est-à-dire, déterminer si une configuration critique peut
être atteinte depuis les configurations initiales du programme. Il est
équivalent de déterminer si l’ensemble Paths(C, C ′) des chemins entre
deux ensembles de configurations C et C′ est vide ou non. Ce problème
est hélas indécidable pour tous les modèles d’automates à pile synchro-
nisés, comme démontré par Ramalingam dans [Ram00].

On ne peut donc calculer l’ensemble Paths(C, C ′) des chemins d’exécu-
tion de manière exacte. Nous appliquons une méthode similaire à celle
détaillée dans [BET03] pour surmonter ce problème : nous calculons
une abstraction α(Paths(C, C ′)) des chemins. Pour ce faire, nous util-
isons des techniques basées sur :

— la représentation des ensembles réguliers de configurations de
SDPNs par des automates d’états finis ;

— l’utilisation de ces automates pour déterminer un ensemble de
contraintes dont le plus petit point fixe permet de caractériser les
chemins d’exécution du programme ; afin de calculer ces con-
trainte, (1) nous considérons une sémantique relâché sur les
SDPNs qui autorise la synchronisation partielle de chemins, (2)
nous approximons les ensembles de chemin d’exécution par des
fonctions sur des algèbres de Kleene, et (3) nous définissons un
produit de mélange (shuffle product) sur les chemins afin de repré-
senter l’entrelacement des fils d’exécution et leur synchronisation
potentielle ;

— la résolution de ces contraintes dans un domaine abstrait ; nous
considérons en particulier le cas d’un domaine fini ; cet ensemble
de contraintes peut alors être résolu par un calcul itératif de point
fixe.

Notons que les principales contributions de cette approche par rapport
aux méthodes définies dans [BET03, Tou05] sont l’emploi de fonctions
pour représenter les ensembles de chemins approximés et la définition
d’un produit de mélange adapté à l’entrelacement de fils. Le cadre
théorique de ces articles est en effet insuffisant pour gérer le cas de la
création dynamique de nouveaux fils, d’où ces ajouts.

xiii

Nous pouvons ensuite appliquer cette approximation du problème de
l’accessibilité à une procédure d’abstraction raffinée par itération inspirée
des travaux de Chaki et al. dans [CCK+06]. Notre idée est la suiv-
ante : (1) nous effectuons une analyse d’accessibilité d’un programme
modélisé par un SDPN en utilisant une abstraction finie d’ordre n ; si
l’ensemble cible de configuration n’est pas accessible par un chemin
abstrait, il n’est également pas accessible dans le programme original ;
dans le cas contraire, on dispose d’un contre-exemple ; (2) on vérifie si
l’on peut associer ce contre-exemple à une véritable exécution du pro-
gramme ; (3) si c’est le cas, l’ensemble cible est bel et bien accessible
; (4) dans le cas contraire, nous raffinons l’abstraction en utilisant un
domaine fini d’ordre n + 1 à l’étape (1). Cette procédure est utilisée
pour détecter un erreur dans un driver Windows, de manière sem-
blable à [QW04].

Ces résultats ont été publiés dans [PT17].

Plan de la thèse

L’objectif du Chapitre 2 est de rappeler au lecteur des résultats im-
portants sur les automates à pile, leurs propriétés d’accessibilité, et les
algorithmes de model-checking utiles au reste de cette thèse. Dans le
Chapitre 3, nous nous concentrons sur le model-checking de la logique
HyperLTL sur les automates à pile. Nous introduisons dans le Chapitre
4 une nouvelle classe d’automates appelée automates à surpile dont nous
étudions le problème de l’accessibilité. Nous présentons ensuite dans
le Chapitre 5 un modèle concurrent combinant création dynamique de
fil et synchronisation inter-fils appelé réseau dynamique à pile synchronisé
conçu de manière à pouvoir calculer efficacement une abstraction des
chemins d’exécution grâce au cadre théorique des algèbres de Kleene.
Nous présentons enfin notre conclusion dans le chapitre 6.

xv

Contents

Acknowledgements xix

1 Introduction 1
1.1 The need for model-checking 1
1.2 Temporal logics . 2
1.3 Model-checking the logic HyperLTL for

pushdown systems . 4
1.4 Pushdown systems with an upper stack 5
1.5 Synchronized dynamic pushdown networks 6
1.6 Thesis outline . 9

2 Model-checking Pushdown Systems 11
2.1 Pushdown systems . 11

2.1.1 The model . 11
2.1.2 P-automata . 12
2.1.3 From a program to a pushdown system 13

2.2 Reachability sets . 14
2.2.1 Computing pre∗ . 14
2.2.2 Computing post∗ 14

2.3 Model-checking LTL on pushdown systems 15
2.3.1 The linear-time temporal logic LTL 15
2.3.2 Büchi automata . 16
2.3.3 The model-checking problem 16

3 Model-checking HyperLTL for Pushdown Systems 19
3.1 Visibly pushdown systems 20
3.2 HyperLTL . 20

3.2.1 The logic . 20
3.2.2 HyperLTL and PDSs 22
3.2.3 HyperLTL and VPDSs 24

3.3 Model-checking constrained HyperLTL 26
3.3.1 Regular over-approximations of context-free lan-

guages . 28
3.3.2 With one context-free variable and n regular vari-

ables . 28
3.3.3 With one visibly pushdown variable and n regu-

lar variables . 30

xvi

3.4 Model-checking HyperLTL with bounded phases 31
3.4.1 Multi-stack pushdown systems 31
3.4.2 Application to HyperLTL model-checking 33

3.5 Applications to security properties 34
3.5.1 Observational determinism 34
3.5.2 Declassification . 36
3.5.3 Non-inference . 38

3.6 Related work . 38
3.7 Conclusion . 39

4 Reachability Analysis of Pushdown Systems with an Upper
Stack 41
4.1 Pushdown systems with an upper stack 42
4.2 Reachability properties . 44

4.2.1 post∗ is not regular 44
4.2.2 pre∗ is not regular 46
4.2.3 post∗ is context-sensitive 47

4.3 Under-approximating pre∗ 51
4.4 Over-approximating post∗ 52

4.4.1 A relationship between runs and the upper stack 53
4.4.2 Computing an over-approximation 56

4.5 Applications . 56
4.5.1 Stack overflow detection 57
4.5.2 Reading the upper stack 57
4.5.3 Changing the stack pointer 58

4.6 Related work . 59
4.7 Conclusion . 59

5 Static Analysis of Multi-threaded Recursive Programs Com-
municating via Rendez-vous 61
5.1 Synchronized dynamic pushdown networks 62

5.1.1 Dynamic pushdown networks 62
5.1.2 The model and its semantics 63

The strict semantics. 64
The relaxed semantics. 65

5.1.3 From a program to a SDPN model 66
5.2 The reachability problem 67

5.2.1 From the strict to the relaxed semantics 68
5.2.2 Representing infinite sets of configurations 68

5.3 Representing the set of paths 70
5.3.1 Π-configurations 70
5.3.2 The shuffle product 70
5.3.3 Π-automata . 71

The transition relation. 71
5.4 Characterizing the set of paths 72

5.4.1 Computing pre∗(M, C) 73

xvii

5.4.2 From pre∗(M, C) to pre∗Π(M, C) 73
The need for functions. 74
The constraints. 76
The intuition. 76

5.4.3 Proof of Theorem 22 78
Proof of Lemma 15 79
Proof of Lemma 16 81

5.5 An abstraction framework for paths 84
5.5.1 Abstractions and Galois connections 85
5.5.2 Kleene algebras . 85
5.5.3 Kleene abstractions 86

Prefix abstractions. 86
Suffix abstractions. 87

5.6 Abstracting the set of paths 88
5.6.1 From the language of paths to the Kleene abstrac-

tion . 89
5.6.2 Computing pre∗K(M, C) 92
5.6.3 Finding the abstraction 93

5.7 Using our framework in a iterative abstraction refine-
ment scheme . 94

5.8 A case study . 95
5.8.1 The program . 95
5.8.2 From the driver to the SDPN model 96

The process COUNTER. 97
The process STOPPING-FLAG. 97
The process STOPPING-EVENT. 98
The process STOP-D. 98
The process REQUEST. 98
The process GEN-REQ. 99
The function Increment. 99
The function Decrement. 99

5.8.3 An erroneous execution path 100
5.9 Related work . 102
5.10 Conclusion . 103

6 Conclusion and Future Work 105
6.1 A brief summary of this thesis 105
6.2 Future work . 105

6.2.1 Tools for the model-checking of hyperproperties . 105
6.2.2 Further reachability analysis of UPDSs 106
6.2.3 Tools for the model-checking of concurrent pro-

grams . 106
6.2.4 Abstract model-checking for SDPNs 107

xix

Acknowledgements
This thesis would not have been possible without the help and good-
will of many people.

I would first like to thank my supervisor Prof. Tayssir Touili for her
continuous support of my Ph.D study and related research. I could not
have written this thesis without her guidance.

I would also like to thank the members of my thesis committee for
their time and effort: Ahmed Bouajjani, Didier Caucal, Javier Esparza,
Jérôme Leroux, Stefan Schwoon, and Tomáš Vojnar.

I am grateful to the whole Vérification team of the IRIF. I praise Arnaud
Sangnier, Constantin Enea, and Germán Delbianco for their commit-
ment to our frequent seminaries.

I would also like to express my gratitude to the LoVe team of the LIPN.
Its weekly seminaries, organized by César Rodrı́guez and Étienne
André, provided me with many opportunities to hone my presentation
skills.

I am indebted to my previous internship advisors Prof. Christophe
Prieur, Prof. Fabien Mathieu, and Prof. David Naccache. Without
them, I am not sure I would have mustered the will to start this the-
sis.

I thank my fellow labmate Marcio Diaz for his help on the trickiest
points of some proofs.

Last but not the least, I would like to thank my family as well as my
fencing club for their support.

xxi

List of Figures

1 La pile originelle. ix
2 La pile après un pop. ix
3 La pile originelle du PDS. ix
4 La pile du PDS après un pop. ix
5 La pile originelle de l’UPDS. x
6 La pile de l’UPDS après un pop. x

1.1 The original stack. 5
1.2 The stack after one pop. 5
1.3 The original PDS stack. 5
1.4 The PDS stack after one pop. 5
1.5 The original UPDS stacks. 6
1.6 The UPDS stacks after one pop. 6

3.1 Checking observational determinism on the PDS P . . . 35
3.2 Checking declassification on the PDS P 37

4.1 Semantics of pop rules. 43
4.2 Semantics of push rules. 43
4.3 Using an under-approximation. 51
4.4 Using an over-approximation. 53
4.5 Using > to bound the upper stack. 57
4.6 The stack being read. 58
4.7 The original stack. 58
4.8 After changing sp. 58

5.1 Representing configurations of a DPN. 62
5.2 A DPN with 3 threads after a pop from T2 and a push on

T3. 63
5.3 A DPN with 3 threads after thread T1 spawns a new

thread T4. 63
5.4 Semantics of synchronized actions. 64
5.5 Semantics of internal actions. 65
5.6 Semantics of unsynchronized actions. 65
5.7 Accepting a regular set p1γ+

1 p2γ2γ3 with an M-automaton. 69
5.8 Using labels in Π. 75
5.9 Using labels in ΠΠ. 75
5.10 Case of a switch rule. 77
5.11 Case of a pop rule. 77

xxii

5.12 Case of a push rule. 78
5.13 Case of a spawn rule. 78
5.14 Adding an edge if a new process is spawned. 80
5.15 Adding an edge if no new process is spawned. 81
5.16 Applying a second order prefix abstraction to an example. 87
5.17 Applying a second order suffix abstraction to an example. 88

1

Chapter 1

Introduction

1.1 The need for model-checking

Systems based entirely on ’hardwired technology’ tend to suffer so-
called random failures, which are typically age or wear-related, but
software-based systems fail predominantly due to systematic errors.
A single mistake in such complex designs may bear catastrophic con-
sequences: a conversion error from a 64-bit floating point number to
a 16-bit signed integer caused in 1996 the self-destruction of the Euro-
pean Space Agency’s Ariane 5 rocket that carried a payload worth $500
million.

As the complexity of software grows, identifying these errors becomes
harder and harder. Modern systems can depend on millions of lines of
code running on hundreds of networked processors. Designing sound
and efficient program analysis methods is therefore a matter of the ut-
most importance.

Dynamic techniques can be used to analyse a program by observing its
behaviour during its execution. The simplest form of dynamic anal-
ysis is testing: the program is executed on a given set of inputs and
matched against an expected result. In order to prevent ill-designed or
malicious software from damaging the system on which the analysis is
performed, the code is often run in an emulated environment.

Errors such as memory leaks can be found while the program is being
monitored. To be effective, this method must be executed with ade-
quate test inputs in order to produce interesting behaviour. However,
if the set of inputs is very large or possibly infinite, the program’s exe-
cution can’t be analysed in all possible circumstances.

By using static techniques, on the other hand, one attempts to anal-
yse programs without running any piece of code. The analysis is in-
stead performed the source code or, if it’s not available, the object code.

2 Chapter 1. Introduction

Ideally, such techniques should not rely on simple syntactic pattern-
matching methods only, but the semantics of the program must be
taken into account as well.

Unfortunately, deciding whether an arbitrary program with the com-
putational power of a Turing machine may violate a specification such
as the absence of runtime errors is an undecidable problem. It can be
proven by a straightforward reduction to the halting problem.

For this reason, the model-checking framework has proven to be a cor-
nerstone of modern static analysis techniques. The program is repre-
sented as a simpler abstract mathematical model that approximates the
behaviour of the actual system at the expense of incompleteness, as not
every property true in the actual system is true of its abstraction. This
model can nonetheless be sound if every property true of the abstract
system can be mapped to a true property of the original program.

Desirable properties and forbidden behaviours are then expressed us-
ing a well-defined logical framework, then checked against the abstract
mathematical model of the program.

1.2 Temporal logics

In order to use model-checking techniques, one should on the one hand
compute a formal model of the program accurate enough to simulate
parts of its behaviour deemed relevant, be it recursion, synchroniza-
tion, or accurate variable propagation, and on the other hand use a
specification that allows one to express unambiguously the safety or
security properties one wants to check.

Temporal logics were pioneered by Amir Pnueli in [Pnu77]. This term
refers to different systems of symbolic rules for representing and rea-
soning about propositions qualified in terms of time. Pnueli introduced
the linear-time temporal logic, also known as LTL, and solved its model-
checking problem for finite automata. LTL formulas encode properties
about the future of execution paths, that is, the sequence of configu-
rations the model goes through. It can be used to express safety and
liveness properties.

Clarke et al. in [CE82] later introduced the computation tree logic CTL
and a related model-checking framework on finite-state systems. CTL
is a branching time logic: it applies to execution trees, and can simulta-
neously constrain several paths starting from a same configuration of
the model. There are properties expressible in CTL and not in LTL, as
well as properties expressible in LTL but not in CTL.

1.2. Temporal logics 3

Thus, LTL and CTL model-checking techniques were extensively stud-
ied over the past 25 years [GV08, Var96, KYV01, QS82].

However, a LTL formula only quantifies a single execution trace of a
system; neither LTL nor CTL can express properties on multiple, si-
multaneous, synchronized executions of a program. These properties
on sets of execution traces are known as hyperproperties. Many safety
and security policies can be expressed as hyperproperties; this is in
particular true of information-flow analysis. As an example, the non-
interference policy states that if two computations share the same public
inputs, they should have identical public outputs as well, even if their
private inputs differ. This property implies a relation between compu-
tations that can’t be expressed as a simple LTL formula.

HyperLTL is a logic extending LTL introduced by Clarkson et al. in
[CFK+14] that allows the universal and existential quantifications of
multiple path variables that range over traces of a system in order to de-
fine hyperproperties. As an example, the formula ∀π1, ∀π2, (aπ1 ∧ aπ2)
⇒ X ((bπ1 ∧ bπ2) ∨ (cπ1 ∧ cπ2)) means that, given two path variables
π1 and π2 in the set of infinite traces of a system, if π1 and π2 verify the
same atomic property a at a given step, then they should both verify
either b or c at the next step.

Clarkson et al. have shown that the model-checking problem S |= ψ
of HyperLTL, that is, knowing if the set of traces of a system S ver-
ifies the HyperLTL formula ψ, can be solved when S is a finite state
transition system (i.e. equivalent to a finite state automaton). Further
model-checking techniques were later presented by Finkbeiner et al.
in [FRS15].

However, the class of finite automata can’t simulate programs with un-
bounded recursive calls. To this end, another class called pushdown sys-
tems (PDSs) is more relevant. A PDS features an unbounded stack that
can simulate the call stack of an actual program. The call stack stores
information about the active procedures of a program such as return
addresses, passed parameters and local variables.

As mentioned previously, correctness properties of programs are of-
ten expressed with the unifying framework of temporal logics. It is
therefore important to propose model-checking algorithms for PDSs.
Efficient algorithms for model-checking LTL on PDSs were introduced
in [BEM97, EHRS00, Wal01]. CTL model-checking methods for PDSs
were first designed by Walukiewicz et al. in [Wal00]; an automata-
theoretic approach was later presented by Song et al. in [ST11]. How-
ever, model-checking techniques for HyperLTL were never considered.

4 Chapter 1. Introduction

1.3 Model-checking the logic HyperLTL for
pushdown systems

We consider in the first part of this thesis the model-checking problem
of HyperLTL formulas against PDSs.

Unfortunately, we show that the model-checking problem of Hyper-
LTL against PDSs is undecidable: the set of traces of a PDS is a context-
free language, and deciding whether the intersection of two context-
free languages is empty or not remains an undecidable problem that
can be reduced to the model-checking problem by using a HyperLTL
formula that synchronizes traces.

On the other hand, determining the emptiness of the intersection of
two visibly context-free languages is decidable. This class of languages is
generated by visibly pushdown automata (VPDA), an input-driven sub-
class of pushdown automata (PDA) first introduced by Alur et al. in
[AM04]: at each step of a computation, the next stack operation will
be determined by the input letter read, depending on a partition of the
input alphabet. We study the model-checking problem of HyperLTL
for visibly pushdown systems (VPDSs), and prove that it is also undecid-
able, by using a reduction of the emptiness problem for two-stack visibly
pushdown automata (2-VPDA), which has been shown to be undecidable
by Carotenuto et al. in [CMP07], to the model-checking problem.

To overcome these undecidability issues, since the emptiness of the in-
tersection of a context-free langage with a regular set is decidable, one
idea is to consider the case where only one path variable of the formula
ranges over the set of traces Tracesω(P) of a PDS or VPDS P , while the
other variables range over a regular abstraction α(Tracesω(P)). Us-
ing an automata-theoretic approach, we can approximate the model-
checking problem of HyperLTL formulas that only use universal quan-
tifiers ∀ with the exception of at most one path variable: if the Hyper-
LTL formula holds for the abstract traces, it holds for the actual system
as well. In a similar manner, if we under-approximate all path variables
save one, and a HyperLTL formula that only use existential quantifiers
∃ with the exception of at most one path variable doesn’t hold for this
approximation, then it doesn’t hold for the actual program.

We also show that the model-checking problem for PDSs of HyperLTL
formulas that only use universal quantifiers ∀ can be approximated by
performing a bounded-phase model-checking of a LTL formula for a
multi-stack pushdown system (MPDS), where a phase is a part of a run
during which there is at most one stack that is popped from, as defined
by La Torre et al. in [TMP07].

These results were published in [PT18].

1.4. Pushdown systems with an upper stack 5

. . . a b c d . . .

sp

FIGURE 1.1: The
original stack.

. . . a b c d . . .

sp

FIGURE 1.2: The
stack after one

pop.

b c d . . .

FIGURE 1.3: The
original PDS

stack.

c d . . .

FIGURE 1.4: The
PDS stack after

one pop.

1.4 Pushdown systems with an upper stack

In the second part of this thesis, we extend pushdown systems in order
to keep track of the content of the memory section just above the stack.

Indeed, PDSs were introduced to accurately model the call stack of a
program. A call stack is a stack data structure that stores information
about the active procedures of a program such as return addresses,
passed parameters and local variables. It is usually implemented using
a stack pointer (sp) register that indicates the head of the stack. Thus,
assuming the stack grows downwards, when data is pushed onto the
stack, sp is decremented before the item is placed on the stack. For in-
stance, in the x86 architecture sp is decremented by 4 (pushing 4 bytes).
When data is popped from the stack, sp is incremented. For instance, in
the x86 architecture sp is incremented by 4 (popping 4 bytes).

However, in a PDS, neither push nor pop rules are truthful to the as-
sembly stack. During an actual pop operation on the stack, the item
remains in memory and the stack pointer is increased, as shown in Fig-
ures 1.1 and 1.2, whereas a PDS deletes the item on the top of the stack,
as shown in Figures 1.3 and 1.4.

This subtle difference becomes important when we want to analyze
programs that directly manipulate the stack pointer and use assembly
code. Indeed, in most assembly languages, sp can be used like any
other register. As an example, the instruction mov eax [sp− 4] will put
the value pointed to at address sp− 4 in the register eax (one of the
general registers). Since sp− 4 is an address above the stack pointer,
we do not know what is being copied into the register eax, unless we
have a way to record the elements that had previously been popped
from the stack and not overwritten yet. Such instructions may happen

6 Chapter 1. Introduction

. . . a b c d . . .

FIGURE 1.5: The
original UPDS

stacks.

. . . a b c d . . .

FIGURE 1.6: The
UPDS stacks

after one pop.

in malicious assembly programs: malware writers tend to do unusual
things in order to obfuscate their payload and thwart static analysis.

Thus, it is important to record the part of the memory that is just above
the stack pointer. To this end, we extend PDSs in order to keep track of
this upper stack: we introduce a new model called pushdown system with
an upper stack (UPDS) that extends the semantics of PDSs. In a UPDS,
when a letter is popped from the top of the stack (lower stack from now
on), it is added to the bottom of a write-only upper stack, effectively
simulating the decrement of the stack pointer. This is shown in Figures
1.5 and 1.6, where after being popped, b is removed from the lower
stack (on the right) and added to the upper stack (on the left) instead
of being destroyed. The top of the lower stack and the bottom of the
upper stack meet at the stack pointer.

We prove that the following properties hold for the class of UPDSs:

— the sets of predecessors and successors of a regular set of configu-
rations are not regular; however, the set of successors of a regular
set of configurations is context-sensitive;

— the set of predecessors is regular given a limit of k phases, a phase
being a part of a run during which either pop or push rules are
forbidden; this is an under-approximation of the actual set of pre-
decessors;

— an over-approximation of the set of successors can be computed
by abstracting the set of runs first;

We then show that the UPDS model and the approximations of its
reachability sets described above can be used to find errors and secu-
rity flaws in programs.

These results were published in [PDT17].

1.5 Synchronized dynamic pushdown
networks

In the third part of this thesis, we tackle the model-checking problem
for concurrent programs.

1.5. Synchronized dynamic pushdown networks 7

Indeed, the use of parallel programs has grown in popularity in the
past fifteen years, but these remain nonetheless fickle and vulnerable
to specific issues such as race conditions or deadlocks. Static analysis
methods for this class of programs remain therefore more relevant than
ever.

As mentioned previously, pushdown systems are a natural model for
programs with sequential, recursive procedure calls [EHRS00]. Thus,
networks of pushdown systems can be used to model multithreaded
programs, where each PDS in the network models a sequential compo-
nent of the whole program. In this context, dynamic pushdown networks
(DPNs) were introduced by Bouajjani et al. in [BMOT05].

Intuitively, this class of automata consists in a network of pushdown
systems running independently in parallel. Each member of a DPN
can, after a transition, spawn a new PDS which is then introduced as
a new member of the network. Thus, DPNs can be used to represent a
network of threads where each thread can recursively call procedures,
perform internal actions, or spawn a new thread.

However, this model cannot represent synchronization between differ-
ent threads or parallel components. In order to handle communication
in multithreaded programs, Bouajjani et al. introduced in [BET03] com-
municating pushdown systems (CPDSs), a model which consists of a tu-
ple of pushdown systems synchronized by rendez-vous on execution
paths. However, CPDSs have a constant number of processes and can-
not therefore handle dynamic creation of new threads.

Hence, we introduce a more accurate model, namely, synchronized dy-
namic pushdown networks (SDPNs), that combines DPNs with synchro-
nization by rendez-vous in order to handle dynamic thread creation
and communication at the same time.

A SDPN can be seen as a DPN where PDS processes can synchronize
via rendez-vous by sending and receiving messages. In a SDPN, push-
down processes can apply internal actions labelled by a letter τ with-
out synchronization, just like a DPN, but can also synchronize through
channels.

To do so, we represent each channel by a pair of letters, as an example
a and a, that can be used to label transitions. If one thread can execute
an action labelled with a signal a, and another thread another action
labelled with a, then both threads can synchronize and execute their
respective transitions simultaneously, in a single step labelled by τ.

We consider the reachability problem for SDPNs, that is, finding if a
critical configuration can be reached from the set of starting configu-
rations of the program. An equivalent problem is to compute the set
Paths(C, C ′) of execution paths leading from a configuration in C to a

8 Chapter 1. Introduction

configuration in C′ and check if it is empty. Unfortunately, this problem
remains undecidable for synchronized pushdown systems, as proven
by Ramalingam in [Ram00].

Therefore, the set of execution paths Paths(C, C′) cannot be computed
in an exact manner. To overcome this problem, we proceed in a manner
similar to the method outlined in [BET03]: our approach is based on the
computation of an abstraction α(Paths(C, C ′)) of the execution paths
language. To this aim, we propose techniques based on:

— the representation of regular sets of configurations of SDPNs with
finite word automata;

— the use of these automata to determine a set of constraints whose
least fixpoint characterizes the set of execution paths of the pro-
gram; to compute this set of constraints, (1) we consider a relaxed
semantics on SDPNs that allows partially synchronized runs, (2)
we abstract sets of execution paths as functions in a Kleene alge-
bra, instead of simple elements of the abstract domain, and (3) we
use a shuffle product on abstract path expressions to represent the
interleaving and potential synchronization of parallel executions;

— the resolution of this set of constraints in an abstract domain; we
consider in particular the case where the abstract domain is finite;
the set of constraints can then be solved using an iterative fixpoint
computation.

Note that the main contributions of our approach with regards to the
methods outlined [BET03, Tou05] are the introduction of functions to
represent sets of abstract path expressions and the use of a shuffle prod-
uct to model the interleaving of threads. The abstraction framework as
defined in these papers cannot be applied to SDPNs due to the presence
of dynamic thread creation, hence, the need for functions and shuffling.

We can then apply this over-approximation framework for the reacha-
bility problem to a iterative abstraction refinement scheme inspired by the
work of Chaki et al. in [CCK+06]. The idea is the following: (1) we do
a reachability analysis of the program, using a finite domain abstrac-
tion of order n in our over-approximation framework; if the target set
of configurations is not reachable by the abstract paths, it is not reach-
able by actual execution paths either; otherwise, we obtain a counter-
example; (2) we check if the counter-example can be matched to an
actual execution of the program; (3) if it does, then we have shown that
the target set of configurations is actually reachable; (4) otherwise, we
refine our abstraction and use instead a finite domain abstraction of or-
der n + 1 in step (1). This scheme is then used to prove that a Windows
driver first presented in [QW04] can reach an erroneous configuration,
using an abstraction of the original program.

1.6. Thesis outline 9

These results were first published in [PT17].

1.6 Thesis outline

The purpose of Chapter 2 is to remind the reader of important defini-
tions and results on pushdown systems (PDSs), reachability properties,
and model-checking algorithms relevant for the rest of this thesis. In
Chapter 3, we focus on model-checking the logic HyperLTL for push-
down systems. We introduce in Chapter 4 a new class of automata
called pushdown systems with an upper stack (UPDSs) and focus on its
reachability problem. We design in Chapter 5 a concurrent model fea-
turing both thread spawns and synchronization between threads called
synchronized dynamic pushdown networks (SDPNs) in such a manner that
a convenient over-approximation of the execution paths can be com-
puted thanks to a theoretical framework known as Kleene abstractions.
We present our conclusion in Chapter 6.

11

Chapter 2

Model-checking Pushdown
Systems

Pushdown systems (PDSs) were introduced to model the call stack of a
program that stores information about the active procedures such as
return addresses, passed parameters and local variables. Without such
a stack, a finite-state automaton can’t represent accurately programs
with nested, recursive function calls, hence, the need for a more ex-
pressive model.

The purpose of this chapter, which features no new contributions of
our own, is to present to the reader important definitions and model-
checking techniques on PDSs that are relevant to the rest of this thesis.

Chapter outline. In Section 1 of this chapter, we define pushdown
systems and explain why they are a relevant model. Then, in Section
2, we recall how the forward and backward reachability problems for
PDSs can be solved using an automata-theoretic approach. Finally, in
Section 3, we define the linear-time temporal logic and show how it can
be applied to PDSs.

2.1 Pushdown systems

2.1.1 The model

Pushdown systems are a natural model for sequential programs with re-
cursive procedure calls.

Definition 1 (Pushdown system). A pushdown system (PDS) is a tuple
P = (P, Σ, Γ, ∆) where P is a finite set of control states, Σ a finite input
alphabet, Γ a finite stack alphabet, and ∆ ⊆ P× Γ× Σ× P× Γ∗ a finite set
of transition rules.

12 Chapter 2. Model-checking PDSs

If d = (p, γ, a, p′, w) ∈ ∆, we write d = (p, γ)
a−→ (p′, w). We call

a the label of d. We can assume without loss of generality that ∆ ⊆
P× Γ× Σ× P× Γ≤2. We say that a PDS is unlabeled if Σ = ∅. We can
then write P = (P, Γ, ∆).

A configuration of P is a pair 〈p, w〉 where p ∈ P is a control state and
w ∈ Γ∗ a stack content. Let Con fP = P× Γ∗ be the set of all configura-
tions of P . A set of configurations C of a PDS P is said to be regular if
∀p ∈ P, there exists a finite-state automaton Ap on the alphabet Γ such
that L(Ap) = {w | 〈p, w〉 ∈ C}, where L(A) stands for the language
recognized by an automaton A.

To some PDSs we match an initial configuration c0 ∈ Con fP of the form
c0 = 〈p0,⊥〉, where ⊥ ∈ Γ is a special bottom stack symbol and p0 ∈ P
a control state. We then introduce these PDSs as quintuplets of the form
P = (P, Σ, Γ, ∆, c0).

For each a ∈ Σ, we define the transition relation a−→P on configurations
as follows: if (p, γ)

a−→ (p′, w) ∈ ∆, for each w′ ∈ Γ∗, 〈p, γw′〉 a−→P
〈p′, ww′〉. From these relations, we can then infer the immediate succes-
sor relation→P=

⋃
a∈Σ

a−→P .

The reachability relation ⇒P is the reflexive and transitive closure of
the immediate successor relation →P . If C is a set of configurations,
we introduce its set of successors post∗(P , C) = {c ∈ P × Γ∗ | ∃c′ ∈
C, c′ ⇒P c} and its set of predecessors pre∗(P , C) = {c ∈ P× Γ∗ | ∃c′ ∈
C, c ⇒P c′}. We may omit the variable P when only a single PDS is
being considered.

A run r starting from a configuration c is a sequence of configurations
r = (ci)i≥0 such that c0 = c and ∀i ≥ 0, ci

ai−→P ci+1. The word (ai)i≥0 is
then said to be the trace of r. Traces and runs may be finite or infinite.

Let Runsω(P , C) (resp. Runs(P , C)) be the set of all infinite (resp. finite)
runs of P starting from a configuration c ∈ C. We define Tracesω(P , C)
and Traces(P , C) in a similar manner.

If P has an initial configuration c0, then we write Runsω(P) =
Runsω(P , {c0}). We define Runs(P), Traces(P), and Tracesω(P) as
well in a similar manner.

2.1.2 P-automata

In order to represent regular sets of configurations, we consider the
following structure:

2.1. Pushdown systems 13

Definition 2 (Bouajjani et al. [BEM97]). Let P = (P, Σ, Γ, ∆) be a push-
down system. A P-automaton A = (Q, Γ, δ, I, F) is a finite automaton on
the stack alphabet Γ of P where Q is a set of states such that P ⊆ Q, I = P the
set of initial states, F ⊆ Q the set of final states, and δ ⊆ Q× Γ ∪ {ε} ×Q a
set of transitions.

Intuitively, a P-automaton is a finite automaton whose edges are la-
beled by stack symbols ofP and whose initial states represent the states
of P .

Let→A be the transition relation inferred from δ. We say thatA accepts
a configuration 〈p, w〉 if there is a path p w−→∗A f such that f ∈ F. Let
L(A) ⊆ Con fP be the set of configurations accepted by A. Obviously,
the following lemma holds:

Lemma 1 (Bouajjani et al. [BEM97]). A set of configurations C of a PDS P
is regular if and only if there exists a P-automaton A such that L(A) = C.

2.1.3 From a program to a pushdown system

PDSs can be used to model sequential problems with recursion, as
shown by Esparza et al. in [EHRS00]. We abstract away data and vari-
ables and represent each procedure of the program by a control flow
graph (CFG). The nodes of a CFG stand for control points, while its
edges are labeled by statements such as calls to other procedures. If we
abstract the value of variables, the CFG can be non-deterministic.

We consider a set of CFGs with a set of control points N. We build an
unlabeled PDS with pushdown alphabet N and a single control point
{p}: a configuration 〈p, γw〉 stands for a situation where the program is
at a control point γ and w represents the return addresses of the calling
procedure on the stack. Its pushdown rules are the following:

— if the CFG moves from a control point γ to a control point γ′

without calling procedure, we add a rule (p, γ)→ (p, γ′);

— if the CFG moves from a control point γ to a control point γ′while
calling a procedure starting in control point γ′′, we add a rule
(p, γ)→ (p, γ′′γ′);

— if an edge in the CFG leaves the control point γ with a return
statement, we add a rule (p, γ)→ (p, ε).

14 Chapter 2. Model-checking PDSs

2.2 Reachability sets

Many static analysis methods rely on being able to determine whether
a given critical state is reachable or not from the starting configuration
of a program, hence, the need for reachability analysis techniques.

Let C be a regular set of configurations of an unlabeled PDS P =
(P, Σ, Γ, ∆), and let A be a P-automaton accepting C. Labels are not
relevant in this situation as reachability sets do not depend on them. It
has been proven by Didier Caucal in [Cau92] that the sets pre∗(P , C)
and post∗(P , C) are regular. In this section, we present the automata-
theoretic approach used in [BEM97, EHRS00] to compute them.

2.2.1 Computing pre∗

We compute a P-automaton Apre∗ accepting pre∗ (C) by applying the
saturation procedure introduced by Bouajjani et al. in [BEM97] to A:

if (p, γ) → (p′, w) ∈ ∆ and there is a path p′ w−→
∗

q in the
current automaton, add a transition p

γ−→ q to the automa-
ton.

The following theorem holds:

Theorem 1 (Bouajjani et al. [BEM97]). The P-automaton Apre∗ accepts
pre∗ (C).

Intuitively, if a configuration 〈p′, ww′〉 belongs to pre∗(C), and there is
a rule (p, γ) → (p′, w) ∈ ∆, then 〈p, γw′〉 →P 〈p′, ww′〉 and therefore
〈p, γw′〉 ∈ pre∗(C). Hence, if Apre∗ accepts 〈p′, ww′〉, it should accept
〈p, γw′〉 as well.

2.2.2 Computing post∗

We compute a P-automatonApost∗ accepting post∗ (C) by applying the
two-step procedure introduced by Esparza et al. in [EHRS00] to A:

1. for each transition rule of the form (p, γ)→ (p′, γ′γ′′) ∈ ∆, add a

state qp′,γ′ to A and a transition p′
γ′−→ qp′,γ′ ;

2. apply the following saturation rules:

— if (p, γ)→ (p′, γ′) ∈ ∆ and there is a transition p
γ−→ q in the

current automaton, add a transition p′
γ′−→ q to the automa-

ton;

2.3. Model-checking LTL on pushdown systems 15

— if (p, γ) → (p′, ε) ∈ ∆ and there is a transition p
γ−→ q in the

current automaton, add a transition p′ ε−→ q to the automa-
ton;

— if (p, γ) → (p′, γ′γ′′) ∈ ∆ and there is a transition p
γ−→ q

in the current automaton, add a transition qp′,γ′
γ′′−→ q to the

automaton.

The following theorem holds:

Theorem 2 (Esparza et al. [EHRS00]). The P-automaton Apost∗ accepts
post∗ (C).

Intuitively, if a configuration 〈p, γw′〉 belongs to post∗(C), and there is
a rule (p, γ) → (p′, w) ∈ ∆, then 〈p, γw′〉 →P 〈p′, ww′〉 and therefore
〈p, ww′〉 ∈ post∗(C). Hence, if Apost∗ accepts 〈p, γw′〉, it should accept
〈p′, ww′〉 as well.

2.3 Model-checking LTL on pushdown
systems

The most widely used variant of temporal logics is the linear-time tem-
poral logic LTL introduced by Pnueli in [Pnu77].

2.3.1 The linear-time temporal logic LTL

Let AP be a finite set of atomic propositions used to express facts about a
program. A path is an infinite word π = (πi)≥0 in the set (2AP)ω.

Definition 3 (LTL). The set of LTL formulas is given by the following gram-
mar:

ϕ, ψ ::= ⊥ | p ∈ AP | ¬ϕ | ϕ ∨ ψ | X ϕ (Next) | ϕ U ψ (Until)

⊥ stands for the predicate ’always true’. X and U are called the next and
until operators: the former means that a formula should happen at the
next step, the latter, that a formula should hold at least until another
formula becomes true. We consider the following semantics on paths:

16 Chapter 2. Model-checking PDSs

Definition 4 (Semantics of LTL). Let ϕ be a LTL formula, π ∈ Paths, and
i ∈N. We define inductively the semantics of the relation π, i |= ϕ:

π, i |= ρ where ρ ∈ AP ⇔ ρ ∈ πi

π, i |= X ϕ ⇔ π, i + 1 |= ϕ

π, i |= ϕ U ψ ⇔ ∃j ≥ i such that π, j |= ψ and
∀k ∈ {i, . . . , j− 1} , π, k |= ϕ

as well as the obvious interpretation of the boolean operators.

Intuitively, π, i |= ϕ means that the path π verifies φ from its i-th sym-
bol onward. We consider the language L(ϕ) = {w | w ∈ (2AP)ω and
w, 0 |= ϕ} of a LTL formula ϕ, that is, the set of all paths verifying ϕ
according to the semantics outlined previously.

2.3.2 Büchi automata

We consider the following class of finite state automata:

Definition 5 (Büchi automaton). A Büchi automaton (BA) B is a tuple
(Q, Σ, δ, q0, F) where Q is a finite set of states, Σ a finite input alphabet, δ ⊆
Q× Σ ∪ {ε} × Q a set of transitions, F ⊆ Q a set of accepting states, and
q0 ∈ Q the initial state.

The language L(B) accepted by B is the set of all infinite sequences w
in Σω such that there is an infinite run r of B with trace w starting in
state q0 that visits accepting states from F infinitely often. A language
is called ω-regular if and only if there is a Büchi automaton accepting
it.

BAs can be used in the following fashion:

Theorem 3 (Kesten et al. [KMMP93]). Given a LTL formula ϕ, there is a
Büchi automaton B on the alphabet Σ = 2AP such that L(B) = L(ϕ).

2.3.3 The model-checking problem

Let ν : Con fP → 2AP be a valuation function on configurations of a
PDS P = (P, Act, Γ, ∆, c0). It is said to be simple if for all w, w′ ∈ Γ∗,
p ∈ P, and γ ∈ Γ, we have ν(〈p, γw〉) = ν(〈p, γw′〉). Intuitively, a
simple valuation is equivalent to a function ν : P× Γ → 2AP that only
depends on the control state and the top stack symbol.

Let r = (ri)i≥0 be an infinite run of P . We define the image ν(r) =
(ν(ri))i≥0 in (2AP)ω of r by the valuation function ν. We write that
r |=ν ϕ if ν(r), 0 |= ϕ.

2.3. Model-checking LTL on pushdown systems 17

The model-checking problem is defined as follows:

Definition 6 (The model-checking problem). Given a LTL formula ϕ, a
PDS P with a starting configuration c0, and a simple valuation ν on config-
urations of P , the model-checking problem consists in determining whether
∀r ∈ Runs(P), r |=ν ϕ.

An automata-theoretic approach has been used in [BEM97,EHRS00] to
answer the model-checking problem of LTL against PDSs.

19

Chapter 3

Model-checking HyperLTL for
Pushdown Systems

In this chapter, we focus on model-checking HyperLTL against push-
down systems (PDSs). Temporal logics such as LTL are often used to
express safety or correctness properties of programs. However, they
cannot model complex formulas known as hyperproperties introduc-
ing relations between different execution paths of a same system. In
order to do so, the logic HyperLTL adds existential and universal quan-
tifications of path variables to LTL. The model-checking problem, that
is, determining if a given representation of a program verifies a Hyper-
LTL property, has been shown to be decidable for finite state systems
by Clarkson et al. in [CFK+14].

Unfortunately, we prove that this result does not hold for pushdown
systems nor for the subclass of visibly pushdown systems. Therefore,
we introduce algorithms in order to approximate the model-checking
problem, using either an automata-theoretic approach or a bounded-
phase analysis of a multi-stack pushdown system. We then show how
these approximations can be used to verify security policies.

Chapter outline. In Section 1 of this chapter, we provide background
on visibly pushdown systems (VPDSs). We define in Section 2 the hyper
linear-time logic HyperLTL, and prove that its model-checking prob-
lem against PDSs and VPDSs is undecidable. Then, in Section 3, we
propose an approximation of the model-checking problem for PDSs.
In Section 4, we use multi-stack pushdown systems (MPDSs) and bounded
phase analysis in order to compute another approximation of the model-
checking problem. In Section 5, we apply the logic HyperLTL to ex-
press security properties. Finally, we describe the related work in Sec-
tion 6 and present our conclusion in Section 7.

These results were published in [PT18].

20 Chapter 3. Model-checking HyperLTL for PDSs

3.1 Visibly pushdown systems

We consider a particular subclass of PDSs introduced by Alur et al.
in [AM04]. Let 〈Σc, Σr, Σl〉 be a partition of the input alphabet, where
Σc, Σr, and Σl stand respectively for the call, return, and local alphabets.

Definition 7 (Alur et al. [AM04]). A visibly pushdown system (VPDS)
over a partition 〈Σc, Σr, Σl〉 of Σ is a PDS P = (P, Σ, Γ, ∆, c0) verifying the
following properties:

— if (p, γ1)
a−→ (p′, γ2) ∈ ∆, then a ∈ Σl, γ1 = γ2, and ∀γ ∈ Γ,

(p, γ)
a−→ (p′, γ) ∈ ∆;

— if (p, γ)
a−→ (p′, ε) ∈ ∆, then a ∈ Σr;

— if (p, γ1)
a−→ (p′, γ2γ1) ∈ ∆, then a ∈ Σc, and ∀γ ∈ Γ, (p, γ)

a−→
(p′, γ2γ) ∈ ∆;

VPDSs are an input-driven subclass of PDSs: at each step of a compu-
tation, the next stack operation will be determined by the input letter
in Σ read, depending on which subset of the partition 〈Σc, Σr, Σl〉 the
aforementioned letter belongs to.

Visibly pushdown automata accept the class of visibly pushdown languages.
If a BPDA BP is visibly pushdown according to a partition of Σ, we say
it’s a Büchi visibly pushdown automata (BVPDA). The class of languages
accepted by BVPDA is called ω visibly pushdown languages.

Unlike context-free languages, the emptiness of the intersection of visi-
bly pushdown languages is a decidable problem [AM04] and the com-
plement of a visibly pushdown language is a visibly pushdown lan-
guage that can be computed. The same properties also hold for ω visi-
bly pushdown languages.

3.2 HyperLTL

3.2.1 The logic

Let AP be a finite set of atomic propositions used to express facts about
a program; a path is an infinite word in (2AP)ω = T . Let V be a fi-
nite set of path variables. The HyperLTL logic relates multiple paths by
introducing quantifiers on path variables.

3.2. HyperLTL 21

Definition 8 (Syntax of HyperLTL). Unquantified HyperLTL formulas
are defined according to the following syntax equation:

ϕ ::= ⊥ | (a, π) ∈ AP× V | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ |
ϕ U ϕ | G ϕ | F ϕ

From then on, we write aπ = (a, π). HyperLTL formulas are defined accord-
ing to the following syntax equation:

ψ ::= ∃π, ϕ | ∀π, ϕ | ϕ

where π ∈ V is a path variable.

The existential ∃ and universal quantifiers ∀ are used to define path
variables, to which atomic propositions in AP are bound. A HyperLTL
formula is said to be closed if there is no free variable: each path variable
is bound by a path quantifier exactly once.

As an example, the closed formula ∀π1, ∃π2, ϕ means that for all paths
π1, there exists a path π2 such that the formula ϕ holds for π1 and
π2. Simple LTL formulas can be considered as a subclass of closed
HyperLTL formulas of the form ∀π, ϕ with a single path variable.

Let Π : V → T be a path assignment function of V that matches to each
path variable π a path Π(π) ∈ T . If Π(π) = (tj)j≥0, for all i ≥ 0, we
define the i-th value of the path Π(π)[i] = ti and a suffix assignment
function Π[i, ∞] such that Π[i, ∞](π) = (tj)j≥i.

We first define the semantics of this logic for path assignment func-
tions.

Definition 9 (Semantics of unquantified HyperLTL formulas). Let ϕ be
an unquantified HyperLTL formula. We define by induction on ϕ the follow-
ing semantics on path assignment functions:

Π |= aπ ⇔ a ∈ Π(π)[0]
Π |= ¬ϕ ⇔ Π 6|= ¬ϕ

Π |= ϕ1 ∨ ϕ2 ⇔ (Π |= ϕ1) ∨ (Π |= ϕ2)

Π |= ϕ1 ∧ ϕ2 ⇔ (Π |= ϕ1) ∧ (Π |= ϕ2)

Π |= X ϕ ⇔ Π[1, ∞] |= ϕ

Π |= ϕ U ψ ⇔ ∃j ≥ 0, Π[j, ∞] |= ψ and ∀i ∈ {0, . . . , j− 1} ,
Π[i, ∞] |= ϕ

Π |= G ϕ ⇔ ∀i ≥ 0, Π[i, ∞] |= ϕ

Π |= F ϕ ⇔ ∃i ≥ 0, Π[i, ∞] |= ϕ

22 Chapter 3. Model-checking HyperLTL for PDSs

Π |= ϕ if ϕ holds for a given assignment of path variables defined
according to Π.

Let T : V → 2T be a set assignment function of V that matches to each
path variable π ∈ V a set of paths T(π) ⊆ T . We can now define the
semantics of closed HyperLTL formulas for set assignment functions.

Definition 10 (Semantics of closed HyperLTL formulas). We consider a
closed HyperLTL formula ψ = χ0π0, . . . , χnπn, ϕ, where each χi ∈ {∀, ∃}
is an universal or existential quantifier, and ϕ an unquantified HyperLTL
formula using trace variables π0, . . . , πn.

For a given set assignment function T, we write that T |= ψ if for χ0t0 ∈
T(π0), . . ., χntn ∈ T(πn), we have Π |= ϕ, where Π is the path assignment
function such that ∀i ∈ {0, . . . , n}, Π(πi) = ti.

As an example, if ψ = ∀π1, ∃π2, ϕ is a closed HyperLTL formula and
T is a set assignment function of V , then T |= ψ if ∀t1 ∈ T(π1), ∃t2 ∈
T(π2) such that Π |= ϕ, where Π(π1) = t2 and Π(π2) = t2. Intuitively,
T |= ψ if, assuming path variables belong to the path sets defined by
T, the closed formula ψ holds. From then on, we assume that every
HyperLTL formula considered in this chapter is closed.

3.2.2 HyperLTL and PDSs

Let P be a PDS on the input alphabet Σ = 2AP and ψ a closed Hyper-
LTL formula. We write that P |= ψ if and only if T |= ψ where the
set assignment function T is such that ∀π ∈ V , T(π) = Tracesω(P).
Determining whether P |= ψ for a given PDS P and a given Hyper-
LTL formula ψ is called the model-checking problem of ψ against P . The
following theorem holds:

Theorem 4. The model-checking problem of HyperLTL against PDSs is un-
decidable.

The intuition. We can prove this result by reducing the emptiness of
the intersection of two context-free languages, a well-known undecid-
able problem, to the model-checking problem. Our intuition is to con-
sider two context-free languages L1 and L2 on the alphabet Σ. As Hy-
perLTL formulas apply to infinite words, we define two BPDA BP1
and BP2 that accept L1 f ω and L2 f ω respectively, where f /∈ Σ is a spe-
cial ending symbol. We then define a PDS P that can simulate either
BP1 or BP2.

We now introduce the HyperLTL formula ψ = ∃π1, ∃π2, ϕstart ∧ ϕsync ∧
ϕend: the unquantified formula ϕstart expresses that trace variables π1
and π2 represent runs of BP1 and BP2 respectively, ϕsync means that

3.2. HyperLTL 23

the two traces are equal from their second letter onwards, and ϕend
implies that the two traces are accepting. Hence, if P |= ψ, then BP1
and BP2 share a common accepting run, and L1 ∩ L2 6= ∅.

On the other hand, if L1 ∩ L2 6= ∅, there is an accepting trace π com-
mon to BP1 and BP2 and we can define two traces π1 and π2 of P
such that the formula ϕstart ∧ ϕsync ∧ ϕend holds.

Since the emptiness problem is undecidable, so must be the model-
checking problem.

Proof of Theorem 4. Let L1 and L2 be two context-free languages, and
P1 = (P1, Σ, Γ, ∆1, 〈p1

0,⊥〉, F1) and P2 = (P2, Σ, Γ, ∆2, 〈p2
0,⊥〉, F2) two

PDA accepting L1 and L2 respectively. Without loss of generality, we
can consider that P1 ∩ P2 = ∅. Let e1 /∈ P1, e2 /∈ P2, and f /∈ Σ.

We define two BPDA BP i = (Pi ∪ {ei}, 2Σ∪{ f }, Γ, ∆′i, 〈pi
0,⊥〉, {ei}) for

i = 1, 2, where ∆′i is such that (ei, γ)
{ f }−−→ (ei, γ) ∈ ∆′i and (p f , γ)

{ f }−−→
(ei, γ) ∈ ∆′i for all γ ∈ Γ and p f ∈ Fi, and if (p, γ)

a−→ (p′, w) ∈ ∆i, then

(p, γ)
{a}−−→ (p′, w) ∈ ∆′i. If we consider that {a} is equivalent to the

label a ∈ Σ ∪ { f }, BP1 and BP2 accept the languages L1 f ω and L2 f ω

respectively. Since HyperLTL formulas apply to infinite words in 2AP,
for i = 1, 2, we have designed a BPDA BP i that extends words in Li
by adding a final looping state ei from which the automaton can only
output an infinite sequence of the special ending symbol f .

We consider now the PDS P = ({p0} ∪ P1 ∪ P2, {{ι1}, {ι2}} ∪ 2Σ∪{ f }, Γ,
∆, c0), where p0 /∈ P1 ∪ P2, ι1, ι2 /∈ Σ ∪ { f }, c0 = 〈p0,⊥〉, and ∆ =

{(p0,⊥) {ι
1}−−→ (p1

0,⊥), (p0,⊥) {ι
2}−−→ (p2

0,⊥)} ∪ ∆′1 ∪ ∆′2. The PDS P can
simulate either BP1 or BP2, depending on whether it applies first a
transition labelled by {ι1} or {ι2} from the initial configuration c0.

We introduce the formula ψ = ∃π1, ∃π2, ϕstart ∧ ϕsync ∧ ϕend on AP =

{ι1, ι2} ∪ Σ ∪ { f }, where:

— ϕstart = ι1π1
∧ ι2π2

;

— ϕsync = XG
∧

a∈AP
(aπ1 ⇔ aπ2);

— ϕend = FG (fπ1 ∧ fπ2).

We suppose that P |= ψ; ϕstart expresses that trace variables π1 and π2
represent runs of BP1 and BP2 respectively. ϕsync means that the two
traces are equal from their second letter onwards. ϕend implies that the
two traces are accepting runs.

Therefore, if P |= ψ, then BP1 and BP2 share a common accepting
run and L1 ∩ L2 6= ∅. On the other hand, if L1 ∩ L2 6= ∅, there is

24 Chapter 3. Model-checking HyperLTL for PDSs

an accepting run π common to B1 and B2, and we can then find two
traces π1 and π2 of P such that the formula ∃π1, ∃π2, ϕstart ∧ ϕsync ∧
ϕend holds. The emptiness problem is undecidable, and therefore so
must be the model-checking problem.

As a consequence of Theorem 4, determining whether T |= ψ for a
generic set assignment function T and a given HyperLTL formula ψ is
an undecidable problem.

3.2.3 HyperLTL and VPDSs

Since the emptiness of the intersection of visibly pushdown languages
is decidable, the previous proof does not apply to VPDSs and one
might wonder if the model-checking problem of HyperLTL for this par-
ticular subclass is decidable. Unfortunately, we can show that this is
not the case:

Theorem 5. The model-checking problem of HyperLTL against VPDSs is
undecidable.

The intuition. In order to prove this theorem, we will rely on a class
of two-stack automata called 2-visibly pushdown automata (2-VPDA) in-
troduced in [CMP07]. In a 2-VPDA, each stack is input driven, but
follows its own partition of Σ. The same input letter may result in dif-
ferent pushdown rules being applied to the first and second stack: as
an example, a transition can push a word on the first stack and pop
the top letter of the second stack, depending on which partition is used
by each stack. Moreover, in a manner similar to VPDA, transitions of
2-VPDA do not depend on the top stack symbols unless they pop them.

It has been shown in [CMP07] that the emptiness problem is unde-
cidable for 2-VPDA. Our intuition is therefore to prove Theorem 5 by
reducing the emptiness problem for 2-VPDA to the model-checking
problem of HyperLTL against VPDSs. To do so, for a given 2-VPDA D,
we define a VPDS P and a HyperLTL formula ψ on two trace variables
such that P |= ψ if and only if D has an accepting run.

P is such that it can simulate either stack of the 2-VPDA. However,
both stacks must be synchronized in order to properly represent the
whole automaton: the content of one stack can lead to a control state
switch that may enable a transition modifying the other stack. The Hy-
perLTL formula ψ determines which trace variable is related to which
stack, synchronizes two runs of P in such a manner that they can be
used to define an execution path of D, and ensure that this path is an
accepting one.

3.2. HyperLTL 25

Introducing 2-visibly pushdown automaton. Let Σ be a finite input
alphabet with two partitions Σ = Σcj ∪ Σrj ∪ Σlj , j ∈ {1, 2}. We then
introduce a 2-pushdown alphabet ℵ =

〈(
Σc1 , Σr1 , Σl1

)
,
(
Σc2 , Σr2 , Σl2

)〉
on

Σ.

Definition 11 (Carotenuto et al. [CMP07]). A 2-visibly pushdown au-
tomaton (2-VPDA) over ℵ is a tuple D = (P, Σ, Γ, ∆, c0, F) where P is a
finite set of control states, Σ a finite input alphabet, Γ a finite stack alpha-
bet, ∆ ⊆ (P× Γ× Γ)× Σ× (P× Γ∗ × Γ∗) a finite set of transition rules,
c0 = 〈p0,⊥,⊥〉 ∈ P × Γ × Γ an initial configuration, and F ⊆ P a set of
final states. Moreover, ∆ is such that ∀d ∈ ∆, and for i ∈ {1, 2}:

— if d is labelled by a letter in Σci , d pushes a word on the i-th stack re-
gardless of its top stack symbol;

— if d is labelled by a letter in Σri , d pops the top letter of of the i-th stack;

— if d is labelled by a letter in Σli , d does not modify the i-th stack.

The semantics of 2-VPDA is defined in a manner similar to PDA, and
so are configurations, runs, execution paths, languages, and 2-Büchi
visibly pushdown automata (2-BVPDA). The following theorem holds:

Theorem 6 (Carotenuto et al. [CMP07]). The emptiness problem for 2-
VPDA is undecidable.

Proof of Theorem 5. Let D = (P, Σ, Γ, ∆, 〈p0,⊥,⊥〉, F) be a 2-VPDA on
an input alphabet Σ according to a partition ℵ = 〈(Σc1 , Σr1 , Σl1), (Σc2 ,
Σr2 , Σl2)〉. Let e /∈ P and f /∈ Σ. We introduce a 2-BVPDA BD = (P ∪

{e}, 2Σ∪{ f }, Γ, ∆′, 〈p0,⊥,⊥〉, {e}) such that (e, γ, γ′)
{ f }−−→ (e, γ, γ′) ∈ ∆′

and (p f , γ, γ′)
{ f }−−→ (e, γ, γ′) ∈ ∆′ for all γ, γ′ ∈ Γ and p f ∈ F, and if

(p, γ, γ′)
a−→ (p′, w, w′) ∈ ∆, then (p, γ, γ′)

{a}−−→ (p′, w, w′) ∈ ∆′ on the
input alphabet Σ ∪ { f }. Obviously, BD is visibly if we add the symbol
f to Σl1 and Σl2 in the partition of Σ∪{ f }; it accepts L(D) f ω, assuming
the label {a} is equivalent to the label a ∈ Σ ∪ { f }.

Let P1 and P2 (resp. ∆1 and ∆2) be two disjoint copies of P (resp. ∆′).
To each p ∈ P (resp. d ∈ ∆′), we match its copies p1 ∈ P1 and p2 ∈ P2

(resp. d1 ∈ ∆1 and d2 ∈ ∆2). Let ι1, ι2 /∈ ∆1 ∪ ∆2. We define a PDS
P = ({σ} ∪ P1 ∪ P2, {{ι1}, {ι2}, { f }} ∪ 2∆1 ∪ 2∆2

, Γ, δ, 〈σ,⊥, 〉). The set
δ is such that, for each transition d = (p, γ1, γ2)

a−→ (p′, w1, w2) ∈ ∆

such that a 6= f , we add two transitions (p1, γ1)
{d1}−−→ (p′1, w1) and

(p2, γ2)
{d2}−−→ (p′2, w2) to δ. If a = f , we add instead (p1, γ1)

{ f }−−→
(p′1, w1) and (p2, γ2)

{ f }−−→ (p′2, w2). Transitions in δ are projections of
the original transitions of the 2-BVPDA on one of its two stacks; their
label depends on the original transition in ∆, unless they are labelled by

26 Chapter 3. Model-checking HyperLTL for PDSs

f . Moreover, the transitions (σ,⊥) {ι1}−−→ (p1
0,⊥) and (σ,⊥) {ι2}−−→ (p2

0,⊥)
both belong to δ.

P is such that it can either simulate the first or the second stack of the 2-
BVPDA BD, depending on which transition was used first. P is indeed
a VPDS: a suitable partition of its input alphabet can be computed de-
pending on which operation on the i-th stack transitions in ∆ perform.
As an example, if d ∈ ∆ pushes a symbol on the first stack and pops
from the second, d1 belongs to the call alphabet and d2, to the return
alphabet.

Given a set of trace variables V = {π1, π2} and a predicate alphabet
AP = {ι1, ι2, f }∪∆1 ∪∆2, we then consider an unquantified HyperLTL
formula ϕ of the form ϕ = ϕstart ∧ ϕsync ∧ ϕend, where ϕ’s sub-formulas
are defined as follows:

Initialization formula: ϕstart = ι1π1
∧ ι2π2

; Π |= ϕstart if and only if for
i ∈ {1, 2}, Π[1, ∞](πi) is a run that simulates the i-th stack of BD;

Synchronization formula: ϕsync = XG
∧

d∈∆
(d1

π1
⇔ d2

π2
); Π |= ϕstart ∧

ϕsync if and only if Π[1, ∞](π1) and Π[1, ∞](π2) can be matched
to a common run of the 2-BVPDA BD;

Acceptation formula: ϕend = FG (fπ1 ∧ fπ2); Π |= ϕstart ∧ ϕsync ∧ ϕend
if and only if Π[1, ∞](π1) and Π[1, ∞](π2) can be used to define
an accepting run of the 2-BVPDA BD.

Therefore, if Π |= ϕ, we have Π(πi) = (ιi, di
1, di

2 . . .) for i = 1, 2, and
the sequence of transitions (d1, d2, . . .) ∈ ∆ω defines an accepting run
on BD. Therefore, we can solve the model-checking problem P |=
∃π1, ∃π2, ϕ, if and only if we can determine whether L (BD) is empty
or not, hence, L (D) as well. There is a contradiction and the former
problem is undecidable.

3.3 Model-checking constrained HyperLTL

By Theorem 4, the model-checking problem of HyperLTL against PDSs
is undecidable. Intuitively, this issue stems from the undecidability of
the intersection of context-free languages. However, since the empti-
ness problem of the intersection of a context-free language with regular
sets is decidable, one can think of a way to abstract the set of runs of a
PDS for some - but not all - path variables of a HyperLTL formula as a
mean of regaining decidability.

As shown in [BS90, PW91] and detailed in Section 3.3.1, runs of a PDS
can be over-approximated in a regular fashion. Hence, for a given PDS

3.3. Model-checking constrained HyperLTL 27

P , if we consider a regular abstraction of the set of runs α(Tracesω(P)),
we can change the set assignment function for a path variable π in such
a manner that T(π) = α(Tracesω(P)) instead of T(π) = Tracesω(P).

For a set assignment function T on a set of path variables V and a
variable π ∈ V , we say that π is context-free w.r.t. to T if T(π) =
Tracesω(P) for some PDS P . We define regular and visibly pushdown
variables in a similar manner.

Let ψ = χ0π0, . . . , χnπn, ϕ be a closed HyperLTL formula on the alpha-
bet AP with n + 1 trace variables π0, . . . , πn, where χ0 . . . , χn ∈ {∀, ∃}
are either universal or existential quantifiers. In this section, we will
present a procedure to determine whether T |= ψ in two cases.

1. If the variable π0 is context-free w.r.t. T, and all the other vari-
ables are regular, then we can determine whether T |= ψ or not.
We can then apply this technique in order to approximate the
model-checking problem if T(π0) = Tracesω(P), χ1, . . . , χn = ∀,
and T(πj) = α(Tracesω(P)) for j = 1 . . . n. The last n variables
can only be universally quantified.

T |= ψ then implies that P |= ψ: indeed, the universal quanti-
fiers on the path variables that range over the abstracted traces
are such that, if the formula ϕ holds for every run in the over-
approximation, then it also holds for every run in the actual set
of traces. This is an approximation of the actual model-checking
problem.

2. If there exists a variable πi such that πi is visibly context-free
w.r.t. T, and all the other variables are regular, then we can de-
termine whether T |= ψ or not. A single path variable at most
can be visibly context-free (not necessarily π0, though), and all
the others must be regular. We can then apply this technique
in order to approximate the model-checking problem if P is a
VPDS, T(πi) = Tracesω(P), T(πj) = α(Tracesω(P)) and χj = ∀
for j 6= i. Each path variable with the exception of the visibly
context-free one must be universally quantified.

Because of the universal quantifiers on the regular path variables,
T |= ψ implies again that P |= ψ. This is an approximation of the
model-checking problem.

Moreover, these approximations are accurate for at least one variable in
the trace variable set, as the original, ω context-free (or ω visibly push-
down) set of runs is assigned to this variable instead of an ω regular
over-approximation.

In a similar manner, if we compute a regular under-approximation
β(Tracesω(P)) of the set of traces, and if T(π0) = Tracesω(P), T(πj) =

28 Chapter 3. Model-checking HyperLTL for PDSs

β(Tracesω(P)) for j = 1 . . . n, and χ1, . . . , χn = ∃, then T 6|= ψ implies
that P 6|= ψ

3.3.1 Regular over-approximations of context-free lan-
guages

The infinite set C of configurations of P has to be reduced to a smaller,
finite approximation. In order to do so, a common intuition is to define
a congruence relation ∼ on C with a finite set of equivalence classes
C/ ∼.

Let I∼ = {E ∈ C/ ∼| ∃ci ∈ I, ci ∈ E} and let δ be a relation transition

on C/ ∼ labelled by ∆ such that E1
λ→δ E2 if and only ∃c1 ∈ E1, ∃c2 ∈

E2, c1
λ⇒ c2. The finite automaton O = (∆, δ, C/ ∼, I∼, C/ ∼) is then

introduced as an over-approximation of P .

One such congruence relation introduced by Bermudez et al. in [BS90]
is called fixed-depth investigation: for a given integer d, c1 = 〈p1, w1〉 ∼d
c2 = 〈p2, w2〉 if and only if p1 = p2 and ∃w ∈ Γ∗ such that either
|w| = d and ∃w′1, w′2 ∈ Γ∗, w1 = ww′1 and w2 = ww′2 or |w| < d and
w1 = w2 = w. Two configurations belong to the same class if they
share the same state and the same topmost d stack letters; stacks that
contains less than d elements each have a separate class.

Another method considered by Pereira and al. in [PW91] is a reduction
to a shorter stack. If c1 = 〈p1, w1〉 and w1 is of the form awaw′, a ∈ Γ,
w, w′ ∈ Γ∗, then c1 ∼ 〈p1, aw′〉. If a stack contains two occurrences of
the same stack symbol a ∈ Γ, it is identified to a shorter stack where
the part of the stack between the first and the second occurrence of a
has been removed (including one of the a).

3.3.2 With one context-free variable and n regular
variables

Let P be a PDS such that T(π0) = Tracesω(P), and K1, . . . ,Kn, finite
state transition systems (i.e. finite automata without final states) such
that for i = 1, . . . , n, T(πi) = Tracesω(Ki).

Theorem 7. If π0 is context-free w.r.t. T and the other variables are regular,
we can decide whether T |= χ0π0, . . . , χnπn, ϕ or not.

To do so, we use the following result mentioned in Chapter 2:

3.3. Model-checking constrained HyperLTL 29

Lemma 2. Let ϕ be an LTL formula. There exists a Büchi automaton Bϕ on
the alphabet 2AP such that L(Bϕ) = {w ∈ (2AP)

ω | w |= ϕ}. We say that
Bϕ accepts ϕ.

An unquantified HyperLTL formula with m trace variables π1, . . . , πm
can be considered as a LTL formula on the alphabet (2AP)m: given a
word w on (2AP)m and a ∈ AP, we say that w |= aπi if a ∈ wi(0), where
wi is the i-th component of w. We then apply Lemma 2 and introduce a
Büchi automaton Bϕ on the alphabet (2AP)n+1 accepting ϕ. We denote
Σ = 2AP.

We then compute inductively a sequence of Büchi automata Bn+1, . . . ,
B1 such that:

— Bn+1 is equal to the Büchi automaton Bϕ on the alphabet Σn+1;

— if the quantifier χi is equal to ∃ and Bi+1 = (Q, Σi+1, δ, q0, F) is
a Büchi automaton on the alphabet Σi+1, let Ki = (S, Σ, δ′, s0) be
the finite state transition system generating T(πi); we now define
the Büchi automaton Bi = (Q× S, Σi, ρ, (q0, s0), F× S) where the

set ρ of transitions is such that if q
(a0,...,ai)−−−−→ q′ ∈ δ and s

ai−→ s′ ∈ δ′,

then (q, s)
(a0,...,ai−1)−−−−−−→ (q′, s′) ∈ ρ. Intuitively, the Büchi automaton

Bi represents the formula ∃πi, χi+1πi+1, . . . , χnπn, ϕ; its input al-
phabet Σi depends on the number of variables that are not quan-
tified yet;

— if the quantifier χi is equal to ∀, we consider instead the comple-
ment B′i+1 of Bi+1 and compute its product with Ki in a similar
manner to the previous construction; Bi is then equal to the com-
plement of this product; intuitively, ∀π, ψ = ¬(∃π,¬ψ).

Having computed B1 = (Q, Σ, δ, q0, F), let P = (P, Σ, Γ, ∆, 〈p0,⊥〉) be
the PDS generating T(π0). We assume that χ0 = ∃. Let BP = (P ×
Q, Σ, ∆′, 〈(p0, q0),⊥〉, P × F) be a Büchi pushdown automaton, where
the set of transitions ∆′ is such that if q a−→ q′ ∈ δ and (p, γ)

a−→ (p′, w) ∈
∆, then ((p, q), γ)

a−→ ((p′, q′), w) ∈ ∆′. BP represents the fully quanti-
fied formula ∃π0, χ1π1, . . . , χnπn, ϕ. Obviously, BP is not empty if and
only if T |= ψ.

If χ0 = ∀, we consider instead the complement B′1 of B1, then define
a Büchi pushdown automaton BP in a similar manner. BP is empty if
and only if T |= ψ.

It has been proven in [BEM97, EHRS00] that the emptiness problem
is decidable for Büchi pushdown automata. Hence, given our initial
constraints on T and ψ, we can determine whether T |= ψ or not.

30 Chapter 3. Model-checking HyperLTL for PDSs

The Büchi automaton Bϕ has O(2|ϕ|) states; if we assume that all vari-
ables are existentially quantified, the BPDS BP has ν = O(2|ϕ||P||K1|
. . . |Kn|) states. According to [EHRS00], checking the emptiness of BP
can be done in O(ν2k) operations, where k is the number of transitions
of BP , hence, in O(ν4|Γ|2).

Complementation of a Büchi Automaton may increase its size expo-
nentially; hence, this technique may incur an exponential blow-up de-
pending on the number of universal quantifiers.

Application. If we consider that π0 range over Tracesω(P) and that
π1, . . . , πn range over a regular abstraction α(Tracesω(P)) of the actual
set of traces, and we assume that χ1, . . . , χn = ∀, we can apply this
result to approximate the model-checking problem, as detailed earlier
in this section.

It is worth noting that the complement of an ω context-free language is
not necessarily an ω context-free language. Hence, we can’t use the
previous procedure to check a HyperLTL formula of the form ψ =
∃π, ∀π′ϕ where π′ is a context-free variable and π is regular. We know,
however, that ω visibly pushdown languages are closed under comple-
mentation. We therefore consider the case of a single visibly pushdown
variable in the following subsection.

3.3.3 With one visibly pushdown variable and n regular
variables

Let P be a VPDS such that T(πi) = Tracesω(P), and (Kj)j 6=i finite state
transition systems such that for j 6= i, T(πj) = Tracesω(Kj). Unlike the
previous case, the visibly context-free variable no longer has to be the
first one π0.

Theorem 8. If a variable πi is visibly pushdown w.r.t. T and the other vari-
ables are regular, we can decide whether T |= χ0π0, . . . , χnπn, ϕ or not.

The proof of this theorem is similar to the proof of Theorem 7. We first
build a sequence of Büchi automata Bn+1, . . . ,Bi+1 in a similar manner
to the proof of Theorem 7, starting from a finite state automatonBn+1 =
Bϕ on the alphabet Σn+1 representing the unquantified formula ϕ then
computing products with the transition systems Kn+1, . . . ,Ki+1 until
we end up with a Büchi automaton Bi+1 on the alphabet Σi+1.

Having computed Bi+1 = (Q, Σi+1, δ, q0, F), we define the VPDS P =
(P, Σ, Γ, ∆, 〈p0,⊥〉) generating T(πi). We assume that χi = ∃. Let
BP i = (P × Q, Σi+1, ∆′, 〈(p0, q0),⊥〉, P × F) be a visibly Büchi push-

down automaton, where ∆′ is such that if q
(a0,...,ai−1,a)−−−−−−−→ q′ ∈ δ and

3.4. Model-checking HyperLTL with bounded phases 31

(p, γ)
a−→ (p′, w) ∈ ∆, then ((p, q), γ)

(a0,...,ai−1,a)−−−−−−−→ ((p′, q′), w) ∈ ∆′.
BP i is indeed a BVPDA on the alphabet Σi+1 as its stack operations
only depend on its i + 1-th variable. If χi = ∀, we consider instead the
complement B′i+1.

From the i-th variable onwards, we compute a sequence of visibly
Büchi pushdown automata BP i, . . . ,BP0 on the alphabets Σi+1, . . . , Σi

respectively. For i ≥ k ≥ 1, if BP k = (P′, Σk+1, ∆′, 〈p′0,⊥〉, F′), Ki =

(S, Σ, δ, s0), and χk = ∃, let BP k−1 = (P′ × S, Σk, ∆′′, 〈(p′0, s0),⊥〉, F′ ×
S) be a visibly Büchi pushdown automaton, where the set of transitions

∆′′ is such that if (p, γ)
(a0,...,ak−1,ai)−−−−−−−→ (p′, w) ∈ ∆′ and q

ak−1−−→ q′ ∈ δ, then

((p, q), γ)
(a0,...,ak−2,ai)−−−−−−−→ ((p′, q′), w) ∈ ∆′′. The last letter of each tuple

always stands for the visibly pushdown path variable πi: BP k−1 is vis-
ibly pushdown as its stack operations only depend on this variable. If
χk = ∀, we consider the complement BP ′k of BP k instead, which is a
visibly pushdown automaton as well, as proven in [AM04].

We can check the emptiness of BP0. If it is indeed empty, then T |=
ψ.

It has been proven in [AM04] that the complement of a VPDA incurs
an exponential blow-up in terms of states. Hence, the technique shown
here is exponential (in terms of time) in the size of P and ϕ.

Application. If we consider that πi range over Tracesω(P) and that
πj, j 6= i range over a regular abstraction α(Tracesω(P)) of the actual
set of traces, and we assume that χj = ∀ for j 6= i, we can apply this
result to approximate the model-checking problem, as detailed earlier
in this section.

3.4 Model-checking HyperLTL with bounded
phases

In this section, we use results on multi-stack pushdown automata to ap-
proximate the model-checking problem of HyperLTL formulas with
universal quantifiers against PDSs.

3.4.1 Multi-stack pushdown systems

Multi-stack pushdown systems (MPDSs) are pushdown systems with
multiple stacks. Their semantics are defined in a manner similar to
PDSs, and so are configurations, traces, runs, multi-stack pushdown au-
tomata (MPDA), and the semantics of LTL.

32 Chapter 3. Model-checking HyperLTL for PDSs

Definition 12 (La Torre et al. [TMP07]). A multi-stack pushdown sys-
tem (or MPDS) is a quadruplet M = (P, Γ, l, ∆) where P is a finite set
of control states, Γ is a finite stack alphabet, l is the number of stacks, and
∆ ⊂ P× Γ× {1, . . . , l} × P× Γ∗ a finite set of transition rules.

For a given transition of a MPDS, in a given control state, only one stack
is read and modified. A rule of the form (p, w, n) → (p′, w′) is applied
to the n-th stack with semantics similar to those of common pushdown
systems.

A configuration ofM is an element of P× (Γ∗)l. A set of configurations
C is said to be regular if for all p ∈ P, there exists a finite-state au-
tomaton Ap on the alphabet {#} ∪ Γ such that L(Ap) = {w1# . . . #wl |
〈p, w1, . . . , wl〉 ∈ C}.

We define a successor relation ↪→M on configurations. If δ = (p, a, i)→
(p′, w) ∈ ∆, then for each configuration c = 〈p, w1, . . . , wl〉 such that

wi = ax, we have c
δ
↪→
〈

p′, w′1, . . . , w′l
〉

where w′i = wx and w′j = wj if
j 6= i. ↪→∗M is the reflexive and transitive closure of the relation ↪→M=

(
⋃

δ∈∆

δ
↪→). We may ignore the variableM if only a single MPDS is being

considered. Without loss of generality, we can assume n stacks can be
modified by a single transition instead of using n different transitions
in a row.

For a given set of configurations C of a MPDSM, we define its set of
predecessors pre∗MPDS(M, C) = {c ∈ P× (Γ∗)l | ∃c′ ∈ C, c ↪→∗ c′}.

A run r of M from a configuration c0 is a sequence of configurations

r = (ci)i=1,...,n ∈ ∆∗ such that c0
t1
↪→ c1

t2
↪→ c2 . . .

tn
↪→ cn, where t =

(ti)i=1,...,n is a sequence of transition rules ofM called the trace of r. We

then write c0
t
↪→ cn.

Multi-stack automata are unfortunately Turing powerful, even with
only two stacks. La Torre et al. thus introduced in [TMP07] a new
restriction called phase-bounding:

Definition 13. A configuration c′ ofM is said to be reachable from another
configuration c in k phases if there exists a sequence of runs r1, r2, . . . rk with

matching traces t1, t2, . . . tk such that c0
t1
↪→ c1 . . .

tk
↪→ ck where c0 = c,

ck = c′, (ci)i=1,...,k is a sequence of configurations onM and where during
the execution of a given run ri, at most a single stack is popped from. We note
c ↪→∗M,k c′.

We then define pre∗MPDS(M, C, k) = {c ∈ P× (Γ∗)l | ∃c′ ∈ C, c ↪→∗M,k c′}.
The following theorem has been proven in [Set10]:

3.4. Model-checking HyperLTL with bounded phases 33

Theorem 9. Given a MPDSM and a regular set of configurations C, the set
pre∗MPDS(M, C, k) is regular and effectively computable.

This property can then be used to show that the following theorem
holds:

Theorem 10 (Anil Seth [Set10]). The model-checking problem of the logic
LTL against MPDSs with bounded phases is decidable.

3.4.2 Application to HyperLTL model-checking

Phase-bounding can be used to under-approximate the set of traces of
a MPDS. If a given LTL property ϕ does not hold for a MPDSMwith a
phase-bounding constraint, it does not hold for the MPDSMw.r.t. the
usual semantics as well. We writeM |=k ϕ if the LTL formula ϕ holds
for traces ofM with at most k phases.

We can use decidability properties of MPDSs with bounded phases to
approximate the model-checking problem of HyperLTL against push-
down systems. Let P = (P, Σ, Γ, ∆, c0〉) be a PDS on the input alphabet
Σ = 2AP, and ψ = ∀π1, . . . , ∀πn, ϕ, a HyperLTL formula on n trace
variables with only universal quantifiers.

Our intuition is to define a MPDSM such that each stack represents a
path variable of the HyperLTL formula. This MPDS is the product of
n copies of P . Because ψ features universal quantifiers only, the model-
checking problem of the LTL formula ϕ for M is then equivalent to
the model-checking problem of ψ for P : M simulates n runs of P si-
multaneously, hence, LTL formulas onM can be used to synchronize
these runs. We can therefore use a phase-bounded approximation of
the former problem to approximate the latter.

We introduce the MPDSM = (Pn, Σn, Γn, n, ∆′, c′0), with an initial con-
figuration c′0 = 〈(p0, . . . , p0),⊥, . . . ,⊥〉) ∈ Pn × Γn and a set of tran-
sitions ∆′ defined as follows: ∀d1, . . . , dn ∈ ∆n where di = (pi, γi)

ai−→
(p′i, wi) for i = 1, . . . , n, the transition ((p1, . . . , pn), γ1, . . . , γn)

(a1,...,an)−−−−−→
((p′1, . . . , p′n), w1, . . . , wn) belongs to ∆′. The following lemma holds:

Lemma 3. M |= ϕ if and only if P |= ψ.

As a consequence, ifM 6|= ϕ, then P 6|= ψ. We then consider a phase-
bounded analysis ofM: for a given integer k, ifM 6|=k ϕ, thenM 6|= ϕ,
hence P 6|= ψ. We can therefore compute an approximation of the
model-checking problem of HyperLTL formulas with universal quan-
tifiers only.

34 Chapter 3. Model-checking HyperLTL for PDSs

3.5 Applications to security properties

We apply in this section our results to information flow security, and
remind how, as shown in [CFK+14], security policies can be expressed
as HyperLTL formulas. If we model a given program as a PDS or a
VPDS P following the method outlined in [EHRS00], we can either
approximate an answer to the model-checking problem P |= ψ of a
policy represented by a HyperLTL formula ψ for this program.

3.5.1 Observational determinism

The strict non-interference security policy is the following: an attacker
should not be able to distinguish two computations from their outputs
if they only differ in their secret inputs. Few actual programs meet
this requirement, and different versions of this policy have thus been
defined.

We partition variables of a program into high and low security vari-
ables, and into input and output variables. The observational determin-
ism property holds if, assuming two starting configurations have iden-
tical low security input variables, their low security output variables
will be equal as well.

We model the program as a PDS P on the input alphabet 2AP, where
atomic propositions in AP contain variable values: if a variable x can
take a value a, then (x, a) ∈ AP. We can express the observational
determinism policy as the following HyperLTL formula:

ψOD = ∀π1, ∀π2, (
∧

a∈LSi

(aπ1 ⇔ aπ2))⇒ G (
∧

b∈LSo

(bπ1 ⇔ bπ2))

where LSi (resp. LSo) is the set of low security input (resp. output) vari-
ables values. Using our techniques detailed in Sections 3.4 and 3.3.2,
we can approximate the problem P |= ψOD that is otherwise undecid-
able.

A context-free example. Let AP = {i, o, h1, h2}, LSi = {i}, LSo = {o},
and let HSi = {h1, h2} be a set of high security inputs. We suppose we
are given a program that can be abstracted by the following PDS P on
the alphabet Σ = 2AP, the stack alphabet Γ = {γ,⊥}, and the set of
states P = {p0, p1, p2, p3, p4}, with the following set of transitions, as

3.5. Applications to security properties 35

p0

p1

p2

p3 p4

⊥ → γ⊥ : {i}

γ→ γγ : {h1},
γ→ γγ : {h2}

γ→ γ : {o}

γ→ γ : {o}

γ→ ε : {h1} γ→ γ : {o}

⊥ → ⊥ : {o}

⊥ → ⊥ : {o}

FIGURE 3.1: Checking observational determinism on
the PDS P

represented by Figure 3.1:

(init) (p0,⊥) {i}−→ (p0, γ⊥) (µ2) (p2, γ)
{h1}−−→ (p3, ε)

(λ1) (p0, γ)
{h1}−−→ (p1, γγ) (µ3) (p3, γ)

{o}−−→ (p2, γ)

(λ2) (p0, γ)
{h2}−−→ (p1, γγ) (ν1) (p3,⊥) {o}−−→ (p4,⊥)

(λ3) (p1, γ)
{o}−−→ (p0, γ) (ν2) (p4,⊥) {o}−−→ (p4,⊥)

(µ1) (p1, γ)
{o}−−→ (p2, γ)

We would like to check if P |= ψOD, where ψOD is the observational
determinism HyperLTL formula outlined above. Intuitively, it will not
hold: two runs always have the same input i but, if they do not push
the same number of symbols on the stack, their low-security outputs
will differ.

Since transitions of P are only labelled by singletons, we can write ρ
instead of {ρ} when describing traces. The set Tracesω(P) of infinite
traces of P is equal to

⋃
n∈N

i · ((h1 + h2) · o)n · (h1 · o)n+1 · o∗: from the

bottom symbol ⊥, rules (init), (λ1), (λ2), and (λ3) push n + 1 sym-
bols γ on the stack, then rules (µ1), (µ2), and (µ3) pop these (n + 1)

36 Chapter 3. Model-checking HyperLTL for PDSs

symbols, and finally rule (ν2) loop in state p4 once the bottom of the
stack is reached again and rule (ν1) has been applied. Tracesω(P) is
context-free, hence, we can’t model-check the observational determin-
ism policy on P using the algorithms outlined in [CS10].

Using the approximation technique outlined in Section 3.4, we can
show that ψOD does not hold if we bound the number of phases to
2: we find a counter-example π1 = i · h2 · o · h1 · o · o∗ and π2 = i · (h2 ·
o)2 · (h1 · o)2 · o∗. We can therefore reach the conclusion that P 6|= ψOD;
the observational determinism security policy therefore does not hold
for the original program.

3.5.2 Declassification

The strict non-interference security policy is very hard to enforce as
many programs must, one way or another, leak secret information dur-
ing their execution. Thus, we must relax the security properties defined
previously.

We introduce instead a declassification policy: at a given step, leaking a
specific high security variable is allowed, but the observational deter-
minism must otherwise holds. As an example, let’s consider a program
accepting a password as a high security input in its initial state, whose
correctness is then checked during the next execution step. The pro-
gram’s behaviour then depends on the password’s correctness. We ex-
press this particular declassification policy as the following HyperLTL
formula:

ψD = ∀π1, ∀π2, ((
∧

a∈LSi

(aπ1 ⇔ aπ2)) ∧X (ρπ1 ⇔ ρπ2))

⇒ G (
∧

b∈LSo

(bπ1 ⇔ bπ2))

where ρ is a high security atomic proposition specifying that an input
password is correct. Again, using our techniques detailed in Sections
3.4 and 3.3.2, we can both approximate the model-checking problem
P |= ψD.

Checking a password. We consider a program where the user can in-
put a low-security username and a high-security password, then get
different outputs depending on whether the password is true or not.

Let AP = {u, pw1, pw2, pw3, o, ρ, h1, h2}, LSi = {u}, LSo = {o}, let ρ be
a variable that is allowed to leak, and let HSi = {pw1, pw2, pw3, h1, h2}

3.5. Applications to security properties 37

p0

ptrue

p f alse

p1

p2 p3

⊥ → ⊥ : {u, pw1},
⊥ → ⊥ : {u, pw2}

⊥ → ⊥ : {u, pw3}

⊥ → ⊥ : {ρ}
⊥ → ⊥ : {o}

⊥ → γ⊥ : {o}

γ→ γγ : {h1}

γ→ γ : {h2}

γ→ ε : {h2}

⊥ → ⊥ : {h1}

FIGURE 3.2: Checking declassification on the PDS P

be a set of high security inputs. Assuming there is only a single user-
name u and three possible passwords pw1, pw2, pw3, the last password
pw3 being the only right answer, we can consider the following PDS
P on the alphabet Σ = 2AP, the stack alphabet Γ = {γ,⊥}, the set of
states P = {p0, p1, p2, p3, ptrue, p f alse}, with the following set of transi-
tions, as represented by Figure 3.2:

(init1) (p0,⊥) {u,pw1}−−−−→
(

p f alse,⊥
)

(µ1) (p1,⊥) {o}−−→ (p1,⊥)

(init2) (p0,⊥) {u,pw2}−−−−→
(

p f alse,⊥
)

(µ2) (p2, γ)
{h1}−−→ (p2, γγ)

(init3) (p0,⊥) {u,pw3}−−−−→ (ptrue,⊥) (µ3) (p2, γ)
{h2}−−→ (p3, γ)

(pwtrue) (ptrue,⊥)
{ρ}−−→ (p1,⊥) (µ4) (p3, γ)

{h2}−−→ (p3, ε)(
pw f alse

) (
p f alse,⊥

) {o}−−→ (p2, γ⊥) (µ2) (p3,⊥) {h1}−−→ (p3,⊥)

We would like to check if P |= ψD, where ψD is the declassification Hy-
perLTL formula outlined above. Obviously, if we consider that ρ ∈ LSo,
then observational determinism does not hold: given the same user-
name u, depending on whether the high-security password pi chosen
is right or not, the low-security output will differ. However, intuitively,
the declassification policy should hold: given two different input pass-
words, the PDS will behave in the same manner as long as both are
either true or false.

38 Chapter 3. Model-checking HyperLTL for PDSs

The set Tracesω(P) of infinite traces of P is equal to ({u, pw3} · {ρ} ·
{o1}∗)∪

⋃
n∈N

(({u, pw1} + {u, pw2}) · {o} · {h1}n · {h2}n+2 · {h1}∗): if

the right password pw3 has been input from the bottom symbol ⊥,
then rules (init3) and (ptrue) lead to state p1 where the PDS loops; oth-
erwise, if the password is wrong, rules (init1), (init2) and (p f alse) push
a symbol γ and lead to state p2, where rule (µ2) pushes n symbols
γ on the stack, then the PDS switches to state p3 where it pops these
(n+ 1) symbols with rules (µ3) and (µ4) then loops with rule (µ5) once
the bottom of the stack has been reached. Tracesω(P) is context-free,
hence, we can’t model-check the declassification policy on P using the
algorithms outlined in [CS10].

Using the approximation techniques detailed in Section 3.3.2, we can
consider the regular abstraction α(Tracesω(P)) = ({u, p3} · {ρ} · {o1}∗)
∪ (({u, p1} + {u, p2}) · ∅ · {h1}∗ · {h2}∗ · {h1}∗) of the actual set of
traces. We can then reach the conclusion that P |= ψD, since this prop-
erty holds for the approximation as well; the declassification security
policy therefore holds for this example.

3.5.3 Non-inference

Non-inference is a variant of the non-interference security policy. It
states that, should all high security input variables be replaced by a
dummy input λ, the behaviour of low security variables should not
change.

We express this property as the following HyperLTL formula:

ψNI = ∀π1, ∃π2, G (
∧

x∈HSi

(x, λ)π2) ∧G (
∧

b∈LS

(bπ1 ⇔ bπ2))

where LS stands for the set of all low security variables values, HSi for
the set of high security input variables, and (x, λ) means that variable
x has value λ. We can’t rely on the method outlined in 3.3.2 because
π2 is existentially quantified, but an approximation can nonetheless be
found using the method detailed in Section 3.3.3, if we model the pro-
gram as a VPDS P , choose π2 as the visibly context-free path variable,
and make it so that π1 ranges over a regular abstraction of the traces.

3.6 Related work

Clarkson and Schneider introduced hyperproperties in [CS10] to formal-
ize security properties, using second-order logic. Unfortunately, this

3.7. Conclusion 39

logic isn’t verifiable in the general case.

However, some fragments of it can be verified: in [CFK+14], Clark-
son et al. formalized the temporal logics HyperLTL and HyperCTL*,
extending the widespread and flexible framework of linear-time and
branching time logics to hyperproperties. The model-checking prob-
lem of these logics against finite state systems has been shown to be
decidable by a reduction to the satisfiability problem for the quantified
propositional temporal logic QPTL defined in [SVW87].

Proper model-checking algorithms were introduced by Finkbeiner et
al. in [FRS15]. These algorithms follow the automata-theoretic frame-
work defined by Vardi et al. in [Var96], and can be used to verify se-
curity policies in circuits. However, while circuits can be modelled as
finite state systems, actual programs can feature recursive procedure
calls and infinite recursion. Hence, a more expressive model such as
PDSs is needed.

In [BEM97, EHRS00], the forward and backward reachability sets of
PDSs have been shown to be regular and effectively computable. As
a consequence, the model-checking problem of LTL against PDSs is
decidable; an answer can be effectively computed using an automata-
theoretic approach. We try to extend this result to HyperLTL.

Multi-stack pushdown systems (MPDSs) are unfortunately Turing pow-
erful. Following the work of Qadeer et al. in [QR05], La Torre et
al. introduced in [TMP07] MPDSs with bounded phases: a run is split
into a finite number of phases during which there is at most one stack
that is popped from. Anil Seth later proved in [Set10] that the back-
ward reachability set of a multi-stack pushdown system with bounded
phases is regular; this result can then be used to solve the model
checking problem of LTL against MPDSs with bounded phases. We
rely on a bounded-phase analysis of a MPDS to approximate an an-
swer to the model-checking problem of HyperLTL against PDSs.

3.7 Conclusion

In this chapter, we study the model-checking problem of hyper prop-
erties expressed by the logic HyperLTL against PDSs. We show that it
is undecidable, even for the sub-class of visibly pushdown automata.
We therefore design an automata-theoretic framework to abstract the
model-checking problem given some constraints on the use of univer-
sal quantifiers in the HyperLTL formula. We also use phase-bounding

40 Chapter 3. Model-checking HyperLTL for PDSs

constraints on multi-stack pushdown automata to approximate the ac-
tual answer. Finally, we show some relevant examples of security prop-
erties that cannot be expressed with LTL but can be checked using our
approximation algorithms on a HyperLTL formula.

41

Chapter 4

Reachability Analysis of
Pushdown Systems with an
Upper Stack

As mentioned previously, pushdown systems (PDSs) are a natural model
for sequential programs, but they can fail to accurately represent the
way an assembly stack actually operates. Indeed, one may want to
access the part of the memory that is below the current stack or base
pointer, hence the need for a model that keeps track of this part of the
memory.

To this end, we introduce pushdown systems with an upper stack (UPDSs),
an extension of PDSs where symbols popped from the stack are not de-
stroyed but instead remain just above its top, and may be overwritten
by later push rules. We prove that the sets of successors post∗ and pre-
decessors pre∗ of a regular set of configurations of such a system are
not always regular, but that post∗ is context-sensitive, so that we can
decide whether a single configuration is forward reachable or not.

In order to under-approximate pre∗ in a regular fashion, we consider
a bounded-phase analysis of UPDSs, where a phase is a part of a run
during which either push or pop rules are forbidden. We then present
a method to over-approximate post∗ that relies on regular abstractions
of runs of UPDSs. Finally, we show how these approximations can be
used to detect stack overflows and stack pointer manipulations with
malicious intent.

Chapter outline. We define in Section 1 a new class of pushdown sys-
tems called pushdown systems with an upper stack. We prove in Sec-
tion 2 that neither the set of predecessors nor the set of successors of
a regular set of configurations are regular, but that the set of succes-
sors is nonetheless context-sensitive. Then, in Section 3, we prove that
the set of predecessors of an UPDS is regular given a phase-bounding
constraint. In Section 4, we give an algorithm to compute an over-
approximation of the set of successors. In Section 5, we show how

42 Chapter 4. Reachability Analysis of UPDSs

these approximations could be applied to find errors or security flaws
in programs. Finally, we describe the related work in Section 6 and
show our conclusion in Section 7.

These results were published in [PDT17].

4.1 Pushdown systems with an upper stack

Definition 14. A pushdown system with an upper stack (UPDS) is a
triplet P = (P, Γ, ∆) where P is a finite set of control states, Γ is a finite stack
alphabet, and ∆ ⊆ P× Γ× P× ({ε} ∪ Γ∪ Γ2) a finite set of transition rules.

We further note ∆pop = ∆∩ P× Γ× P× {ε}, ∆switch = ∆∩ P× Γ× P×
Γ, and ∆push = ∆ ∩ P× Γ× P× Γ2. If δ = (p, w, p′, w′) ∈ ∆, we write
δ = (p, w)→ (p′, w′). In a UPDS, a write-only upper stack is maintained
above the stack used for computations (from then on called the lower
stack), and modified accordingly during a transition.

For x ∈ Γ and w ∈ Γ∗, |w|x stands for the number of times the letter x
appears in the word w, and wR for the mirror image of w. Let Γ be a
disjoint copy (bijection) of the stack alphabet Γ. If x ∈ Γ (resp. Γ∗), then
its associated letter (resp. word) in Γ (resp. Γ∗) is written x.

A configuration of P is a triplet 〈p, wu, wl〉 where p ∈ P is a control
state, wu ∈ Γ∗ an upper stack content, and wl ∈ Γ∗ a lower stack content.
Let Con fP = P× Γ∗ be the set of configurations of P .

A set of configurations C of a UPDS P is said to be regular if for all
p ∈ P, there exists a finite-state automaton Ap on the alphabet Γ ∪ Γ
such that L(Ap) = {wuwl | 〈p, wu, wl〉 ∈ C}, where L(A) stands for
the language recognized by an automaton A.

From the set of transition rules ∆, we can infer an immediate successor
relation→P= (

⋃
δ∈∆

δ→) on configurations of P , which is defined as fol-

lows:

Switch rules: if δ = (p, γ) → (p′, γ′) ∈ ∆switch, then ∀wu ∈ Γ∗ and

∀wl ∈ Γ∗, 〈p, wu, γwl〉
δ→ 〈p′, wu, γ′wl〉. The top letter γ of the

lower stack is replaced by γ′, but the upper stack is left untouched
(the stack pointer doesn’t move).

Pop rules: if δ = (p, γ) → (p′, ε) ∈ ∆pop, then ∀wu ∈ Γ∗ and ∀wl ∈ Γ∗,

〈p, wu, γwl〉
δ⇒ 〈p′, wuγ, wl〉. The top letter γ popped from the

lower stack is added to the bottom of the upper stack (the stack
pointer moves to the right), as shown in Figure 4.1.

4.1. Pushdown systems with an upper stack 43

γ1 p γ γ2 γ3
δ→ γ1 γ p’ γ2 γ3

FIGURE 4.1: Semantics of pop rules.

γ1 γ2 p γ γ3
δ→ γ1 p’ γ′ γ′′ γ3

FIGURE 4.2: Semantics of push rules.

Push rules: if δ = (p, γ) → (p′, γ′γ′′) ∈ ∆push, then ∀wl ∈ Γ∗, ∀wu ∈
Γ∗, 〈p, ε, γwl〉

δ→ 〈p′, ε, γ′γ′′wl〉 and ∀x ∈ Γ, 〈p, wux, awl〉
δ→

〈p′, wu, γ′γ′′wl〉. A new letter b is pushed on the lower stack, and
a single letter is deleted from the bottom of the upper stack in or-
der to make room for it, unless the upper stack was empty (the
stack pointer moves to the left), as shown in Figure 4.2.

The reachability relation ⇒P is the reflexive and transitive closure of
the immediate successor relation→P . If C is a set of configurations, we
introduce its set of successors post∗(P , C) = {c ∈ P× Γ∗ × Γ∗ | ∃c′ ∈
C, c′ ⇒P c} and its set of predecessors pre∗(P , C) = {c ∈ P× Γ∗ × Γ∗ |
∃c′ ∈ C, c ⇒P c′}. We may omit the variable P when only a single
UPDS is being considered. Note that the combined size of the two
stacks keeps growing after each transition.

For a set of configurations C, let Clow = {〈p, wl〉 | ∃wu ∈ Γ∗, 〈p, wu, wl〉
∈ C} and Cup = {〈p, wu〉 | ∃wl ∈ Γ∗, 〈p, wu, wl〉 ∈ C}. We then define
post∗up(P , C) = (post∗(P , C))up, as well as post∗low(P , C), pre∗up(P , C)
and pre∗low(P , C) in a similar fashion.

A finite run r of P from a configuration c ∈ Con fP is a finite sequence

of configurations (ci)i=0,...,n such that c0 = c and c0
t1→ c1

t2→ c2 . . . tn→ cn,
where t = (ti)i=1,...,n is a sequence of transitions in ∆∗, also called the

trace of r. We then write c0
t⇒P cn, or c0 →n

P cn (cn is reachable from c0
in n steps).

We say that r is a run of P from a set of configurations C if and only
if ∃c ∈ C such that r is a run of P from c. Let Runs(P , C) (resp.
Traces(P , C)) be the set of all finite runs (resp. traces) of P from a set of
configurations C.

These definitions are related to similar concepts on unlabelled PDSs
detailed in Chapter 2. A UPDS and a PDS indeed share the same def-
inition, but the semantics of the former expand the latter’s. For a set
C ⊆ P× Γ∗ of lower stack configurations (the upper stack is ignored)
and a UPDS P , let post∗PDS(P , C) and pre∗PDS(P , C) be the set of forward
and backward reachable configurations from C using the PDS seman-
tics. The following lemmas hold:

44 Chapter 4. Reachability Analysis of UPDSs

Lemma 4. Given a UPDS P = (P, Γ, ∆) and a set of configurations C, t is
a trace from C with respect to the UPDS semantics if and only if t is a trace
from Clow with respect to the standard PDS semantics.

Lemma 5. Given a UPDS P = (P, Γ, ∆) and a set of configurations C,
post∗low(P , C) = post∗PDS(P , Clow) and pre∗low(P , C) = pre∗PDS(P , Clow).

Lemmas 4 and 5 are true because, if we ignore the upper stack, a PDS
and a UPDS share the same semantics.

4.2 Reachability properties

As shown in Chapter 2, we know that pre∗PDS and post∗PDS are regular
for a regular set of starting configurations. We prove that these results
cannot be extended to UPDSs, but that post∗ is still context-sensitive.
This implies that reachability of a single configuration is decidable for
UPDSs.

4.2.1 post∗ is not regular

The following counterexample proves that, unfortunately, post∗(P , C)
is not always regular for a given regular set of configurations C and a
UPDS P . The intuition behind this statement is that the upper stack
can be used to store symbols in a non-regular fashion. The counter-
example should be carefully designed in order to prevent later push
operations from overwriting these symbols.

Let P = (P, Γ, ∆) be a UPDS with P = {p, p′}, Γ = {a, b, x, y,⊥}, and ∆
the following set of pushdown transitions:

(Sx) (p, x)→ (p, a) (Ra) (p, a)→ (p, ε)
(Sy) (p, y)→ (p, b) (Rb) (p, b)→ (p, ε)
(C) (p, a)→ (p, ab) (E) (p,⊥)→ (p′,⊥)

Let C = {p} × {ε} × (xy)∗x⊥ be a regular set of configurations. We
can compute a relevant subset L of post∗(C):

Lemma 6. L = {〈p′, an+1bn,⊥〉, n ∈N} ⊆ post∗(C).

Proof. We prove that 〈p, ε, x(yx)n⊥〉 ⇒ 〈p, an+1bn,⊥〉 by induction on
n.

Basis: 〈p, ε, x⊥〉 → 〈p, ε, a⊥〉 → 〈p, a,⊥〉.

4.2. Reachability properties 45

Induction step: if 〈p, ε, (xy)nx⊥〉 ⇒ 〈p, an+1bn,⊥〉, since the only rule
able to read or modify the symbol ⊥ is (E) but it has not been ap-
plied as the PDS would end up in state p′, we have 〈p, ε, (xy)nx〉
⇒ 〈p, an+1bn, ε〉, hence, 〈p, ε, (xy)n+1x⊥〉 ⇒ 〈p, an+1bn, yx⊥〉.

However, 〈p, an+1bn, yx⊥〉
SyRbSxCn+1

⇒ 〈p, an+1, abn+1⊥〉 and 〈p,

an+1, abn+1⊥〉
RaRn+1

b⇒ 〈p, an+2bn+1,⊥〉. From there, we have 〈p,

an+1bn,⊥〉 E⇒ 〈p′, an+1bn,⊥〉.

Hence, 〈p′, an+1bn,⊥〉 ∈ post∗(C), ∀n ∈N.

Then, we prove an inequality holding for any configuration in post∗:

Lemma 7. ∀〈p, wu, wl〉 ∈ post∗(C), let w = wuwl; then |w|b + |w|b + 1 ≥
|w|a + |w|a.

Proof. The only rule in ∆ that can add a letter a to the whole stack is
Sx. However, in order to apply it more than once, a x deeper in the
lower stack must be reached beforehand, and the only way to do so is
by switching a y to a b and popping said b, hence, adding a b to the
whole stack.

Moreover, the number of b in the whole stack keeps growing during a
computation, since no rule can switch a b on the lower stack or delete
it from the upper stack. The inequality therefore holds.

If we suppose that post∗(C) is regular, then so is the language Lp′ ,
where Lp′ = {wuwl | 〈p′, wu, wl〉 ∈ post∗(C)}, and by the pumping
lemma, it admits a pumping length k. We will apply the pumping
lemma to an element of L in order to generate a configuration that
should be in post∗ but does not comply with the previous inequality.

According to Lemma 6, L ⊆ post∗(C) and as a consequence the word
w = ak+1bk⊥ is in Lp′ . Hence, if we apply the pumping lemma to w,
there exist x, y, z ∈ (Γ ∪ Γ)∗ such that w = xyz, |xy| ≤ k, |y| ≥ 1, and
xyiz ∈ post∗(C), ∀i ≥ 1. As a consequence of w’s definition, x, y ∈ a∗

and z ∈ (a + b)∗.

Hence, for i large enough, wi = xyiz ∈ Lp′ and |wi|a > |wi|b + 1. By
Lemma 7, this cannot happen and therefore neither Lp′ nor post∗(C)
are regular.

It should be noted that Lp′
up is not regular either. Indeed, from the def-

inition of P and C, it is clear that ∀〈p′, wu, wl〉 ∈ post∗(C), wl = ⊥, so
Lp′

up and Lp′ are in bijection. We have therefore proven the following
theorem:

46 Chapter 4. Reachability Analysis of UPDSs

Theorem 11. There exist a UPDS P and a regular set of configurations C for
which neither post∗(C) nor post∗up(C) are regular.

4.2.2 pre∗ is not regular

We now prove that pre∗ is not regular either. Let P = (P, Γ, ∆) be a
UPDS with P = {p}, Γ = {a, b, c}, and ∆ the following set of push-
down transitions:

(C0) (p, c)→ (p, ab) (Ra) (p, a)→ (p, ε)
(C1) (p, c)→ (p, cb) (Rb) (p, b)→ (p, ε)

We define the regular set of configurations C = {p} × (ab)∗ × {c} and
again, compute a relevant subset of pre∗(C):

Lemma 8. L = {〈p, bn, cnc〉, n ∈N} ⊆ pre∗(C).

Proof. By induction on n, we can prove that 〈p, bn, cnc〉 ⇒ 〈p, (ab)n, c〉,
proving the induction step by using the fact that 〈p, bn+1, cn+2〉 ⇒
〈p, abbn, cnc〉.

Given the rules of P , the following lemma is verified:

Lemma 9. If 〈p, bm, cn〉 ⇒∗ 〈p, wu, wl〉, then |wu|a + |wl|a ≤ n.

Proof. The only rule that can add an a to the whole stack is C0 and it
replaces a c on the lower stack by ab. Hence, during a computation,
one cannot create more a than there were c in the initial configuration.
The inequality therefore holds.

If pre∗(C) is regular, so is Lp = {wuwl | 〈p, wu, wl〉 ∈ pre∗(C)}, and
by the pumping lemma, it admits a pumping length k. Moreover, by
lemma 8, w = bkckc ∈ Lp.

If we apply the pumping lemma to w, there exist x, y, z ∈ (Γ∪ Γ)∗ such
that w = xyz, |xy| ≤ k, |y| ≥ 1 and wi = xyiz ∈ pre∗(C), ∀i ≥ 1. As a
consequence of w’s definition, x, y ∈ b

∗
and z ∈ b

∗
ckc.

Since wi ∈ Lp, ∀i ≥ 1, there exists an integer ni such that wi ⇒ ci =

(ab)ni c. Moreover, the size of the stack must grow or remain constant
during a computation, hence |ci| ≥ |wi| and ni ≥ |wi|−1

2 . Since words in
the sequence (wi)i are unbounded in length, the sequence (ni)i must be
unbounded as well. However, by Lemma 9, ni = |ci|a ≤ |wi|c = k + 1.

Hence, there is a contradiction and pre∗(C) is not regular.

4.2. Reachability properties 47

Theorem 12. There exist a UPDS P and a regular set of configurations C for
which pre∗(C) is not regular.

4.2.3 post∗ is context-sensitive

We prove that, if C is a regular set of configurations of a UPDS P ,
then post∗(P , C) is context-sensitive. This implies that we can decide
whether a single configuration is reachable from C or not.

We show that the problem of computing post∗(P , C) can be reduced
without loss of generality to the case where C contains a single config-
uration. To do so, we define a new UPDS P ′ by adding new states and
rules to P in such manner that any configuration c in C can be reached
from a single configuration c$ = 〈p$, ε, $〉. Once a configuration in C is
reached, P ′ follow the same behaviour as P .

Theorem 13. For each UPDS P = (P, Γ, ∆) and each regular set of config-
urations C on P , there exists a UPDS P ′ = (P′, Γ ∪ Γ ∪ {$}, ∆′), P ⊆ P′,
and p$ ∈ P′ \ P such that post∗(P , C) = post∗(P ′, {〈p$, ε, $〉}) ∩ (P ×
Γ∗ × Γ∗).

Proof. Our intuition is to build configurations in C in three steps: from
c$, push the word wuwl on the stack by using push rules mimicking a
finite automaton accepting the regular set C, switch each symbol in Γ
to its equivalent letter in Γ and then pop it in order to write wu on the
upper stack, then move to the right state p.

Since C is regular, so is ∀p ∈ P the language {wu
Rwl | 〈p, wu, wl〉 ∈ C}.

Consider Ap = (Γ ∪ Γ, Qp, Ep, Ip, Fp) such that L(Ap) = {(wuwl)
R |

〈p, wu, wl〉 ∈ C}. The mirror image is needed because the bottom of
lower stack should be pushed first and the top of upper stack last.
Without loss of generality, we suppose that Ip = {ip}, Fp = { fp},
p$ /∈ Qp, Qp ∩ P = ∅ and that no edge in Ep ends in ip nor starts
in fp.

We define the UPDS P ′p = (P′p, Γ ∪ Γ ∪ {$}, ∆′p), where P′p = Qp ∪
{p$, p, pτ}, pτ /∈ Qp and the following rules belong to ∆′p:

Rules from Ap: for all x ∈ Γ ∪ Γ, if q
x
→∗Ep

q′ in the automaton Ap,
then (p$, $) → (q, x) ∈ ∆′p if q = ip, and (q, y) → (q′, xy) ∈ ∆′p
y ∈ Γ ∪ Γ otherwise. These rules are used to build the stack and
mimicks transitions in Ap; symbols that will end on the upper
stack are stored on the lower stack.

Setting the upper stack: for all x ∈ Γ, (fp, x) → (pτ, x) ∈ ∆′p and
(pτ, x) → (fp, ε) ∈ ∆′p. Each symbol x on the top of the lower

48 Chapter 4. Reachability Analysis of UPDSs

stack is switched to its equivalent symbol in Γ then popped in
order to end on the upper stack.

Moving to state p: for all x ∈ Γ, (fp, x) → (p, x) ∈ ∆′p. Once the up-
per stack has been defined and the lower stack is being read, the
UPDS moves to state p in order to end in a configuration in C.

The UPDS P ′p follows the three steps previously outlined: push wuwl
on the lower stack, so that it is in a configuration 〈 fp, ε, wuwl〉, then
move to 〈pτ, wu, wl〉 by switching and popping the symbols in Γ, and
end in 〈p, wu, wl〉.

We then introduce P ′ = (
⋃

p∈P
P′p ∪ P, Γ ∪ Γ ∪ {$}, ⋃

p∈P
∆′p ∪ ∆). From c$,

P ′ can reach any configuration of C using the rules of the automata
(P ′p)p∈P, then follow the rules of P . P ′ therefore satisfies Theorem
13.

Using this theorem, we can focus on the single starting configuration
case. We assume for the rest of this subsection that C = 〈p$, ε, $〉, p$ ∈
P, and $ ∈ Γ. We now formally define context-sensitive grammars:

Definition 15. A grammar G is a quadruplet (N, Σ, R, S) where N is a
finite set of non terminal symbols, Σ a finite set of terminal symbols with
N ∩Σ = ∅, R ⊆ (N ∪Σ)∗N(N ∪Σ)∗× (N ∪Σ)∗ a finite set of production
rules, and S ∈ N a start symbol.

We define the one-step derivation relation 99KG on a given grammar G:
if ∃p, q ∈ (N ∪ Σ)∗, p → q ∈ R then for x = upv and y = uqv, where
u, v ∈ (N ∪ Σ)∗, x 99KG y. The derivation relation 99K∗G is its transitive
closure. The language L(G) of a grammar is the set {w ∈ Σ∗ | S 99K∗G
w}. We may omit the variable G when only a single grammar is being
considered.

A grammar is said to be context-sensitive if each productions rule r ∈ R
is of the form αAβ → αγβ where α, β ∈ (N ∪ Σ)∗, γ ∈ (N ∪ Σ)+, and
A ∈ N. A language L is said to be context-sensitive if there exists a
context-sensitive grammar G such that L(G) = L.

The following theorem is a well-know property of context-sensitive
languages detailed in [HMRU00]:

Theorem 14. Given a context-sensitive language L and a word w ∈ Σ∗, we
can effectively decide whether w ∈ L or not.

We can compute a context-sensitive grammar recognizing post∗. Our
intuition is to represent a configuration 〈p, wu, wl〉 of P by a word
>wu pwl⊥ of a grammar G. We use Theorem 13 so that the single start

4.2. Reachability properties 49

symbol of G can be matched to a single configuration c$. The context-
sensitive rules of G mimic the transitions of the UPDS. As an exam-
ple, a rule δ = (p, a) → (p′, ε) ∈ ∆pop can be modelled by three rules
pa 99KG pgδ, pgδ 99KG agδ, and agδ 99KG ap′ such that pa 99K∗G ap′,
where 99KG stands for the one-step derivation relation and gδ is a non-
terminal symbol of G.

Let us define this context-sensitive grammar G = (N, Σ, R, S) more pre-
cisely:

Start symbol: S is the start symbol.

Nonterminal symbols: let N = {S} ∪ Γ ∪ P ∪ ∆switch ∪ ∆pop ∪ ∆push ×
{0, 1}. P is a disjoint copy (bijection) of the state alphabet P. In
order to properly simulate transitions rules in ∆ with context-
sensitive production rules, non-terminal symbols related to these
transitions are needed.

Terminal symbols: Σ = {>,⊥} ∪ P ∪ Γ.

Production rules: R = RP ∪ R f inal ∪ {S → >p$$⊥}; the last rule ini-
tializes the starting configuration of P .

The production rules in RP simulate the semantics of the UPDS as de-
fined by its transition rules ∆. For each switch rule δ : (p, a)→ (p′, b) ∈
∆switch, the following grammar rules belong to RP in order to allow
pa 99K∗G p′b:

(rδ
0) pa→ δa (rδ

1) δa→ δb (rδ
f) δb→ p′b

For each pop rule δ : (p, a) → (p′, ε) ∈ ∆pop, the following grammar
rules belong to RP in order to allow pa 99K∗G ap′:

(rδ
0) pa→ pδ (rδ

1) pδ→ aδ (rδ
f) aδ→ ap′

For each push rule δ : (p, a) → (p′, bc) ∈ ∆push, the following gram-
mar rules belong to RP in order to allow xpa 99K∗G p′bc and >pa 99K∗G
>p′bc:

(rδ
0) pa→ δ0a ∀x ∈ Γ, (rδ,x

1) xδ0 → δ1δ0

(rδ,>
1) >δ0 → >δ1δ0 (rδ

2) δ1δ0a→ δ1δ0c
(rδ

3) δ1δ0c→ δ1bc (rδ
f) δ1bc→ p′bc

It is worth noting that, once a production rule rδ
0 has been applied, there

is no other derivation possible in RP but to apply the other production
rules (rδ

i)i in the order they’ve been defined until a state symbol in P

50 Chapter 4. Reachability Analysis of UPDSs

has been written again by rδ
f . This sequence simulates a single transi-

tion rule of the UPDS P .

Finally, the rules in R f inal merely switch symbols in Γ∪ P to their equiv-
alent letters in Σ in order to generate a terminal word, starting with the
state symbol to prevent any further use of RP :

∀p ∈ P (r f inal
p) p→ p

∀x, y ∈ Γ ∪ P (r f inal
x,y) xy→ xy

∀x, y ∈ Γ ∪ P (r f inal
y,x) yx → yx

Once a rule r f inal
p has been applied, the only production rules available

for further derivations are in R f inal.

We prove that L(G) is in bijection with post∗({c$}).

Lemma 10. If 〈p, wu, wl〉 ∈ post∗({c$}), then from S we can derive the
nonterminal word >wu pwl⊥ in G, and >wu pwl⊥ ∈ L(G).

Proof. By induction on n, we must prove that if c$ ⇒n 〈p, wu, wl〉, then
we can derive in G the non-terminal word >wu pwl⊥.

Basis: we have S→ >p$$⊥.

Induction step: if c ⇒n 〈p, wu, wl〉
δ⇒ 〈p′, w′u, w′l〉, then the non termi-

nal word >wu pwl⊥ can be derived from S in G by the induction
hypothesis. From this word, we can further derive>w′u p′w′l⊥ us-
ing the production rules rδ

0, . . . , rδ
f associated with the transition

rule δ.

Finally, from any non terminal word of the form >wu pwl⊥, we can
derive in G a terminal >wu pwl⊥ using rules in R f inal.

Moreover, by design of the grammar G, the following lemma holds:

Lemma 11. If S 99K∗ >wu pwl⊥, wu, wl ∈ Γ∗, p ∈ P, then 〈p, wu, wl〉 ∈
post∗({c$}).

Hence, the following result holds:

Theorem 15. Given a UPDS P and a regular set of configurations C, we can
compute a context-sensitive grammar G such that 〈p, wu, wl〉 ∈ post∗(P , C)
if and only if >wu pwl⊥ ∈ L(G)

Since the membership problem is decidable for context-sensitive gram-
mars, the following theorem holds:

Theorem 16. Given a UPDS P , a regular set of configurations C, and a
configuration c of P , we can decide whether c ∈ post∗(P , C) or not.

4.3. Under-approximating pre∗ 51

Unfortunately, this method cannot be extended to pre∗ due to a prop-
erty of context-sensitive grammars: each time a context-sensitive rule
is applied to a non-terminal word to produce a new word, the latter
is of greater or equal length than the former. The forward reachability
relation does comply with this monotony condition, as the combined
size of the upper and lower stacks can only increase or stay the same
during a computation, but the backward reachability relation does not.

4.3 Under-approximating pre∗

Under-approximations of reachability sets can be used to discover errors
in programs: ifX is a regular set of forbidden configurations of a UPDS
P , C a regular set of starting configurations, and U ⊆ pre∗(X) a reg-
ular under-approximation, then U ∩ C 6= ∅ implies that a forbidden
configuration can be reached from the starting set, as shown in Figure
4.3. The emptiness of the above intersection has to be decidable, hence,
the need for a regular approximation.

pre∗(X)

U
C

FIGURE 4.3: Using an under-approximation.

In Section 3.4, we used MPDSs with bounded phases in order to under-
approximate the HyperLTL model-checking problem for PDSs. Here,
we apply results on multi-stack pushdown automata to define an under-
approximation of pre∗ for UPDSs.

The notion of bounded-phase computations can be extended to UPDSs.
A run r of P is said to be k-phased if it is of the form: r = r1 · r2 . . . rk
where ∀i ∈ {1, . . . , k}, ri ∈ (∆push∪∆switch)

∗∪ (∆pop∪∆switch)
∗. During

a phase, one can either push or pop, but can’t do both. Such a run has
therefore at most k alternations between push and pop rules. We can
extend this notion to traces.

The k-bounded reachability relation⇒k is defined as follows: c0 ⇒k c1
if there exists a k-phased run r on P with a matching trace t such that
c0

t⇒ c1. Using this new reachability relation, given a set of configura-
tions C, we can define pre∗(P , C, k).

52 Chapter 4. Reachability Analysis of UPDSs

We can show that a UPDS P can be simulated by a MPDSMwith two
stacks, the second stack ofM being equivalent to the lower stack, and
the first one, to a mirrored upper stack followed by a symbol ⊥ that
can’t be popped and is used to know when the end of the stack has
been reached. Elements of P × Γ∗ × Γ∗ can equally be considered as
configurations of P orM, assuming in the latter case that we consider
the mirror of the first stack and add a ⊥ symbol to its bottom. Thus:

Lemma 12. For a given UPDS P = (P, Γ, ∆) and a regular set of config-
urations C, there exists a MPDSM, a regular set of configurations C ′, and
⊥ /∈ Γ such that 〈p, wR

u⊥, wl〉 ∈ pre∗MPDS(M, C ′, k) ∩ (P× Γ∗ × Γ∗) if and
only if 〈p, wu, wl〉 ∈ pre∗(P , C, k).

Proof. Following the above intuition, we define a two-stack pushdown
systemM = (P∪∆push ∪∆pop, Γ∪ {⊥}, 2, ∆′) where ∆′ has the follow-
ing rules:

Switch rules: if δ = (p, a) → (q, b) ∈ ∆switch, then (p, a, 2) → (q, b) ∈
∆′.

Pop rules: if δ = (p, a)→ (q, ε) ∈ ∆pop, then (p, a, 2)→ (δ, ε) ∈ ∆′ and
(δ, x, 1)→ (q, ax) ∈ ∆′ for each x ∈ Γ ∪ {⊥}.

Push rules: if δ = (p, a) → (q, bc) ∈ ∆push, then we define (p, a, 2) →
(δ, bc) ∈ ∆′, (δ,⊥, 1) → (q,⊥) ∈ ∆′ and (δ, x, 1) → (q, ε) ∈ ∆′ for
each x ∈ Γ. If we reach ⊥ on the second stack, the upper stack is
considered to be empty and no symbol should be popped from it.

We then define C ′ = {〈p, wR
u⊥, wl〉 | 〈p, wu, wl〉 ∈ C}. M simulates P

and C ′ is equivalent to (in bijection with) C.

From Theorem 9, we get:

Theorem 17. Given a UPDS P and a regular set of configurations C, the set
pre∗(P , C, k) is regular and effectively computable.

pre∗(P , C, k) is then obviously an under-approximation of pre∗(P , C).

4.4 Over-approximating post∗

While under-approximations of reachability sets can be used to show
that an error can occur, over-approximations can, on the other hand,
prove that a program is safe from a particular error. If X is a regular
set of forbidden configurations on a UPDS P , C a regular set of starting
configurations, and O ⊇ post∗(C) a regular over-approximation, then
O ∩ X = ∅ implies that no forbidden configuration can be reached

4.4. Over-approximating post∗ 53

from the starting set and that the program is therefore safe, as shown
in Figure 4.4.

X post∗(C)

O

FIGURE 4.4: Using an over-approximation.

The emptiness of the above intersection has to be decidable, hence, the
need for a regular approximation.

4.4.1 A relationship between runs and the upper stack

We prove here that from a regular set of traces of a given UPDS, a reg-
ular set of corresponding upper stacks can be computed. A subclass
of programs whose UPDS model has a regular set of traces would be
programs with finite recursion (hence, with a stack of finite height).

Given a UPDS P = (P, Γ, ∆) and a configuration c = 〈p, wu, wl〉 of P ,
we match inductively to each sequence of transition τ ∈ ∆∗ an upper
stack word υ(τ, c) ∈ Γ∗ according to the following rules:

— υ(ε, c) = wu;

— if δ = (p, γ)→ (p′, γ′) ∈ ∆switch, then υ(τδ, c) = υ(τ, c);

— if δ = (p, γ)→ (p′, ε) ∈ ∆pop, then υ(τδ, c) = υ(τ) · a;

— if δ = (p, γ) → (p′, γ′γ′′) ∈ ∆push, then υ(τδ, c) = ε if υ(τ, c) = ε,
and υ(τδ, c) = w if υ(τ) = wx, where x ∈ Γ;

Intuitively, υ(τ, c) is the upper stack content after applying the sequen-
ce of transitions τ, starting from a configuration c. Note that τ may
not be an actual trace of P ; υ(τ) is merely the virtual upper stack built
by pushing and popping values in a write-only manner, regardless of
the lower stack, the control states, and the coherence of the sequence
of transitions used. However, if t is indeed a trace of P , then the upper
stack configuration υ(t, c) is indeed reachable from c using the trace t.

A sequence of transitions is said to be meaningful if ∀p′ ∈ P, any tran-
sition ending in state p′ can only be followed by a transition starting
in state p′. A trace of P is obviously a meaningful sequence. A set

54 Chapter 4. Reachability Analysis of UPDSs

of sequences of transitions T is said to be prefix-closed if, given t ∈ T,
any prefix of t is in T as well. The set of all traces of a given system is
obviously prefix-closed.

The following theorem holds:

Theorem 18. For a UPDS P = (P, Γ, ∆), a regular set of configurations C,
and a regular, prefix-closed set of meaningful sequences of transitions T ⊆ ∆∗

of P from C, the set of upper stack configurations U (T) = {〈p′, w′u〉 | ∃c =
〈p, wu, wl〉 ∈ C, ∃t ∈ T, t starts in state p and ends in state p′, υ(t, c) =
w′u} spawned by T from C is regular and effectively computable.

Thanks to Theorem 13, we consider the single configuration case where
C = {c$} without loss of generality. Let AT = (∆, Q, E, I, F) be a finite
state automaton such that L(AT) = T. Since T is meaningful, we can
assume that Q = ∪

p∈P
Qp where Qp is such that ∀q ∈ Qp, if there is an

edge q′ δ−→E q, then the pushdown rule δ is of the form (p′, a)→ (p, w).
We can also assume that F = Q since T is prefix-closed.

We introduce the automaton AU = (Γ, Q, E′, I, F) whose set of tran-
sitions E′ is defined by applying the following rules until saturation,
starting from E′ = ∅:

(Spop) if there is an edge q0
δ−→E q1 in AT and δ is of the form (p, a) →

(p′, ε), then we add the edge q0
a−→ q1 to E′.

(Sswitch) if there is an edge q0
δ−→E q1 inAT and δ is of the form (p, a)→

(p′, b), then we add the edge q0
ε−→ q1 to E′.

(Spush) if there is an edge q0
δ−→E q1 in AT, δ is of the form (p, a) →

(p′, bc), and there is a state q such that either (1) q ∈ Q and q x−→E′

q0 for x ∈ Γ or (2) q ∈ I and q ε−→∗E′q0, then we add an edge q ε−→ q1
to E′.

We call (E′i)i the finite, growing sequence of edges created during the
saturation procedure.

Our intuition behind the above construction is to create a new automa-
ton that uses the states of the sequence automaton but accepts upper
stack words instead: an upper stack word w is accepted by AU with
the path qi

w−→∗E′q, where qi ∈ I if and only if AT accepts a sequence t

with the path qi
t−→∗Eq where t ends in state p and υ(t, c$) = w. This

property is preserved at every step of the saturation procedure.

Indeed, consider a sequence t and w = υ(t, c$). Suppose that t and w
satisfy the property above: there is a path qi

t−→∗Eq0 in AT and a path

4.4. Over-approximating post∗ 55

qi
w−→∗E′q0 in AU. Let q0

δ−→E q1 be a transition of AT, q1 ∈ Q and δ ∈ ∆.

tδ is a sequence of transitions in T with a labelled path qi
tδ−→∗Eq1 in AT,

and in order to satisfy the above property, a path qi
w′−→∗E′q1 labelled by

w′ = υ(tδ, c$) should exist in AU as well.

If δ ∈ ∆pop, then w′ = υ(tδ, c$) = wa, where a ∈ Γ. Rule (Spop) creates
an edge q0

a−→ q1 in AU such that there is a path qi
w−→ ∗

E′q0
a−→E′ q1

labelled by w′.

If δ ∈ ∆switch, then w′ = υ(tδ, c$) = w. Rule (Sswitch) creates an edge
q0

ε−→ q1 in AU such that there is a path qi
w−→∗E′q0

ε−→E′ q1 labelled by w′.

If δ ∈ ∆push and w = w0x, where x ∈ Γ, then w′ = υ(tδ, c$) = w0 and

for every state q ∈ Q such that qi
w0−→∗E′q

x−→E′ q0, (Spush) adds an edge

q ε−→ q1 to AU such that there is a path qi
w0−→∗E′q

ε−→E′ q1 labelled by w′.

Following this intuition, we can prove this lemma:

Lemma 13. For every sequence t such that ∃qi ∈ I, ∃q ∈ Qp, qi
t−→∗Eq, then

there exists a path qi
w−→∗E′q in AU such that υ(t, c$) = w.

On the other hand, we must prove this lemma to get the full equiva-
lence:

Lemma 14. At any step i of the saturation procedure, if qi
w−→ ∗

E′i
q where

qi ∈ I, then there exists a sequence of transitions t in T such that qi
t−→∗Eq and

υ(t, c$) = w.

Proof. We prove this lemma by induction on the saturation step i:

Basis: E′0 = ∅ and the lemma holds.

Induction step: Let q1
x−→∗E′i+1

q2 be the i + 1-th transition added to E′.

Let w′ = wx be such that there is a path qi
w−→∗E′i q1

x−→E′i+1
q2. By

induction hypothesis, there is a sequence t ∈ T such that qi
t−→∗Eq1

and υ(t, c$) = w.

If x ∈ Γ, then there is a rule δ ∈ ∆pop popping x from the stack

such that q1
δ−→E q2 by definition of the saturation rules. We have

υ(tδ, c$) = wx = w′ and the lemma holds at the i + 1-th step.

If x = ε, then the rule δ spawning q1
x−→∗E′i+1

q2 is either a switch or
push rule. The switch case being similar to the pop case, we will
consider that δ ∈ ∆push.

56 Chapter 4. Reachability Analysis of UPDSs

In the first case of the push saturation rule, there exists by defini-

tion a state q0 such that q0
δ−→E q2 and y ∈ Γ such that q1

y−→E′i
q0.

Hence, there is δ′ ∈ ∆pop popping y from the stack such that

q1
δ′−→∗Eq0. If we consider the sequence qi

t−→∗Eq1
δ′−→E q0

δ−→E q2,
then υ(tδ′δ, c$) = w = w′ and the lemma holds at the i + 1-th
step. The second case of the push saturation rule is similar.

Let Lp(AU) = {w | ∃qi ∈ I, ∃ f ∈ Qp, i w−→∗E′ f } be the set of paths in AU
ending in a final node related to a state p of P . By Lemmas 13 and 14,
U (R) = {〈p, wu〉 | wu ∈ Lp(AU)}. Since the languages Lp are regular
and there is a finite number of them, U (T) is regular as well and can be
computed using AU.

4.4.2 Computing an over-approximation

The set of traces of a UPDS P = (P, Γ, ∆) from a regular set of con-
figurations C is not always regular. By Lemma 4, traces of P are the
same for the UPDS and PDS semantics. Thus, we can apply methods
originally designed for PDSs to over-approximate traces of a UPDS in
a regular fashion, as shown in Chapter 3.

With one of these methods, we can therefore compute a regular over-
approximation T (P , C) of the set of traces of P from C. Using the
saturation procedure underlying Theorem 18, we can then compute
the set U (T (P , C)) of upper stack configurations reachable using over-
approximated traces of P , hence, an over-approximation of the actual
set of reachable upper stack configurations.

However, we still lack the lower stack component of the reachability
set. As shown in Chapter 2, post∗PDS(P , C) is regular and computable,
and we can determine the exact set of reachable lower stack configura-
tions.

We define the set O = {〈p, wu, wt〉 | 〈p, wu〉 ∈ T (R(P , C)), 〈p, wt〉 ∈
post∗PDS(P , C)}. O is a regular over-approximation of post∗(P , C).

4.5 Applications

The UPDS model can be used to detect stack behaviours that cannot
be found using a simple pushdown system. In this section, we present
three such examples.

4.5. Applications 57

4.5.1 Stack overflow detection

A stack overflow is a programming malfunction occurring when the
call stack pointer exceeds the stack bound. In order to analyze a pro-
gram’s vulnerability to stack overflow errors, we compute its represen-
tation as a UPDS P = (P, Γ, ∆), using the control flow model outlined
in Chapter 2.

Let C = P×>#m× L be the set of starting configurations, where> ∈ Γ
is a top stack symbol that does not appear in any rule in ∆, # ∈ Γ a filler
symbol, m an integer depending on the maximal size of the stack, and
L a regular language of lower stack initial words. Overwriting the top
symbol would represent a stack overflow misfunction. Since there is
no such thing as an upper stack in a simple pushdown automaton, we
need a UPDS to detect this error, as shown in Figure 4.5.

> # m times. . . # a b . . .

FIGURE 4.5: Using > to bound the upper stack.

Let X = P× (Γ\{>})∗Γ∗ × Γ∗ be the set of forbidden configurations
where the top stack symbol has been overwritten. If the intersection
of the under-approximation U of pre∗(X) with C is not empty, then
a stack overflow does happen in the program. On the other hand, if
the intersection of the over-approximation O of post∗(C) with the set
X of forbidden configurations is empty, then we are sure that a stack
overflow will not happen in the program

4.5.2 Reading the upper stack

Let us consider the piece of code 4.1. In line 1, the bottom symbol of
the upper stack sp− 4, just above the stack pointer, is copied into the
register eax. In line 2, the content of eax is compared to a given value a.
In line 3, if the two values are not equal, the program jumps to an error
state err.

LISTING 4.1: Reading the upper stack

1 mov eax , [sp − 8]
2 cmp eax , a
3 j e e r r

Using a simple PDS model, it is not possible to know what is being
read. However, our UPDS model and the previous algorithms provide
us with reasonable approximations which can be used to examine pos-
sible values stored in eax, as shown in Figure 4.6.

58 Chapter 4. Reachability Analysis of UPDSs

. . . a b c d e f g . . .

sp - 4

FIGURE 4.6: The stack being read.

To check whether this program reaches the error state err or not, we
define the regular set X = P × Γ∗a × Γ∗ of forbidden configurations
where a is present on the upper stack just above the stack pointer. If
the intersection of the under-approximation of pre∗(X) with the set
of starting configurations C of the program is not empty, then eax can
contain a critical value, and the program is unsafe. On the other hand,
if the intersection of the over-approximation of post∗(C) with the set X
is empty, then the program can be considered safe.

4.5.3 Changing the stack pointer

Another malicious use of the stack pointer sp would be to change the
starting point of the stack. As an example, the instruction mov sp, sp - 12
changes the stack pointer in such a manner that, from the configuration
of Figure 4.7, the top three elements above it now belong to the stack,
as shown in Figure 4.8.

. . . a b c d e f g . . .

sp

FIGURE 4.7: The original stack.

. . . a b c d e f g . . .

sp

FIGURE 4.8: After changing sp.

If we model a program as a UPDS, then using our previous algorithms
to compute approximations of the reachability set would allow us to
have an approximation of the content of the new stack after the stack
pointer change.

4.6. Related work 59

4.6 Related work

One way to improve the expressiveness of pushdown automata is to
change the way transition rules interact with the stack. Ginsburg et al.
introduced in [GGH67] stack automata that can read the inside of their
own stack using a moving stack pointer but can only modify the top.
As shown in [HU68], stack automata are equivalent to linear bounded
automata (LBA). A LBA is a non-deterministic Turing machine whose
tape is bounded between two end markers that cannot be overwrit-
ten. This model cannot simulate a UPDS whose lower stack is of un-
bounded height.

Uezato et al. defined in [UM13] pushdown systems with transductions:
in such a model, a finite transducer is applied to the whole stack after
each transition. However, this model is Turing powerful unless the
transducers used have a finite closure, in which case it is equivalent to
a simple pushdown system. When the set of transducers has a finite
closure, this class cannot be used to simulate UPDSs.

Multi-stack automata have two or more stacks that can be read and mod-
ified, but are unfortunately Turing powerful. Following the work of
Qadeer et al. in [QR05], La Torre et al. introduced in [TMP07] multi-
stack pushdown systems with bounded phases: in each phase of a run,
there is at most one stack that is popped from. Anil Seth later proved
in [Set10] that the pre∗ of a regular set of configurations of a multi-
pushdown system with bounded phases is regular; we use this result
to perform a bounded-phase analysis of our model.

2-visibly pushdown automata (2-VPDA) were defined by Carotenuto et
all. in [CMP07] as a variant of two-stack automata where the stack op-
erations are driven by the input word. However, an ordering constraint
on the stacks that prevent a 2-VPDA from simulating a UPDS has to be
introduced for this class of automata in order to solve the emptiness
problem or the model-checking problem.

4.7 Conclusion

The first contribution of this chapter is a more precise pushdown model
of the stack of a program as defined in Section 1. We then investigate
the sets of predecessors and successors of a regular set of configura-
tions of an UPDS. Unfortunately, we prove that neither of them are reg-
ular. However, we show that the set of successors is context-sensitive.
As a consequence, we can decide whether a single configuration is for-
ward reachable or not in an UPDS.

60 Chapter 4. Reachability Analysis of UPDSs

We then prove that the set of predecessors of an UPDS is regular given
a limit of k phases, where a phase is a part of a run during which ei-
ther pop or push rules are forbidden. Bounded-phase reachability is an
under-approximation of the actual reachability relation on UPDSs that
we can use to detect some incorrect behaviours.

We also give an algorithm to compute an over-approximation of the
set of successors. Our idea is to first over-approximate the runs of
the UPDS, then compute an over-approximation of the reachable up-
per stack configurations from this abstraction of runs and consider its
product with the regular, accurate and computable set of lower stack
configurations.

Finally, we use these approximations on programs to detect stack over-
flow errors as well as malicious attacks that rely on stack pointer ma-
nipulations.

61

Chapter 5

Static Analysis of
Multi-threaded Recursive
Programs Communicating via
Rendez-vous

We present in this chapter a generic framework for the analysis of
multi-threaded programs with recursive procedure calls, synchroniza-
tion by rendez-vous between parallel threads, and dynamic creation
of new threads. To this end, we consider a model called synchronized
dynamic pushdown networks (SDPNs) that can be seen as a network of
pushdown processes executing synchronized transitions, spawning
new pushdown processes, and performing internal pushdown actions.
The reachability problem for this model is obviously undecidable, as
proven by Ramalingam in [Ram00].

However, we can tackle this problem by introducing an abstraction
framework based on Kleene algebras in order to compute an abstrac-
tion of the set of execution paths between two regular sets of config-
urations. We combine constraint solving in a finite domain with an
automata-theoretic saturation procedure. We then apply this frame-
work to a iterative abstraction refinement scheme, using multiple ab-
stractions of increasing complexity and precision.

Chapter outline. In Section 1 of this chapter, we define synchronized
dynamic pushdown networks (SDPNs). We study in Section 2 the reach-
ability problem for this class of automata. We introduce in Section 3
an automata-theoretic representation of sets of paths, and prove in Sec-
tion 4 that the set of execution paths between two sets of configura-
tions C and C′ of a SDPN is the least solution of a set constraints. Since
we can’t solve these constraints, we present in Section 5 an abstraction
framework for paths based on Kleene algebras. In Section 6, we apply
this framework in order to over-approximate the reachability problem.

62 Chapter 5. Static Analysis of SDPNs

T1 : p1 γ1 γ2 ⊥

T2 : p2 γ3 γ4 γ5 ⊥

T3 : p3 γ6 ⊥

⇔ p1γ1γ2⊥p2γ3γ4γ5⊥p3γ6⊥

FIGURE 5.1: Representing configurations of a DPN.

In Section 7, we present a iterative abstraction refinement scheme that re-
lies on our abstraction framework and apply it to a model of an actual
program in section 8. Finally, we describe the related work in Section 9
and present our conclusion in Section 10.

These results were published in [PT17].

5.1 Synchronized dynamic pushdown
networks

5.1.1 Dynamic pushdown networks

Definition 16 (Bouajjani et al. [BMOT05]). A dynamic pushdown net-
work (DPN) is a triplet M = (P, Γ, ∆) where P is a finite set of control
states, Γ a finite stack alphabet disjoint from P, and ∆ ⊆ (PΓ × PΓ∗) ∪
(PΓ× PΓ∗PΓ∗) a finite set of transition rules featuring:

— simple pushdown operations in (PΓ× PΓ∗) of the form pγ→ p′w;

— thread spawns in (PΓ× PΓ∗PΓ∗) of the form pγ→ p1w1p2w2.

Let Con fM = (PΓ∗)∗ be the set of configurations of a DPN M. A
configuration p1w1 . . . pnwn represents a network of n pushdown pro-
cesses, the i-th process being in control point pi with stack content wi,
as shown in Figure 5.1 where a single word in Con fM is used to repre-
sent the state of three PDSs in a network.

We define an immediate successor relation→M on Con fM according to
the following semantics:

— if pγ → p′w in ∆, then ∀u, v ∈ Con fM, ∀w′ ∈ Γ∗, upγw′v
→M up′ww′v; a thread applies a pushdown operation on its own
stack, as shown in Figure 5.2;

— if pγ → p1w1p2w2 in ∆, then ∀u, v ∈ Con fM, ∀w′ ∈ Γ∗, upγw′v
→M up1w1p2w2w′v; a thread spawns a new son with its own
stack and control state, as shown in Figure 5.3.

5.1. Synchronized dynamic pushdown networks 63

T1 : p1 γ1 γ2

T2 : p2 γ3 γ4 γ5

T3 : p3 γ6

T1 : p1 γ1 γ2

T2 : p′2 γ4 γ5

T3 : p′3 γ7 γ6

FIGURE 5.2: A DPN with 3 threads after a pop from T2
and a push on T3.

T1 : p1 γ1 γ2

T2 : p2 γ3 γ4 γ5

T3 : p3 γ6

T1 : p′1 γ1 γ2

T4 : p4 γ7

T2 : p2 γ3 γ4 γ5

T3 : p3 γ6

FIGURE 5.3: A DPN with 3 threads after thread T1
spawns a new thread T4.

Let →∗M be the transitive and reflexive closure of this relation. Given
a set C ⊆ Con fM of configurations, we introduce its set of predecessors
pre∗(M, C) = {c ∈ Con fM | ∃c′ ∈ C, c ⇒M c′}. If C is regular, this set
can be effectively computed:

Theorem 19 (Bouajjani et al. [BMOT05]). Given a DPN M and a regu-
lar set of configurations C ⊆ Con fM, the set pre∗(M, C) of predecessors is
regular.

The saturation algorithm used to compute pre∗(M, C) is detailled in
Section 5.4.1.

5.1.2 The model and its semantics

We introduce a new model:

Definition 17. A synchronized dynamic pushdown Network (SDPN)
is a quadruplet M = (Act, P, Γ, ∆) where Act is a finite set of actions, P
a finite set of control states, Γ a finite stack alphabet disjoint from P, and
∆ ⊆ (PΓ × Act × PΓ∗) ∪ (PΓ × Act × PΓ∗PΓ∗) a finite set of transition
rules.

If (pγ, a, w) ∈ ∆, p ∈ P, γ ∈ Γ, a ∈ Act, and w ∈ PΓ∗ ∪ PΓ∗PΓ∗, we
write that pγ

a−→ w ∈ ∆. There are two types of transition rules in a
SDPN:

— rules of the form pγ
a−→ p′w in PΓ× Act× P allow a pushdown

process in the network to pop a symbol γ from its stack, push

64 Chapter 5. Static Analysis of SDPNs

u1 pγw u2 p′γ′w′ u3
↓ a ↓ a

u1 w1w u2 w′1w′ u3

FIGURE 5.4: Semantics of synchronized actions.

a word w, then move from state p to p′; these rules are standard
pushdown rules and model a thread calling or ending procedures
while moving through its control flow;

— rules of the form pγ
a−→ p′′w′p′w in PΓ × Act × PΓ∗PΓ∗ allow

a pushdown process in the network to pop a symbol γ from its
stack, push a word w, move from state p to p′, then spawn a new
pushdown process in state p′′ and with initial stack w′; these rules
model dynamic creation of new threads.

We assume that the set Act contains a letter τ that represents internal or
synchronized actions, and that other letters in Lab = Act \ {τ} model
synchronization signals. Moreover, to each synchronization signal a in
Lab, we can match an unique co-action a ∈ Lab, such that a = a.

We introduce the set Con fM = (PΓ∗)∗ of configurations of a SDPN M.
In a manner similar to DPNs, a configuration p1w1 . . . pnwn represents
a network of n processes where the i-th process is in control point pi
and has stack content wi.

The strict semantics.

We will model synchronization between threads as a form of communi-
cation by rendez-vous: two pushdown processes can synchronize if one
performs a transition labelled with a and the other, a transition labelled
with a. Intuitively, one thread sends a signal over a channel and the
other thread waits for a signal to be received along the same channel.

To this end, we define a strict transition relation 99KM on configurations
of M according to the following strict semantics:

(1) given a symbol a ∈ Act, two rules pγ
a−→ w1 and p′γ′ a−→ w′1 in ∆,

and two configurations u = u1pγu2p′γ′u3 and v = u1w1u2w′1u3
of M, we have u 99KM v; two synchronized processes perform a
simultaneous action, as shown in Figure 5.4;

(2) given a rule pγ
τ−→ w1 in ∆ and two configurations u = u1pγu2

and v = u1w1u2 of M, we have u 99KM v; a process performs an
internal action, as shown in Figure 5.5.

5.1. Synchronized dynamic pushdown networks 65

u1 pγw u2
↓ τ

u1 w1w u2

FIGURE 5.5: Semantics of internal actions.

u1 pγw u2
↓ a

u1 w1w u2

FIGURE 5.6: Semantics of unsynchronized actions.

We say that v is reachable from u with regards to the strict semantics if
u 99K∗M v, where 99K∗M stands for the transitive closure of 99KM.

The strict semantics accurately model communication by rendez-vous.
However, for technical reasons, we also need to consider a relaxed se-
mantics for SDPNs.

The relaxed semantics.

The relaxed semantics on SDPNs allow partially synchronized execu-
tions on a SDPN: a process can perform a transition labelled with a ∈
Lab even if doesn’t synchronize with a matching process executing a
transition labelled with a.

We therefore introduce a relaxed transition relation→M labelled in Act
on configurations of M:

(1) & (2) given two configurations u and v of M, if u 99KM v, then
u τ−→M v;→M features rules (1) and (2) of 99KM;

(3) given a rule pγ
a−→ w1 in ∆, a word w1 ∈ (PΓ∗) ∪ (PΓ∗)2, and

two configurations u = u1pγu2 and v = u1w1u2 of M, we have
u a−→M v; a process performs an action but does not synchronize,
as shown in Figure 5.6.

The restriction of the relaxed semantics to rules (2) and (3) yields the
DPN semantics if we ignore the labels, as defined by Bouajjani et al.
in [BMOT05].

For a given word σ = a1 . . . an ∈ Act∗ and two configurations c, c′ of
M, we write that c σ−→∗Mc′ if there are n configurations c1, . . . , cn of M
such that c

a1−→M c1
a2−→M c2 . . . an−→M cn and cn = c′. We then say that c′

is reachable from c with regards to the relaxed semantics. For a given
set of configurations C, we introduce pre∗(M, C) = {c′ | ∃c ∈ C, ∃w ∈
Γ∗, c′ w−→∗Mc}.

66 Chapter 5. Static Analysis of SDPNs

Given two subsets C and C′ of Con fM, we define the set of all execution
paths from C to C′ PathsM(C, C′) = {σ ∈ Act∗ | ∃c ∈ C, ∃c′ ∈ C′, c σ−→
∗
Mc′}, including paths with non-synchronized actions labelled in Lab.

5.1.3 From a program to a SDPN model

We can assume that the program is given by a control flow graph, whose
nodes represent control points of threads or procedures and whose
edges are labelled by statements. These statements can be variable as-
signments, procedure calls or returns, spawns of new threads, or com-
munications between threads through unidirectional point-to point
channels, where a thread sends a value x through a channel c and an-
other thread waits for this value then assigns it to a variable y.

Without loss of generality, we assume that threads share no global vari-
ables and instead can only synchronize through channels. We distin-
guish local variables that belong to a single procedure from thread-
local variables that can be accessed by any procedure called by a given
instance of a thread. We also consider that both local and global vari-
ables may only take a finite number of values.

Given a control flow graph, we define a corresponding SDPN. The set
of states P is the set of all possible valuations of thread-local variables.
The stack alphabet Γ is the set of all pairs (n, l) where n is a node of
the flow graph and l is a valuation of the local variables of the current
procedure.

Channels can be used to send and receive values. For each channel c
and value x that can be sent through c, a label (c!, x) and its co-action
(c?, x) = (c!, x) belong to Act. The internal action τ belongs to Act as
well.

For each statement s labelling an edge of the flow graph between nodes
n1 and n2, we introduce the following transition rules in the corre-
sponding SDPN, where g1 and g2 (resp. l1 and l2) are the valuations
of thread-local (resp. procedure-local) variables before and after the
execution of the statement:

— if s is an assignment, rules of the form g1(n1, l1)
τ−→ g2(n2, l2) rep-

resent s; assigning new values to variables in g1 and l1 results in
new valuations g2 and l2;

— if s is a procedure call, rules of the form g1(n1, l1)
τ−→ g2(f0, l0)

(n2, l2) represent s, where f0 is the starting node of the called pro-
cedure and l0 the initial valuation of its local variables;

5.2. The reachability problem 67

— if s is a procedure return, it is represented by rules of the form
g1(n1, l1)

τ−→ g2ε; we simulate returns of values by introducing an
additional thread-local variable and assigning the return value to
it in the valuation g2;

— if s is a thread spawn, it is represented by rules of the form
g1(n1, l1)

τ−→ g0(n0, l0)g2(n2, l2), where g0 and l0 are respectively
the initial valuations of the thread-local and procedure-local vari-
ables of the new thread, and n0 its starting node;

— if s is an assignment of a value x carried through a channel c to a

variable y, it is represented by rules of the form g1(n1, l1)
(c?,x)−−−→

g2(n2, l2) where g1 and g2 (resp. l1 and l2) are such that assigning
the value x to the variable y in g1 (resp. l1) results in the new
valuations g2 (resp. l2);

— if s is an output through a channel c of the value x of a variable

y, it is represented by rules of the form g1(n1, l1)
(c!,x)−−−→ g2(n2, l2)

such that the variable y has value x in either g1 or l1.

Finally, we consider the starting configuration ginit(ninit, linit) where
ginit and linit are respectively the initial valuations of the thread-local
and procedure-local variables of the main thread, and ninit its starting
node.

5.2 The reachability problem

As described previously in section 5.1.3, we can model the behaviour
of a real multi-threaded program with a SDPN. Many static analysis
techniques rely on being able to determine whether a given critical state
is reachable or not from the starting configuration of a program.

Since checking reachability in a real program amounts to checking
reachability in its corresponding SDPN w.r.t to the strict semantics, we
want to solve the following reachability problem: given a SDPN M and
two sets of configuration C and C′, is there a configuration in C′ that is
reachable from C with regards to the strict semantics?

It has unfortunately been proven by Ramalingam in [Ram00] that, even
if C and C′ are regular, this problem is undecidable for synchronization
sensitive pushdown systems, hence, SDPNs. Therefore, we reduce this
problem to an analysis of the execution paths of SDPNs with relaxed
semantics.

68 Chapter 5. Static Analysis of SDPNs

5.2.1 From the strict to the relaxed semantics

It is easy to see that the following theorem holds:

Theorem 20. Let M be a SDPN and c, c′ two configurations of M; c 99K∗M c′

if and only if ∃n ≥ 0 such that c τn
−→∗Mc′.

Intuitively, an execution path with regards to the relaxed semantics of
the form τn only uses internal actions or synchronized actions between
two threads: a synchronization signal a is always paired with its co-
action a. Any configuration reachable using this path can be reached
with regards to the strict semantics as well. Such a path is said to be
perfectly synchronized.

Therefore, the reachability problem amounts to determining whether:

PathsM(C, C′) ∩ τ∗ = ∅

that is, if there is an execution path from C to C′ with regards to the
relaxed semantics of the form τn. Obviously, we can’t always compute
PathsM(C, C′). Our idea is therefore to compute an abstraction (over
approximation) of PathsM(C, C′) and check the emptiness of its inter-
section with τ∗: if it is indeed empty, then C′ can’t be reached from C
with regards to the strict semantics.

It is worth noting that a configuration p′1w′1p′2w′2 reachable from p1w1
p2w2 with regards to the strict semantics by synchronizing two rules

p1w1
a−→ p′1w′1 and p2w2

a−→ p′2w′2 using the synchronization rule (1)
can obviously be reached with regards to the relaxed semantics by ap-
plying these two rules sequentially, using rule (3) twice, although the
resulting path would obviously not be perfectly synchronized. Hence,
the following theorem holds:

Theorem 21. Let M be a SDPN and c, c′ two configurations of M; c′ is
reachable from c w. r. t. the relaxed SDPN semantics if and only if it is
reachable w. r. t. the DPN semantics.

It implies that, since we can compute pre∗(M, C) with regards to the
DPN semantics thanks to Theorem 19, we can compute it with regards
to the relaxed SDPN semantics as well.

5.2.2 Representing infinite sets of configurations

In order to compute an abstraction of PathsM(C, C′) we need to be able
to finitely represent infinite sets of configurations of a SDPN M. To do
so, we introduce a class of finite automata called M-automata:

5.2. The reachability problem 69

sstart sp1 q1

s′ s′p2
q2 qF

p1 γ1

γ1

ε

p2 γ2 γ3

FIGURE 5.7: Accepting a regular set p1γ+
1 p2γ2γ3 with

an M-automaton.

Definition 18 (Bouajjani et al. [BMOT05]). Given a SDPN M = (Act, P,
Γ, ∆), an M-automaton is a finite automaton A = (Σ, S, δ, sinit, F) such that:

— Σ = P ∪ Γ is the input alphabet;

— the set of states S = SC ∪ SS can be partitioned in two disjoint sets SC
and SS;

— δ ⊆ S× Σ× S is the set of transitions;

— ∀s ∈ SC and ∀p ∈ P, there is at most a single state sp such that
(s, p, sp) ∈ δ; moreover, sp ∈ SS and s is the only predecessor of sp;
transitions from states in SC are always labelled with state symbols in
P and go to dedicated states in SS;

— states in SC do not have exiting transitions labelled with letters in Γ;

— states in SS do not have exiting transitions labelled in P; transitions
labelled with letters in Γ always go to states in SS;

— transitions from SS to SC are always labelled with ε; these are the only
allowed ε-transitions in the M-automaton;

— sinit ∈ SC is the initial state;

— F ⊆ SC is the set of final states.

An M-automaton A is designed in such a manner that every path ac-
cepting a configuration p1w1 . . . pnwn is a sequence of sub-paths si

pi−→A

sp
wi−→ ∗Aq ε−→A si+1 where si ∈ SC, si+1 ∈ SC and every state in the

path sp
wi−→∗Aq is in SS. Being a finite state automaton, an M-automaton

accepts a regular language that is a subset of Con fM. Any regular lan-
guage in (PΓ∗)∗ can be accepted by an M-automaton, as shown in Fig-
ure 5.7.

M-automata were introduced so that one could compute the set of pre-
decessors of a DPN, hence, of a SDPN as well, by applying a saturation

70 Chapter 5. Static Analysis of SDPNs

procedure to an M-automaton accepting the set of starting configura-
tions, as proven by Bouajjani et al. in [BMOT05].

5.3 Representing the set of paths

In this section, we introduce an automata-theoretic representation of
sets of synchronized paths by adding extra labels to M-automata.

5.3.1 Π-configurations

Let Π = 2Act∗ be the set of all possible languages on Act. We define a
Π-configuration of M as a pair (c, π) ∈ Con fM × Act∗. We can extend
the transition relation −→M to Π-configurations with the following se-
mantics:

∀a ∈ Act, if c a−→M c′, then ∀π ∈ Act∗, (c, a · π) −→M,Π (c′, π)

The configuration (c, a ·π) is said to be an immediate Π-predecessor of
(c′, π). The reachability relation→∗M,Π is the reflexive transitive closure
of the relation −→M,Π.

Given a set of configurations C, we introduce the set of Π-predecessors
pre∗Π(M, C) of all Π-configurations (c′, π) ∈ Con fM × Act∗ such that
(c′, π)→∗M,Π (c, ε) for c ∈ C. Obviously, we have:

pre∗Π(M, C) =
{
(c′, π) | c′ ∈ pre∗(M, C), π ∈ PathsM({c′}, C)

}
Intuitively, (c′, π) is in pre∗Π(M, C) if one can reach a configuration c ∈
C from c′ by following a path π.

5.3.2 The shuffle product

Assuming we know the path languages of two different threads, we
want to compute the path language of these two threads running in
parallel.

Intuitively, this new language will be an interleaving of the two afore-
mentioned sets, but can feature synchronized actions between the two
threads as well.

To this end, we define inductively a shuffle operation � : Act∗ × Act∗

→ Π such that, given two paths, their shuffle product is the set of all
possible interleaving (with synchronization) of these paths.

5.3. Representing the set of paths 71

Let w = a1 . . . an and w′ = b1 . . . bm be two such paths:

— w� ε = ε�w = {w};

— if b1 6= a1, then: w � w′ = a1 · [(a2 . . . an) � (b1 . . . bm)] ∪ b1 ·
[(a1 . . . an)� (b2 . . . bm)];

— if b1 = a1, then: w � w′ = a1 · [(a2 . . . an) � (b1 . . . bm)] ∪ b1 ·
[(a1 . . . an) � (b2 . . . bm)] ∪ τ · [(a2 . . . an) � (b2 . . . bm)]; two syn-
chronized actions a1 and a1 result in an internal action τ, hence,
there is a component τ · (w1� w2) of the shuffle product where
the two paths synchronize.

The shuffle operation is obviously commutative and associative, as out-
lined in [lot97]. We can extend naturally the operation � to sets of
paths: κ1� κ2 =

⋃
π1∈κ1,π2∈κ2

(π1� π2). It is still commutative and asso-

ciative.

5.3.3 Π-automata

We represent sets of Π-configurations of a SDPN M with a class of
labelled M-automata, called Π-automata.

Definition 19. Let M = (Act, P, Γ, ∆) be a SDPN, a Π-automaton is a finite
automaton A = (Σ, S, δ, sinit, F) where Σ = P ∪ Γ is the input alphabet,
S = SC ∪ SS is a finite set of control states with SC ∩ SS = ∅, δ ⊆ (SC ×
P× SS) ∪ (SS × Γ×ΠΠ × SS) ∪ (SS × {ε} × SC) a finite set of transition
rules (where ΠΠ is the set of functions from Π to Π), sinit an initial state, and
F a set of final states.

Moreover, A is such that, if we consider the projection δΣ of δ on S× Σ∗ × S,
ignoring labels in ΠΠ, then (Σ, S, δΣ, sinit, F) is a M-automaton.

Intuitively, a Π-automaton can be seen as an M-automaton whose tran-
sitions labelled by stack symbols in Γ have been given an additional
label in ΠΠ. We can consider a simple M-automaton as a Π-automaton
if we label each transition in SS × Γ× SS with the identity function.

While it would be simpler to label transitions of a M-automaton with
subsets of Π, this representation would be flawed for the purpose of
the algorithms outlined in Section 5.4.2. The intuition behind the use
of functions in ΠΠ as labels is detailed there.

The transition relation.

Let A be a Π-automaton. We define a simple transition relation −→A
according to the following semantics:

72 Chapter 5. Static Analysis of SDPNs

— if (s, p, s′) ∈ δ ∩ (S× (P ∪ {ε})× S), then s
p−→A s′;

— if (s, γ, e, s′) ∈ δ ∩ (SS × Γ×ΠΠ × SS), then s
(γ,e)−−→A s′;

— if s
(w1,e1)−−−→A s1 and s1

(w2,e2)−−−→A s′, then s
(w1w2,e1◦e2)−−−−−−−→A s′, where ◦

is the composition operation on functions.

We then extend inductively this transition relation to a full path relation
=⇒A⊆ S× Σ∗ ×ΠΠ × S:

— for each s ∈ SS, s
(ε,Id)
==⇒A s, where Id stands for the identity func-

tion;

— if there is a sequence s0
(γ1,e1)−−−→A s1 . . . sn−1

(γn,en)−−−→A sn with s0, . . . ,

sn ∈ SS, then s0
(w,e)
==⇒A sn, where w = γ1 . . . γn and e = e1 ◦ . . . ◦

en; this is a simple sequence of actions along a single thread;

— if there is a sequence s
p1−→A sp1

(w1,e1)
===⇒A q ε−→A s′

p2−→A s′p2

(w2,e2)
===⇒A

q′ such that q′, q ∈ SS and s, s′ ∈ SC, then s
(w,e)
==⇒A q′, where w =

p1w1p2w2 and e : y −→ e1({ε})� e2(y); the automaton represents
two parallel processes p1w1 and p2w2 whose abstract execution
paths must be shuffled; moreover, since the first process will no
longer be extended by further transitions of the automaton, we
get rid of the variable of e1 by considering e1({ε}) instead.

Note that this path relation is well-defined because� is associative.

A path s0
(c,e)
==⇒A sn is said to be an execution of A if s0 = sinit. It is then

said to be accepting if sn ∈ F. We then say that A accepts (c, π) for all
π ∈ Π such that π ∈ e({ε}). This way, accepting execution paths in
Π-automata can be used to represent whole sets of paths. We define
the set LΠ(A) of all Π-configurations of M accepted by A.

5.4 Characterizing the set of paths

Let C be a regular set of configurations of a SDPN M = (Act, P, Γ, ∆).
We want to define a Π-automaton Apre∗Π accepting pre∗Π(M, C). Our
intuition is to add extra labels in ΠΠ to the M-automaton accepting
pre∗(M, C).

5.4. Characterizing the set of paths 73

5.4.1 Computing pre∗(M, C)

Given a SDPN M and a regular set C of configurations of M accepted
by an M-automaton A, we want to compute an M-automaton Apre∗ ac-
cepting pre∗(M, C). Thanks to Theorem 21, we can apply the saturation
procedure defined in [BMOT05] to A. Let us remind this procedure.
Initially, Apre∗ = A, then we apply the following rules until saturation
to Apre∗ :

(R1) if pγ
a−→ p′w ∈ ∆ and s

p′w−−→∗Apre∗
s′ for s ∈ SS, s′ ∈ S, then add

sp
γ−→∗Apre∗

s′;

(R2) if pγ
a−→ p1γ1p2γ2 ∈ ∆ and s

p1γ1 p2γ2−−−−−→∗Apre∗
s′ for s ∈ SS, s′ ∈ S,

then add sp
γ−→∗Apre∗

s′.

−→∗Apre∗
stands for the transitive closure of the transition relation on

the finite state automaton Apre∗ . The initial and final states remain the
same.

Let us remind the intuition of these rules. We consider a sub-path

s
p′w−−→ ∗

Apre∗
s′. By design of an M-automaton, s should be in SC and

there should be a path s
p′−→ sp′

w−→ ∗s′ in the automaton Apre∗ . If we

apply the saturation rule (R1), we add an edge sp
p−→ s′ to Apre∗ and

create a sub-path s
pγ−→ ∗s′ in the automaton. Therefore, if Apre∗ ac-

cepts a configuration u1p′w′u2 with a path sinit
u1−→∗sp′

p′w−−→∗s′ u2−→∗qF,
qF ∈ F, then it will accept its predecessor u1pγu2 as well with a path
sinit

u1−→∗sp
pγ−→∗s′ u2−→∗qF. The role of (R2) is similar.

Thus, when this saturation procedure ends, the M-automaton Apre∗ ac-
cepts the regular set pre∗(M, C).

5.4.2 From pre∗(M, C) to pre∗Π(M, C)

Given a SDPN M and a regular set C of configurations of M accepted
by an M-automaton A, we want to compute a Π-automaton Apre∗Π ac-
cepting pre∗Π(M, C). To this end, we will add new labels to the M-
automaton Apre∗ . Our intuition is the following: Apre∗Π should be such
that if we have (c′, π)→∗M,Π (c, ε), c ∈ C, then c can be reached from c′

by a path π and Apre∗Π should accept (c′, π).

74 Chapter 5. Static Analysis of SDPNs

In order to compute Apre∗Π , we proceed as follows: we first accept con-
figurations in C with the path ε, then, from there, set constraints on the
labelling functions of transitions of Apre∗ depending on the relationship
between edges introduced by the previous saturation procedure. This
way, we build iteratively a set of constraints whose least solution is the
set of execution paths from pre∗(M, C) to C.

To this end, each transition t in Apre∗ labelled in Γ is given a second label
λ(t) ∈ ΠΠ. We compute a set of constraints whose smallest solution
(according to the order⊆ of the language lattice) will be the labels λ(t).
If t = q1

γ−→ q2, then we write λ(t) = λ(q1, γ, q2).

The need for functions.

We will explain intuitively here why we label the automaton with func-
tions and not with sets of paths in Π.

Let us consider a M-automaton labelled by sets of paths as shown
in Figure 5.8. To a thread in configuration p1γ1, we match a set {a}
and to a thread in p2γ2γ3, we match {b, c}. We assume there is a

rule pγ
d−→ p1γ1p2γ2 in M. By applying a saturation rule of the algo-

rithm outlined in the previous section, we add a new dotted transition
s1p

γ−→ q2. Intuitively, we label it with d · ({a}� {b}) = {dab, dba}: the
label of the spawn action, followed by the synchronization of the paths
matched to the two resulting threads.

However, assuming semantics similar to Π-automata, the automaton
in Figure 5.8 would accept the configuration (pγγ3, {dabc, dbac}) by
going through states s1, p1, q2, and q3. But intuitively, we want to accept
the set {dabc, dbac, dbca} = d� ({a}� {bc}) instead, as the action c can
appear before a in the interleaving of the execution paths matched to
the two threads.

We can consider instead the Π-automaton shown in Figure 5.9. The
new dotted transition is labelled by the function x → d · [a� (b · x)] =
{dabx, dbax, dbxa}. The variable x stands for the end of the paths
matched to the second thread (in this case, the action c) that are not ex-
amined by the saturation rule but would nonetheless have to be shuf-
fled with the path a of the first thread.

The automaton in Figure 5.9 has an execution path labelled by (pγγ3,
f : x → {dabcx, dbacx, dbcxa}) when it goes through states s1, p1, q2,
and q3. Therefore, it accepts all the paths f ({ε}) = {dabc, dbac, dbca}.

5.4. Characterizing the set of paths 75

s1start s1p1 q1 s2

s2p2

q2

q3

s1p1

p1 (γ1, {a}) ε

p2

(γ2, {b})

(γ3, {c})

p

(γ, d · ({a}� {b}) = {dab, dba})

FIGURE 5.8: Using labels in Π.

s1start s1p1 q1 s2

s2p2

q2

q3

s1p1

p1 (γ1, x → a · x) ε

p2

(γ2, x → b · x)

(γ3, x → c · x)

p

(γ, x → d · [a� (b · x)])

FIGURE 5.9: Using labels in ΠΠ.

76 Chapter 5. Static Analysis of SDPNs

The constraints.

For two functions in ΠΠ, we write that f ⊆ g if ∀x ∈ Π, f (x) ⊆ g(x).
We now consider the following set of constraints on the labels of tran-
sitions of Apre∗ in SS × Γ× SS, where Q is the set of states of A:

(Z1) if t belongs to A, then:
Id ⊆ λ(t)

(Z2) for each rule pγ
a−→ p′γ′ ∈ ∆, for each q ∈ Q, for each s ∈ Sc:

a · λ(sp′ , γ′, q) ⊆ λ(sp, γ, q)

(Z3) for each rule pγ
a−→ p′ε ∈ ∆, for each s ∈ Sc:

a · Id ⊆ λ(sp, γ, sp′)

(Z4) for each rule pγ
a−→ p′γ1γ2 ∈ ∆, for each q ∈ Q, for each s ∈ Sc:⋃

q′∈Q

a · (λ(sp′ , γ1, q′) ◦ λ(q′, γ2, q)) ⊆ λ(sp, γ, q)

(Z5) for each rule pγ
a−→ p2γ2p1γ1 ∈ ∆, for each q ∈ Q, for each s ∈ Sc:⋃

s′′
ε−→Apre∗ s′

a · (λ(sp2 , γ2, s′′)({ε})� λ(s′p1
, γ1, q)) ⊆ λ(sp, γ, q)

In a manner similar to [BET05], we eventually define the labels of Apre∗Π
as the least solution of the set of constraints outlined above in the com-
plete lattice of functions in ΠΠ. By Tarski Theorem, this solution exists.
The following theorem holds:

Theorem 22. Let M be a SDPN and A an M-automaton accepting a reg-
ular set of configurations C. Then the Π-automaton Apre∗Π accepts the set
pre∗Π(M, C).

Note that it doesn’t mean we can compute the labels: an iterative com-
putation of the least solution may not terminate. We now explain intu-
itively the meaning of these constraints.

The intuition.

If c is a configuration of C, then Apre∗Π should accept (c, ε). This is ex-
pressed by constraint (Z1).

5.4. Characterizing the set of paths 77

s sp′ q

sp

p′ γ′

p
γ

FIGURE 5.10: Case of a switch rule.

s sp′

sp

p′

p
γ

FIGURE 5.11: Case of a pop rule.

Let c′ = p′γ′w ∈ pre∗(M, C). If pγ
a−→ p′γ′ ∈ ∆ and (c′, π) ∈

pre∗Π(M, C), then c = pγw ∈ pre∗(M, C), (c, a · π) →∗M,Π (c′, π), and
(c, a · π) ∈ pre∗Π(M, C). Hence, if Apre∗Π accepts (c′, π) and uses a tran-

sition sp′
γ′−→ q while doing so, then it should accept (c, a · π) as well

using a transition sp
γ−→ q, as shown in Figure 5.10. This is expressed by

constraint (Z2).

Let c′ = p′w ∈ pre∗(M, C). If pγ
a−→ p′ε ∈ ∆ and (c′, π) ∈ pre∗Π(M, C),

then c = pγw ∈ pre∗(M, C), (c, a · π) →∗M,Π (c′, π), and (c, a · π) ∈
pre∗Π(M, C). Hence, if Apre∗Π accepts (c′, π), then it should accept (c, a ·
π) as well using a transition sp

γ−→ s′p, as shown in Figure 5.11. This is
expressed by constraint (Z3).

Let c′ = p′γ1γ2w ∈ pre∗(M, C). If pγ
a−→ p′γ1γ2 ∈ ∆ and also (c′, π) ∈

pre∗Π(M, C), then c = pγw ∈ pre∗(M, C), (c, a · π) →∗M,Π (c′, π), and
(c, a · π) ∈ pre∗Π(M, C). Hence, if Apre∗Π accepts (c′, π) and uses two

transition sp′
γ1−→ q′ and q′

γ2−→ q while doing so, then it should accept

(c, a · π) as well using a transition sp
γ−→ q, as shown in Figure 5.12.

Moreover, there can be many possible intermediate states q′ between
s′p and q such that sp′

γ1−→ q′ and q′
γ2−→ q. In the automaton Apre∗Π , the

path π should therefore be represented by the union for all possible
intermediate state q′ of the concatenation of the two labelling functions
λ(sp′ , γ1, q′) and λ(q′, γ2, q). This is expressed by constraint (Z4).

78 Chapter 5. Static Analysis of SDPNs

s sp′ q′1

q′2 qsp

p′ γ1

γ1

γ2

γ2

p

γ

FIGURE 5.12: Case of a push rule.

s sp2

Thread 2

q′ s′ s′′p1

Thread 1

qsp

p2 γ2 ε p1

γ1p
γ

FIGURE 5.13: Case of a spawn rule.

Let c′ = p2γ2p1γ1w ∈ pre∗(M, C). If pγ
a−→ p2γ2p1γ1 ∈ ∆ and (c′, π) ∈

pre∗Π(M, C), then c = pγw ∈ pre∗(M, C), (c, a · π) →∗M,Π (c′, π), and
(c, a · π) ∈ pre∗Π(M, C), as shown in Figure 5.13. The two processes
p2γ2 (thread 2 in 5.13) and p1γ1 (thread 1 in 5.13) are interleaved, hence,
their execution paths must be shuffled: if π1 is an execution path asso-
ciated to p1γ1, and π2, to p2γ2, then an path π′ = π2� π1 should be
associated to p2γ2p1γ1. Moreover, if we consider a path sp2

γ2−→ s′′ ε−→
s′

p1−→ s′p1

γ1−→ q in the automaton Apre∗Π , then no path π2 associated
to p2γ2 can be extended further, and should therefore be represented
by (λ(sp2 , γ2, s′)({ε})). Again, we must also consider each possible in-
termediate state s′′ in the previous path, hence, an union of functions.
This is expressed by constraint (Z5).

5.4.3 Proof of Theorem 22

In order to prove Theorem 22, we first show that Apre∗Π accepts every
Π-predecessor of C.

5.4. Characterizing the set of paths 79

Lemma 15. We consider c = p1v1 . . . pnvn ∈ C, sinit the initial state of A,
and F its set of final states. If (c′ = (p′1w1 . . . p′lwl), π)→∗M,Π (c, ε) for π ∈

ΠΠ, then ∃e ∈ ΠΠ and qF ∈ F such that π ∈ e(ε) and sinit
(c′,e)
==⇒Apre∗Π

qF.

We then prove that every configuration accepted by Apre∗Π is a Π pre-
decessor of C.

Lemma 16. ∀π ∈ Act∗, if there is an accepting execution sinit
(c′,e)
==⇒Apre∗Π

qF

such that c′ = (p′1w′1 . . . p′nw′n) and π ∈ e({ε}), there is a configuration c
such that sinit

c→A qF ∈ F and (c′, π)→∗M,Π (c, ε).

Proof of Lemma 15

We can expand the labelling of functions to paths by composing labels
along the paths, in a manner similar to the semantics of Π-automata.

Hence, we can define λ(s, w, q) such that s
(w,λ(s,w,q))
======⇒A q.

We prove by induction on k that if c′ = ((p′1w′1 . . . p′lw
′
l), π)→k

M,Π (c, ε),

then ∃e ∈ ΠΠ and qF ∈ F such that π ∈ e({ε}) and sinit
(c,e)
==⇒Apre∗Π

qF.

Basis: if k = 0, then c′ = c, and π = ε. Because of constraint (Z1), each
transition t that exists both in A and Apre∗Π is such that Id ⊆ λ(t).

Hence, if we follow an accepting execution sinit
(c,e)
==⇒Apre∗Π

qF only

using transitions in A, it must be such that ε ∈ e({ε}). Hence,
Apre∗Π accepts (c, ε).

Induction step: we consider (c1 = (p′′1 u1 . . . p′′j uj), π′) such that (c′, π)

→∗M,Π (c1, π′) and (c1, π′) →k
M,Π (c, ε). We have the two follow-

ing cases:

— if j = l + 1, a new process has been created from c′ to c1

by a rule of the form r = p′iγ
a−→ p′′i ui p′′i+1u′i+1. Then, there

are t1, t2 in (PΓ∗)∗ such that c1 = t1p′′i ui p′′i+1ui+1t2 and c′ =
t1p′iw

′
it2, and there is u ∈ Γ∗ such that w′i = γu and ui+1 =

u′i+1u.

By induction, as shown in figure 5.14, there is a path in Apre∗Π
such that it accepts (c1, π′) and π′ ∈ λ1({ε})� λ2({ε})�
λ3 ◦ λ4({ε}) � λ5({ε}), where λ1 = λ(sinit, t1, s), λ2 =
λ(s1, p′′i ui, s2), λ3 = λ(s3, p′′i+1u′i+1, s4), λ4 = λ(s4, u, s5) and
λ5 = λ(s6, t2, qF). The saturation procedure creates a transi-
tion (s1p′i

, γ, s4) = a · (λ2({ε})� λ3). Hence:

80 Chapter 5. Static Analysis of SDPNs

sinitstart

s s1

s1p′i

s2

s4 s3s5

s6 qF

(t1, λ1)

ε (p′′i ui, λ2)

ε

(p′′i+1u′i+1, λ3)(u, λ4)

ε

(t2, λ5)

p′i

γ

FIGURE 5.14: Adding an edge if a new process is
spawned.

π′ ∈ λ1({ε})� λ2({ε})� λ3 ◦ λ4({ε})� λ5({ε})

π = a ·π′ ∈ a · (λ1({ε})�λ2({ε})�λ3 ◦λ4({ε})�λ5({ε}))

π ∈ λ1({ε})� (a · (λ2({ε})� λ3) ◦ λ4({ε}))� λ5({ε})

Moreover, Apre∗ accepts c′ with the path sinit
t1 p′iγut2−−−−→Apre∗ qF.

But we have λ(sinit, t1p′iγut2, qF) ⊇ λ1� (a · (λ2({ε})�λ3) ◦
λ4)� λ5 because of constraint (Z5). Apre∗Π therefore accepts
π.

— if j = l, no new process has been created while moving from
the configuration c′ to the configuration c1. Let p′iγ

a−→M p′′i u′

be the transition used to move from c′ to c1.

Let t1 and t2 be two words in (PΓ∗)∗ such that c1 =
(t1p′′i uit2) and c′ = (t1p′iw

′
it2). There is u ∈ Γ∗ such that

w′i = γu and ui = u′u.

5.4. Characterizing the set of paths 81

sinitstart s s1 s1p′i

s2s3

s4 qF

t1 ε

p′′i u′

u

ε

t2

p′i

γ

FIGURE 5.15: Adding an edge if no new process is
spawned.

By induction, as shown in figure 5.15, there is a path π′ such
that Apre∗Π accepts (c1, π′) and π′ ∈ λ1({ε})�λ2 ◦λ3({ε})�
λ4({ε}), where λ1 = λ(sinit, t1, s), λ2 = λ(s1, p′′i u′, s2), λ3 =
λ(s2, u, s3) and λ4 = λ(s4, t2, qF).

The saturation procedures creates a transition (s1p′i
, γ, s2)

such that we have λ(s1p′i
, γ, s2) ⊆ a · (λ2). Moreover:

π′ ∈ λ1({ε})� λ2 ◦ λ3({ε})� λ4({ε})

π = a · π′ ∈ a · (λ1({ε})� λ2 ◦ λ3({ε})� λ4({ε}))

π ∈ λ1({ε})� a · λ2 ◦ λ3({ε})� λ4({ε})

The automaton Apre∗ accepts c′ with a path sinit
t1 p′iγut2−−−−→Apre∗

qF such that λ(sinit, t1p′iγut2, qF) ⊇ λ1� a · (λ2 ◦ λ3)�λ4 be-
cause of constraints (Z2, Z3, Z4). The automaton Apre∗Π there-
fore accepts π.

Proof of Lemma 16

We prove this lemma by induction the length |π| of π.

Basis: if |π| = 0, then π = ε; because of constraints (Z2, Z3, Z4, Z5),
paths that use new transitions introduced by the saturation pro-
cedure are of length at least 1 and (c′, π) can only be accepted by

82 Chapter 5. Static Analysis of SDPNs

a sequence of transitions following constraint (Z1), hence, transi-
tions in A. Therefore, c′ ∈ C and the property holds.

Induction step: if |π| = k > 0, let π = a1 · a2 · . . . · ak. If Apre∗Π accepts

(c′, π), there is an accepting execution sinit = s1
(p′1w′1,e1)
====⇒Apre∗Π

s2 . . .
(p′nw′n,e1)
=====⇒Apre∗Π

sn+1 ∈ F such that π ∈ e1({ε})� e2({ε}) . . .�

en({ε}), with ei = λ(si, p′iw
′
i, si+1).

We have the two following cases:

— if a1 6= τ, for each i ∈ {1, . . . , n}, we split ei({ε}) into two
parts: a1 · Si, which represents the path expressions in ei
starting with a1, and S′i, which stands for the path expres-
sions starting with another symbol than a1. We have ej({ε})
= (a1 · Sj) ∪ S′j and π = a1a2 . . . ak ∈ ((a1 · S1) ∪ S′1)� . . .
((a1 · Sn) ∪ S′n).

Let i be such that a2a3 . . . ak ∈ ((a1 · S1) ∪ S′1)� . . .� (Si)�
. . . ((a1 · Sn) ∪ S′n). The first symbol a1 of π must appear in
one (let’s say the i-th) of the n sets e1({ε}), . . . , en({ε}).

We define w′i = γ1γ2 . . . γj. We consider the sub-sequence

si = si1
(p′iγ1,λ1)
====⇒Apre∗Π

si2 . . .
(γj,λj)
===⇒ sij+1 of the accepting exe-

cution outlined earlier. We have ei = λ1 ◦ λ2 . . . ◦ λj.

Since there are paths starting with a1 in ei, then there are
words starting with a1 in λ1 as well. Therefore, there is a
rule r = p′iγ1

a1−→M qiu in M and a transition (siqi
, u, si2) in

Apre∗ , from which a transition (si p′i
, γ1, si2) labelled by λ1 can

be added by the saturation rules in such a manner that the
inequality a1 · λ(siqi

, u, si2) ⊆ λ1 holds.

The automaton Apre∗Π then has an accepting execution la-
belled by:

c1 = (p′1w′1 . . . p′i−1w′i−1qiuγ2 . . . γj p′i+1w′i+1 . . . p′nw′n)

and:

(e1� . . . ei−1� (λ′ ◦ λ2 . . . ◦ λj)� ei+1 . . .� en)

where λ′ = λ(siqi
, u, si2).

We have a1 ·λ′(siqi
, u, si2) ⊆ λ1 and a1 ·λ′ ◦λ2 . . . ◦λj({ε}) =

a1 · Si, hence λ′ ◦ λ2 . . . ◦ λj({ε}) = Si.

5.4. Characterizing the set of paths 83

If we apply rule r to (c, π), we move to a configuration
(c1, π′), with π′ = a2 . . . ak and π′ ∈ ((a1 · S1) ∪ S′1)� . . .�
(Si)� . . . ((a1 · Sn) ∪ S′n) = e1({ε})� . . . ei−1({ε})� (λ′ ◦
λ2 . . . ◦ λj)({ε})� ei+1({ε}) . . .� en({ε}). Moreover, |π′| <
|π|.

If we apply the induction hypothesis, there is c such that
sinit

c−→A qF and (c1, π′) →∗M,Π (c, ε). Since (c′, π) →∗M,Π
(c1, π′), (c′, π)→∗M,Π (c′, ε).

— if a1 = τ, from c, the automaton M can either move to an-
other configuration if two of its processes synchronize with
an action a or apply an internal action; we focus on the first
case, the second case being similar to the previous unsyn-
chronized action in terms of pushdown operations.

For i ∈ {1, . . . , n}, we split ei({ε}) in three parts: the set
a · Si of path expressions starting by a, the set a · S′i of path
expressions starting by a, and the set S′′i of path expressions
starting with neither a nor a. We have ei({ε}) = (a · Si)∪ (a ·
S′i) ∪ S′′i and:

π = τ · a2 · . . . ak ∈ ((a · S1) ∪ (a · S′1) ∪ S′′1)� . . .

Let i and j be two integers such that a2 · . . . ak ∈ ((a · S1)∪ (a ·
S′1) ∪ S′′1)� . . .� . . . (Si)� . . . (S′j)� . . . ((a · Sn) ∪ (a · S′n) ∪
S′′n)). The symbol τ of π comes from a shuffle of a word in
a · Si, hence in ei({ε}), and a word in a · S′j, hence in ej({ε}).

We define w′i = γ1γ2 . . . γl. We consider the sub-sequence

si = si1
(p′iγ1,λ1)
====⇒Apre∗Π

si2 . . .
(γl ,λl)
===⇒ sil+1 of the accepting exe-

cution outlined earlier.

We also define w′j = α1α2 . . . αm and the sub-sequence sj =

sj1

(p′jα1,λ′1)
====⇒Apre∗Π

sj2 . . .
(αm,λ′m)====⇒ sjm+1 of the accepting execu-

tion outlined earlier.

We have ei = λ1 ◦ λ2 . . . ◦ λl. There are paths starting by a in
ei, hence in λ1 as well, and there is therefore a rule:

r1 = p′iγ1
a−→M qiu

By the saturation rules, from the transition (siqi
, u, si2), we

add a new transition (si p′i
, γ1, si2) labelled by λ1 such that

a · λ(siqi
, u, si2) ⊆ λ1.

84 Chapter 5. Static Analysis of SDPNs

We have ej = λ′1 ◦ λ′2 . . . ◦ λ′m. There are paths starting by a
in ej, hence in λ′1 as well, and there is a rule:

r2 = p′jα1
a−→ qju′

By the saturation rules, from the transition (sjqj
, u′, sj2), we

add a new transition (sj p′j
, α1, sj2) labelled by λ′1 such that

a · λ(sjqj
, u′, sj2) ⊆ λ′1.

We define v1 = γ2 . . . γl and v2 = α2 . . . αm.

The automaton Apre∗Π then has an accepting execution la-
belled by c1 = (p′1w′1 . . . p′i−1w′i−1qiuv1 . . . qju′v2 . . . p′nw′n)
and (e1� . . . ei−1� (λ ◦ λ2 . . . ◦ λl)� . . . (λ′ ◦ λ′2 . . . ◦ λ′m) . . .
� en), where λ = λ(siqi

, u, si2) and λ′ = λ(sjqj
, u′, sj2).

We have a · λ ⊆ λ1 and a · λ ◦ λ2 . . . ◦ λl({ε}) = a · Si, hence
λ ◦ λ2 . . . ◦ λl({ε}) = Si. Moreover, a · λ′ ⊆ λ′1 and a · λ′ ◦
λ′2 . . . ◦ λ′m(({ε})) = a · S′j, hence λ′ ◦ λ′2 . . . ◦ λ′m({ε}) = S′j.

If we apply r1 and r2 in a synchronized manner to the con-
figuration (c, π), we move to another configuration (c1, π′),
where π′ = a2 . . . ak and π′ ∈ ((a · S1) ∪ (a · S′1) ∪ S′′1)�
. . . (Si)� . . . (S′j)� . . . ((a · Sn) ∪ (a · S′n) ∪ S′′n) = e1({ε})�
. . . ei−1({ε})� (λ ◦ . . . ◦ λl)({ε})� . . . (λ′ ◦ λ′2 . . . ◦ λ′m)({ε})
. . .� en({ε}).

Since |π′| < |π|, we can apply the induction hypothesis.
There is a configuration c such that sinit

c−→A qF and (c1, π′)
→∗M,Π (c, (ε)). Since (c′, π) →∗M,Π (c1, π′), it follows that
(c′, π)→∗M,Π (c, ε).

5.5 An abstraction framework for paths

We can’t compute the exact set PathsM(C, C′), we will therefore over-
approximate it. To do so, we use the following mathematical frame-
work, basing our technique on the approach presented by Bouajjani et
al. in [BET03].

5.5. An abstraction framework for paths 85

5.5.1 Abstractions and Galois connections

Let L = (2Act∗ ,⊆,∪,∩, ∅, Act∗) be the complete lattice of languages on
Act.

Our abstraction of L requires a lattice E = (D,≤,t,u,⊥,>), from now
on called the abstract lattice, where D is a set called the abstract domain,
as well as a pair of mappings (α, β) called a Galois connection, where
α : 2Act∗ → D and β : D → 2Act∗ are such that ∀x ∈ 2Act∗ , ∀y ∈ D,
α(x) ≤ y⇔ x ⊆ β(y).

∀L ∈ L, given a Galois connection (α, β), we have L ⊆ β(α(L)). Hence,
the Galois connection can be used to over-approximate a language,
such as the set of execution paths of a SDPN.

Moreover, it is easy to see that ∀L1, ∀L2 ∈ L, α(L1) u α(L2) = ⊥ if
and only if β(α(L)) ∩ β(α(L)) = ∅. We therefore only need to check
if α(PathsM(C, C′)) u α(τ∗) = ⊥. From then on, α(PathsM(C, C′)) will
be called the abstraction of PathsM(C, C′), although technically the set
β(α(PathsM(C, C′)) is the actual over-approximation.

5.5.2 Kleene algebras

We want to define abstractions of L such that we can compute the ab-
stract path language α(PathsM(C′, C)), assuming the sets C′ and C are
regular. In order to do so, we consider a special class of abstractions,
called Kleene abstractions.

An idempotent semiring is a structure K = (A,⊕,�, 0, 1), where ⊕ is
an associative, commutative, and idempotent (a ⊕ a = a) operation,
and � is an associative operation. 0 and 1 are neutral elements for ⊕
and � respectively, 0 is an annihilator for � (a� 0 = 0� a = 0) and �
distributes over ⊕.

K is an Act-semiring if it can be generated by 0, 1, and elements of the
form va ∈ A, ∀a ∈ Act. A semiring is said to be closed if ⊕ can be
extended to an operator over countably infinite sets while keeping the
same properties as ⊕.

We define a0 = 1, an+1 = a� an and a∗ =
⊕

n≥0
an. Adding the ∗ opera-

tion to an idempotent closed Act-semiring K transforms it into a Kleene
algebra.

86 Chapter 5. Static Analysis of SDPNs

5.5.3 Kleene abstractions

An abstract lattice E = (D,≤,t,u,⊥,>) is said to be compatible with
a Kleene algebra K = (A,⊕,�, 0, 1) if D = A, x ≤ y ⇔ x ⊕ y = y,
⊥ = 0 and t = ⊕.

A Kleene abstraction is an abstraction such that the abstract lattice E
is compatible with the Kleene algebra and the Galois connection α :
2Act∗ → D and β : D → 2Act∗ is defined by:

α(L) =
⊕

a1...an∈L
va1 � . . .� van

β(x) =
{

a1 . . . an ∈ 2Act∗ | va1 � . . .� van ≤ x
}

Intuitively, a Kleene abstraction is such that the abstract operations
⊕, �, and ∗ can be matched to the union, the concatenation, and the
Kleene closure of the languages of the lattice L, 0 and 1 to the empty
language and {ε}, va to the language {a}, the upper bound > ∈ K to
Act∗, and the operation u to the intersection of languages in the lattice
L.

In order to compute α(L) for a given language L, each word a1 . . . an in
L is matched to its abstraction va1 � . . .� van , and we consider the sum
of these abstractions.

We can check if α(PathsM(C, C′)) u ⊕
n≥0

vn
τ = ⊥; if it is indeed the case,

then β(α(PathsM(C, C′))) ∩ τ∗ = ∅, and since β(α(PathsM(C, C′))) is
an over-approximation PathsM(C, C′), it follows that PathsM(C, C′) ∩
τ∗ = ∅.

A finite-chain abstraction is an abstraction such that the lattice (K,⊕)
has no infinite ascending chains. In this chapter, we rely on a partic-
ular class of finite-chain abstractions, called finite-domain abstractions,
whose abstract domain K is finite, such as the following examples:

Prefix abstractions.

Let n be an integer and W(n) = {w ∈ Act∗ | |w| ≤ n} be the set of
words of length smaller than n. We define the n-th order prefix abstrac-
tion α

pre f
n as follows: the abstract lattice A = 2W is generated by the el-

ements va = {a}, a ∈ Act; ⊕ = ∪; U�V = {prefn(uv) | u ∈ U, v ∈ V}
where prefn(w) stands for the prefix of w of length n (or lower if w is
of length smaller than n); 0 = ∅; and 1 = {ε}. From there, we build
an abstract lattice where > = W, u = ∩, and ≤=⊆. This abstraction

5.5. An abstraction framework for paths 87

m0

m1

m2

b

spawn N

a

Thread M

n0

n1

n2

call F

spawn N

Thread N

f0

f1f2

return

a
a

Procedure F

FIGURE 5.16: Applying a second order prefix
abstraction to an example.

is accurate for the n-th first steps of a run, then approximates the other
steps by Act∗.

We can apply a prefix abstraction of order 2 to the example shown in
Figure 5.16. For ease of representation, we show a control flow graph,
although we could use the procedure outlined in section 5.1.3 to com-
pute an equivalent SDPN. We also consider without loss of generality
that spawns, calls, and returns are silent ε-transitions.

We check that, starting from an initial set of configurations C with a
single thread M in state m0, the set C′ where M is in state m2 can’t be
reached with regards to the strict semantics.

We have α
pre f
2 (PathsM(C, C′)) = {b, bτ, ba, ba}, α

pre f
2 (τ∗) = {ε, τ, ττ},

and α
pre f
2 (PathsM(C, C′)) ∩ α

pre f
2 (τ∗) = ∅, hence, C′ can’t be reached

from C with regards to the strict semantics. Intuitively, the transition
labelled with b in thread M can’t synchronize as there isn’t any transi-
tion labelled with b in the whole program.

Suffix abstractions.

Let W be the set of words of length smaller than n. We define the n-
th order suffix abstraction α

su f f
n as follows: the abstract lattice A = 2W

is generated by the elements va = {a}, a ∈ Act; ⊕ = ∪; U � V =
{suffn(uv) | u ∈ U, v ∈ V} where suffn(w) stands for the suffix of w of
length n (or lower if w is of length smaller than n); 0 = ∅; and 1 = {ε}.
From there, we build an abstract lattice where > = W, u = ∩, and
≤=⊆. This abstraction is accurate for the n-th last steps of a run, then
approximates the other steps by Act∗.

88 Chapter 5. Static Analysis of SDPNs

m0

m1

m2

spawn N

call F

b

Thread M

n0

n1

n2

τ

call F

a

Thread N

f0

f1f2

return

a
a

Procedure F

FIGURE 5.17: Applying a second order suffix
abstraction to an example.

We apply a suffix abstraction of order 2 to the example shown in Figure
5.17. We check that, starting from an initial set of configurations C with
a single thread M in state m0, the set C′ where M is in state m2 can’t be
reached with regards to the strict semantics.

We have α
su f f
2 (PathsM(C, C′)) = {b, ab, ab, τb}, α

su f f
2 (τ∗) = {ε, τ, ττ},

and α
su f f
2 (PathsM(C, C′)) ∩ α

su f f
2 (τ∗) = ∅, hence, C′ can’t be reached

from C with regards to the strict semantics. Intuitively, the transition
labelled with b in thread M can’t synchronize as there isn’t any transi-
tion labelled with b in the whole program.

It is worth noting that the reachability problem in Example 5.17 can’t
be solved by a prefix abstraction, no matter its order. The reason is
that ∀n ≥ 0, there is an execution path τnb ∈ PathsM(C, C′), hence,
τn ∈ α

pre f
n (PathsM(C, C′)). Intuitively, the two self-pointing loops of

nodes m1 and n1 can synchronize.

Conversely, we can’t use a suffix abstraction to solve the reachability
problem in Example 5.16. The reason is that ∀n ≥ 0, there is an ex-
ecution path bτn ∈ PathsM(C, C′), hence, τn ∈ α

su f f
n (PathsM(C, C′)).

Intuitively, the self-pointing loop of node m2 can synchronize with the
self-spawning loop in thread N.

Thus, these two abstractions (prefix and suffix) complement each other.

5.6 Abstracting the set of paths

Since we can’t compute the solution of the constraints outlined in 5.4.2
on paths, our intuition now is to solve them in an abstract finite domain

5.6. Abstracting the set of paths 89

defined by a Kleene abstraction where we can compute the least pre-
fixpoint, in a manner similar to [BET05].

5.6.1 From the language of paths to the Kleene abstrac-
tion

We abstract the the complete lattice of languages L = (2Act∗ ,⊆,∪,∩,
∅, Act∗) by a finite domain Kleene abstraction on an abstract lattice
E = (D,≤,t,u,⊥,>) and a Kleene algebra K = (A,⊕,�, 0, 1), as
defined in Section 5.5.3.

Intuitively:

— the set Π is abstracted by K;

— the operator · is abstracted by �;

— the operator ∪ is abstracted by t = ⊕;

— the operator ⊆ is abstracted by ≤;

— the operator ∩ is abstracted by u;

— ∅ is abstracted by ⊥ = 0;

— {ε} is abstracted by 1;

— Act∗ is abstracted by the set of path expressions ΠK, that is, the
smallest set such that:

— 1 ∈ ΠK;

— if π ∈ ΠK, then ∀a ∈ Act, va � π ∈ ΠK.

We can define K-configurations in Con fM × ΠK and K-automata in a
similar manner to Π-configurations and Π-automata. For a given set of
configurations C, we introduce the set pre∗K(M, C) of K-configurations
(c, π) such that (c, π) →∗M,K (c′, 1) for c′ ∈ C. The following property
obviously holds:

pre∗K(M, C) =
{
(c′, π) | c′ ∈ pre∗(M, C), π ≤ α(PathsM({c′}, C))

}
The abstract path expression π is meant to be the abstraction of an ac-
tual execution path from c to c′.

To do so, we need to define the shuffle operation to paths expressions.
However, it has to be well-defined: given two representations va1 � . . .�
van = vb1 � . . .� vbm of a same path expression, ∀w ∈ {va|a ∈ Act}∗,
we must have (va1 , . . . , van)�w = (vb1 , . . . , vbm)�w.

90 Chapter 5. Static Analysis of SDPNs

To this end, we first inductively define a shuffle operation� : ({va|a ∈
Act}∗)2 → K such that, given two sequences representing path expres-
sions, their shuffle product is the set of all possible interleaving (with
synchronization) of these sequences.

Let w = (va1 , . . . , van) and w′ = (vb1 , . . . , vbm) be two such sequences:

— (va1 , . . . van)� (ε) = (ε)� (va1 , . . . van) = {va1 � . . .� van};

— if b1 6= a1, then ((va1 , . . . , van))� (vb1 , . . . , vbm) = va1 � ((va2 , . . . ,
van)� (vb1 , . . . , vbm))⊕ vb1 � ((va1 , . . . , van)� (vb2 , . . . , vbm));

— if b1 = a1, then ((va1 , . . . , van))� (vb1 , . . . , vbm) = va1 � ((va2 , . . . ,
van)� (vb1 , . . . , vbm))⊕ vb1 � ((va1 , . . . van)� (vb2 , . . . , vbm))⊕ vτ�
((va2 , . . . , van)� (vb2 , . . . , vbm)); two synchronized actions a1 and
a1 result in an internal action τ, hence, there is a component vτ �
(w1 � w2) of the shuffle product where the two paths synchro-
nize.

We now that prove that the shuffle product is well-defined on path ex-
pressions for the prefix and suffix abstractions. We define the length
|π| of a path expression π as the length n of the smallest sequence
(va1 , . . . , van) such that π = va1� . . .� van , length 0 meaning that π = 1.

Note that this sequence is unique for the prefix and suffix abstractions;
we can therefore define a function θ(π) = (va1 , . . . , van) that matches
to a path expression its smallest representation.

Lemma 17. The shuffle product is well-defined for the prefix abstraction.

Proof. We will show by induction on m + n that, given two sequences
(va1 , . . . , van) and (vb1 , . . . , vbm), we have (va1 , . . . , van)� (vb1 , . . . , vbm)
= θ(va1 � . . . � van)� θ(vb1 � . . . � vbm), i.e., that the shuffle of two
path sequences is equal to the shuffle of their smallest representations.

— if n ≤ l and m ≤ l, θ(va1 � . . .� van) = (va1 , . . . , van) and θ(vb1 �
. . .� vbm) = (vb1 , . . . , vbm), by definition of the l-th prefix abstrac-
tion: indeed, the smallest representation in this abstraction of a
word of length smaller than l is itself.

— if n > l and m > l, note that θ(va1 � . . .� van) = (va1 , . . . , val) and
θ(vb1 � . . .� vbm) = (vb1 , . . . , vbl

) by definition of the l-th prefix.
If we suppose that b1 = a1:

(va1 , . . . , van)� (vb1 , . . . , vbm)

= va1 � ((va2 , . . . , van)� (vb1 , . . . , vbm))⊕ va1 � ((va1 , . . . , van)�

(vb2 , . . . , vbm))⊕ vτ � ((va2 , . . . , van)� (vb2 , . . . , vbm))

= va1 � ((va2 , . . . , val+1)� (vb1 , . . . , vbl
))⊕ va1 � ((va1 , . . . , val)�

5.6. Abstracting the set of paths 91

(vb2 , . . . , vbl+1
))⊕ vτ � ((va2 , . . . , val+1)� (vb2 , . . . , vbl+1

))

if we apply the induction hypothesis. However, by definition of
the prefix abstraction, given two sequences (vx1 , . . . , vxl) and w
and ∀x0 ∈ Act, vx0 � ((vx1 , . . . , vxl)�w) = vx0 � ((vx1 , . . . , vxl−1)
� w). Intuitively, the symbols vx1 , . . . , vxl−1 have to be inserted
after vx0 but before vxl , and vxl will therefore be cut out of the
prefix when we concatenate vx0 . Hence:

(va1 , . . . , van)� (vb1 , . . . , vbm)

= va1 � ((va2 , . . . , val)� (vb1 , . . . , vbl
))⊕ va1 � ((va1 , . . . , val)�

(vb2 , . . . , vbl
))⊕ vτ � ((va2 , . . . , val)� (vb2 , . . . , vbl

))

= (va1 , . . . , val)� (vb1 , . . . , vbl
)

The case b1 6= a1 is similar. Hence, the induction holds.

As a consequence, the shuffle product is well-defined: if va1 � . . . �
van = vb1 � . . .� vbm = π, then for all sequences w, (va1 , . . . , van)�w =
θ(π)�w = (vb1 , . . . , vbm)�w.

Lemma 18. The shuffle product is well-defined for the suffix abstraction.

Proof. We will show again by induction on m + n that, given two se-
quences (va1 , . . . , van) and (vb1 , . . . , vbm), we have (va1 , . . . , van)� (vb1 ,
. . . , vbm) = θ(va1 � . . .� van)� θ(vb1 � . . .� vbm), i.e., that the shuffle
of two path sequences is equal to the shuffle of their smallest represen-
tations.

— if n ≤ l and m ≤ l, θ(va1 � . . .� van) = (va1 , . . . , van) and θ(vb1 �
. . .� vbm) = (vb1 , . . . , vbm), by definition of the l-th suffix abstrac-
tion: indeed, the smallest representation in this abstraction of a
word of length smaller than l is itself.

— if n > l and m > l, note that θ(va1 � . . .� van) = (van−l+1 , . . . , val)
and θ(vb1 � . . .� vbm) = (vbm−l+1

, . . . , vbl
) by definition of the l-th

suffix. If we suppose that b1 = a1:

(va1 , . . . , van)� (vb1 , . . . , vbm)

= va1 � ((va2 , . . . , van)� (vb1 , . . . , vbm))⊕ va1 � ((va1 , . . . , van)�

(vb2 , . . . , vbm))⊕ vτ � ((va2 , . . . , van)� (vb2 , . . . , vbm))

= va1 � ((van−l+1 , . . . , van)� (vbm−l+1
, . . . , vbm))⊕ va1�

((van−l+1 , . . . , van)� (vbm−l+1
, . . . , vbm))⊕ vτ � ((van−l+1 , . . . , van)�

(vbm−l+1
, . . . , vbm))

92 Chapter 5. Static Analysis of SDPNs

if we apply the induction hypothesis. However, by definition of
the suffix abstraction, given two sequences (vx1 , . . . , vxl) and w
and ∀x0 ∈ Act, vx0 � ((vx1 , . . . , vxl) � w) = ((vx1 , . . . , vxl)
�w). Intuitively, the symbol vx1 is concatenated to shuffled paths
that are already of length greater than l, hence, will be cut out of
the suffix. Therefore:

(va1 , . . . , van)� (vb1 , . . . , vbm)

= (van−l+1 , . . . , van)� (vbm−l+1
, . . . , vbm)

The case b1 6= a1 is similar. Hence, the induction holds.

As a consequence, the shuffle product is well-defined: if va1 � . . . �
van = vb1 � . . .� vbm = π, then for all sequences w, (va1 , . . . , van)�w =
θ(π)�w = (vb1 , . . . , vbm)�w.

From now on, we consider that α is either the prefix or suffix abstrac-
tion of rank l.

5.6.2 Computing pre∗K(M, C)

Given a SDPN M and a regular set C of configurations of M accepted
by an M-automaton A, we want to compute a K-automaton Apre∗K ac-
cepting pre∗K(M, C). To this end, we will add new labels in KK to the
M-automaton Apre∗ .

Let Q be the set of states of A, hence, of Apre∗ as well. We now consider
the following set of constraints in the abstract domain on the labels of
transitions of Apre∗ in SS × Γ× SS:

(Y1) if t belongs to A, then:
Id ≤ λ(t)

(Y2) for each rule pγ
a−→ p′γ′ ∈ ∆, for each q ∈ Q, for each s ∈ Sc:

va � λ(sp′ , γ′, q) ≤ λ(sp, γ, q)

(Y3) for each rule pγ
a−→ p′ε ∈ ∆, for each s ∈ Sc:

va � Id ≤ λ(sp, γ, sp′)

(Y4) for each rule pγ
a−→ p′γ1γ2 ∈ ∆, for each q ∈ Q, for each s ∈ Sc:⊕

q′∈Q

va � (λ(sp′ , γ1, q′) ◦ λ(q′, γ2, q)) ≤ λ(sp, γ, q)

5.6. Abstracting the set of paths 93

(Y5) for each rule pγ
a−→ p2γ2p1γ1 ∈ ∆, for each q ∈ Q, for each s ∈ Sc:⊕

s′′
ε−→Apre∗ s′

va � (λ(sp2 , γ2, s′′)(1)� λ(s′p1
, γ1, q)) ≤ λ(sp, γ, q)

Since α is a finite-domain abstraction, the set KK of functions in K is
finite as well. Let t1, . . . , tm be an arbitrary numbering of the transi-
tions of Apre∗K labelled with functions in the abstract domain and let
k1, . . . , kn be an enumeration of the elements of the finite domain K
(n = |K|). The labelling constraints of section 5.4.2 define a system of
inequalities on m ∗ n variables x1, . . . , xmn such that its smallest solu-
tion is t1(k1), . . . , t1(kn), t2(k1), . . . , tm(kn). It is worth noting that we
can replace two different inequalities e1(x) ≤ ti(x) and e2(x) ≤ ti(x)
by a single inequality e1(x)⊕ e2(x) ≤ ti(x). We therefore end up with
a system of the form:

fi(x1, . . . , xmn) ≤ xi, for i = 1, . . . , mn

where the functions fi are monomials in K[x1, . . . , xmn]. Finding the
least solution of this system of inequalities amounts to finding the least
pre-fixpoint of the monotonic and continuous function:

F(x1, . . . , xmn) = (f1(x1, . . . , xmn), . . . , fmn(x1, . . . , xmn))

By Tarski’s theorem, this fixpoint exists and is equal to
⊕
i≥0

Fi(0).

In a finite-domain, this iterative computation always terminates in a
number of steps bounded by the length of the longest ascending chain
in K, hence, l for a prefix or suffix abstraction of order l. There are
mn functions fi, each with a number of ⊕, �, and � operations in
O(|∆| · |Q|). Moreover, according to [BMOT05], the size of the automa-
ton Apre∗ is m = O(|Q|2 · |∆|) . Each iteration step therefore features
O(n · |∆|2 · |Q|3) operations, and the whole procedure, O(l · n · |∆|2 ·
|Q|3) operations. For a prefix or suffix abstraction of order l, n = 2|Act|l ,
hence, a total of O(l · 2|Act|l · |∆|2 · |Q|3) operations.

5.6.3 Finding the abstraction

We can compute an automaton Apre∗K that accepts the set pre∗K(M, C′).
We then want to find a K-automaton A′ that accepts pre∗K(M, C′)∩ C×
ΠK.

To do so, we define the intersection A′ = (Σ, S′, δ′, s′init, F′) of the au-
tomaton Apre∗ = (Σ, S, δ, sinit, F) with an M-automaton accepting C

94 Chapter 5. Static Analysis of SDPNs

called A1 = (Σ, S1, δ1, s1,init, F1) accepting C, where S′ = S× S1, s′init =

(sinit, s1,init), F = F× F1, and δ = {(q, q1)
a−→ (q′, q′1) | q a−→ q′ ∈ δ, q a−→

q′ ∈ δ1}. Moreover, we label A′ with abstract functions in such a man-
ner that λ((q, q1), a, (q′, q′1)) = λ(q, a, q′).

The K-automaton A′ then obviously accepts pre∗K(M, C′)∩C×ΠK. The
abstraction considered is therefore α(PathsM(C, C′)) =

⊕{π | (c, π) ∈
LK(A′)}.

5.7 Using our framework in a iterative abstrac-
tion refinement scheme

Following the work of Chaki et al. in [CCK+06], we propose a semi-
decision procedure that, in case of termination, allows us to answer
exactly whether PathsM(C, C′) ∩ τ∗ = ∅.

We first model a program as a SDPN M, as shown in section 5.1.3, its
starting configurations as a regular set C, and a set of critical config-
urations whose reachability we need to study as another regular set
C′.

We then introduce an iterative abstraction refinement scheme based on
the finite-domain abstraction framework detailed previously, starting
from n = 1.

Abstraction: we compute abstractions α(PathsM(C, C′)) of the set of
executions paths for α = α

pre f
n and α = α

su f f
n ;

Verification: for α = α
pre f
n and α = α

su f f
n , we check if α(PathsM(C, C′))

u α(τ∗) = ⊥; if it is indeed true, then we conclude that C′ can’t
be reached from C using only internal or synchronized actions;

Counter-example validation: if there is such a path, we then check if
our abstraction introduced a spurious counter-example; this can
be done in a finite number of steps by checking if this counter-
example can be reached within the n-th first or last execution
steps of the program, depending on which abstraction (prefix
or suffix) provided us with a counter-example; if the counter-
example is not spurious, then we conclude that C′ is reachable
from C w.r.t. the strict semantics;

Refinement: if the counter-example was spurious, we go back to the
first step, but use this time finite-domain abstractions of order
n + 1.

If this procedure ends, we can decide the reachability problem.

5.8. A case study 95

5.8 A case study

We use an iterative abstraction refinement scheme to find an error in a
Bluetooth driver for Windows NT. We consider here a simplified ver-
sion of a driver found in [QW04] that nonetheless keeps the erroneous
trace, in a manner similar to [CCK+06] and [PST07].

We model the network of processes in the driver as a SDPN. New
requests for the driver are represented by thread spawns, and the
driver’s counter of active requests, by a counter on the stack, hence,
a recursive process, making full use of our model’s features.

We were able to discover the bug by applying our finite-domain ab-
straction in an iterative abstraction refinement scheme: we start from
abstractions of order 1 and increment the order until we deduce that
the erroneous configuration is reachable using a prefix abstraction of
size 12. We then correct one of the program’s subroutines accordingly
and apply our iterative abstraction refinement scheme to prove it’s now
error-free.

Note that this bug was also discovered in [CCK+06, QW04, PST07].
However, our approach is more complete and precise than these works:
[QW04] can only discover errors, whereas our scheme can also prove
that a patched version of the driver is correct; [CCK+06] does not han-
dle dynamic thread creation, and thus had to guess the number of
threads for which the error arises; and [PST07] models thread creation
as parallel calls (not as spawns), where the father process waits for its
children to terminate in order to resume its execution.

5.8.1 The program

The driver consists of a certain number of processes running in paral-
lel. Amongst these processes is an arbitrary number of requests meant
to be handled by the driver. An internal counter records the number
of requests currently handled by the driver: it is incremented when a
request starts handling a task, and decremented once the request ter-
minates. At any time, a special process in the driver may send a ’stop’
signal; if it does, the driver switches an internal ’stopping’ flag to true.
The driver, however, can’t stop yet and must wait until all requests
have been processed.

Once the ’stopping’ flag is switched on, requests may no longer per-
form their tasks and must instead end while decrementing the counter
of active requests. Once the counter reaches zero, an internal ’stopping
event’ is switched to true, and the driver frees its allocated resources. If

96 Chapter 5. Static Analysis of SDPNs

a request tries to perform a task after the resources have been released,
it must abort and send an error.

Our intuition is that the ’stop’ signal can interrupt a request while the
latter has already started handling its task after being told the driver
was still running; the driver will then free its allocated resources and
let the request resume its execution, leading to an error state where the
request must abort because the resources it needs are now missing.

5.8.2 From the driver to the SDPN model

We model this network of processes as a SDPN. To do so, we consider
that each thread has no internal variables and a single control state,
as we switch the handling of the control flow to the stack by storing
the current control point of each thread on its stack. The threads can
communicate and handle flags and counters by using synchronized ac-
tions: as an example, two threads can synchronize over an action stop
in order to switch the ’stopping’ flag (represented by a control point) to
true; a function Increment can also synchronize with a counter over an
action incr in order to increase this counter.

The driver uses the following processes:

COUNTER: this process counts the number of requests the driver re-
ceives plus the thread STOP-D; this number is set to 1 initially,
is incremented when the driver receives a new request, and is
decremented when a request ends;

STOP-D: this process may issue a request to stop the driver at any
time; it has then to wait until all the other requests have finished
their work, then, when it receives a signal sent by the function
Decrement, can stop the driver and free its allocated resources;

STOPPING-FLAG: this process is either in state FALSE-STOP-FLAG
(from then on FSF) or state TRUE-STOP-FLAG (TSF), depending
on whether STOP-D is trying to stop the driver or not; it is ini-
tially in state FSF, and moves to state TSF if it receives a message
from STOP-D; no new thread can enter the driver if this process
is in TSF;

STOPPING-EVENT: it is either in state TRUE-STOP-EVENT (TSE) or
FALSE-STOP-EVENT (FSE); this process enters state TSE if the
driver stops, i.e. when the number of running REQUESTs reaches
0;

GEN-REQ: this process can spawn new requests as long as the driver
is not trying to stop, that is, if STOPPING FLAG isn’t in state TSF;

5.8. A case study 97

REQUEST: when a new REQUEST enters the driver, it has to incre-
ment the number stored in COUNTER, perform a task, then
decrement this number before exiting the driver; it uses two func-
tions Increment and Decrement to do so.

If a REQUEST tries to perform its task but the allocated resources of the
driver have been released, the program reaches an error state. We will
check the reachability of this state.

Each process can be modelled by a SDPN as follows:

The process COUNTER.

Let p0 be its unique state. The number of threads is represented by a
stack. Its stack alphabet is {0, 1}. Initially, the stack contains the word
10, meaning that the number of request is zero and only STOP-D is
running. It can then contain any word in 1∗0. The number of 1’s in
the stack corresponds to the number of running requests minus 1. The
incrementation and decrementation procedures are done by receiving
incr and decr actions from the functions Increment and Decrement.

COUNTER is represented by the following SDPN rules:

(r1a) p01 incr−−→ p011 and (r1b) p00 incr−−→ p010; these rules increment the
counter when the process is asked to do so;

(r2) p01 decr−−→ p0ε; this rule decrements the counter when the process is
asked to do so;

(r3a) p01 not−zero−−−−−→ p01 and (r3b) p00 is−zero−−−−→ p00; these rules test
whether the counter is 0 or not and send this information to other
threads.

The process STOPPING-FLAG.

Let p1 be its unique state. The process has two control points FSF and
TSF. STOPPING-FLAG is represented by the following SDPN rules:

(r4) p1FSF
stop−−→ p1TSF; the process receives a ’stop’ request from

STOP-D and changes its flag;

(r5) p1TSF
stopR−−−→ p1TSF; the process sends a ’stop’ message to the in-

coming REQUESTs;

(r6) p1FSF
not−stopR−−−−−→ p1FSF; the process sends a ’non-stop’ request to

the incoming REQUESTs.

98 Chapter 5. Static Analysis of SDPNs

The process STOPPING-EVENT.

Let p2 be its unique state. The process has two control points FSE and
TSE. STOPPING-EVENT is represented by the following SDPN rules:

(r7) p2FSE
has−stopped−−−−−−→ p2TSE; the process receives an ’has-stopped’

message and knows that the driver has stopped;

(r8) p2TSE
has−stopped−−−−−−→ p2TSE; once the driver has stopped, it keeps

sending the ’has-stopped’ message;

(r9) p2FSE
non−stopped−−−−−−−→ p2FSE; the process sends a ’not-stopped’ mes-

sage if the driver is still running.

The process STOP-D.

Let p3 be its unique state. It has three control points s0, s1, and R, the
last one standing for ’release resources’. STOP-D is represented by the
following SDPN rules:

(r10) p3s0
stop−−→ p3 fDecrements1; STOP-D sends a ’stop’ request to the pro-

cess STOPPING-FLAG, and calls the function Decrement;

(r11) p3s1
has−stopped−−−−−−→ p3R; if the driver has stopped, the allocated re-

sources are released.

The process REQUEST.

The process REQUEST executes the following instructions:

— it starts by calling a function Increment; this function returns -1
(stack symbol a−1) if the STOPPING-FLAG is set to TRUE, other-
wise, it increments the counter, and returns 0 (stack symbol a0);

— if Increment returns 0, then REQUEST performs its task if it can
assert that STOPPING-EVENT is in state FSE (i.e., that the driver
is still running);

— it calls afterwards a function Decrement that decrements the
counter; if this counter has reached 0, it sends a message to inform
STOPPING-EVENT that the driver has stopped since there are no
more requests running.

The process REQUEST has three control points r0, rWork, rEnd−Work, and
A, the last one standing for ’abort’, and an unique state p4. It can be
modelled by the following SDPN rules:

5.8. A case study 99

(r12) p4r0
τ−→ p4 f Increment; first, the function Increment is called;

(r13a) p4a0
τ−→ p4rWorkrEnd−Work and (r13b) p4rWork

τ−→ ε; if the function
Increment returns 0, then REQUEST can perform its (abstracted)
work;

(r14) p4rEnd−Work
non−stopped−−−−−−−→ p4 fDecrement; once the work is finished,

the process checks if the driver is still running, i.e. that process
STOPPING-EVENT is in FSE;

(r15) p4rEnd−Work
has−stopped−−−−−−→ p4A; if it is not the case, the program has

reached an erroneous configuration and aborts.

The process GEN-REQ.

Let p5 be its unique state, and g0 its unique control point. GEN-REQ is
represented by the following SDPN rule:

(r16) p5g0
non−stopped−−−−−−−→ p4r0p5g0; the process can spawn new requests

as long as the driver is running.

The function Increment.

It has three control points i0, a0, and a−1. The function Increment is
represented by the following SDPN rules, as only REQUEST calls this
function:

(r17) p4 f Increment
stopR−−−→ p4a−1; if STOPPING-FLAG is in TSF, the func-

tion returns −1;

(r18a) p4 f Increment
not−stopR−−−−−→ p4i0 and (r18b) p4i0

incr−−→ p4a0; otherwise, it
returns 0 and increments the counter.

The function Decrement.

It has two control points d0 and d1. The function Decrement is repre-
sented by the following SDPN rules, where p stands for either p3 or p4,
as only REQUEST and STOP-D call this function:

(r19) p fDecrement
decr−−→ pd0; the counter is decremented;

(r20) pd0
not−zero−−−−−→ pε; then, if it has not reached 0, the function termi-

nates;

100 Chapter 5. Static Analysis of SDPNs

(r21a) pd0
is−zero−−−−→ pd1 and (r21b) pd1

has−stopped−−−−−−→ ε; otherwise, a mes-
sage ’has-stopped’ is sent to STOPPING-EVENT.

We therefore model the program as a SDPN M = (Act, P, Γ, ∆), with:

— a set of control states P = {p0, p1, p2, p3, p4, p5};

— a set of stack symbols Γ = {0, 1, FSF, TSF, FSE, TSE, s0, s1, R, r0,
rWork, rEnd−Work, A, g0, f Increment, i0, a0, a−1, fDecrement, d0, d1};

— a set of actions Act = {τ} ∪ L ∪ L, where L = {incr, decr, is −
zero, not− zero, stopR, not− stopR, has− stopped, non− stopped,
stop};

— a set of transitions ∆ = {r1a, r1b, . . . , r21a, r21b}.

In the initial configuration, the counter is set to one, the flags in the
processes STOPPING-FLAG and STOPPING-EVENT to FALSE, and all
processes but REQUESTs (that will later be spawned by GEN-REQ) are
running. We then need to check if the SDPN model of the program can
reach with perfect synchronization a configuration where the process
COUNTER has released its ressources and reached a control point R,
while a process REQUEST has aborted its task and reached a control
point A.

Our goal is therefore to check if, from the initial configuration c0 =
p010 · p1FSF · p2FSE · p3s0 · p5g0, a configuration in the forbidden set of
configurations:

C′ = (PΓ∗)∗p3R(PΓ∗)∗p4AΓ∗(PΓ∗)∗

is reachable.

5.8.3 An erroneous execution path

We write (ri) ↔ (rj) if we apply two rules that synchronize. The erro-
neous execution path is the following, starting from configuration c0

p010 · p1FSF · p2FSE · p3s0 · p5g0

(r16) GEN-REQ spawns a REQUEST;

p010 · p1FSF · p2FSE · p3s0 · p4r0 · p5g0

(r12) REQUEST calls Increment;

p010 · p1FSF · p2FSE · p3s0 · p4 f Increment · p5g0

5.8. A case study 101

(r6)↔ (r18a) STOPPING-FLAG sends not− stopR to Increment;

p010 · p1FSF · p2FSE · p3s0 · p4i0 · p5g0

(r10)↔ (r4) STOP-D sends stop to STOPPING-FLAG;

p010 · p1TSF · p2FSE · p3 fDecrements1 · p4i0 · p5g0

(r19)↔ (r2) Decrement called by STOP-D sends decr to COUNTER;

p00 · p1TSF · p2FSE · p3d0s1 · p4i0 · p5g0

(r3b)↔ (r21a) COUNTER sends is− zero to Decrement called by STOP-
D;

p00 · p1TSF · p2FSE · p3d1s1 · p4i0 · p5g0

(r18b) ↔ (r1b) Increment called by REQUEST resume its execution, re-
turns 0, and sends incr to COUNTER;

p010 · p1TSF · p2FSE · p3d1s1 · p4a0 · p5g0

(r21a)↔ (r8) Decrement called by STOP-D sends a signal has− stopped
to procedure STOPPING-EVENT;

p010 · p1TSF · p2TSE · p3s1 · p4a0 · p5g0

(r8) ↔ (r11) Decrement STOPPING-EVENT sends has − stopped to
STOP-D that releases resources;

p010 · p1TSF · p2TSE · p3R · p4a0 · p5g0

(r13a) REQUEST starts its task;

p010 · p1TSF · p2TSE · p3R · p4rWorkrEnd−Work · p5g0

(r13b) REQUEST performs its work;

p010 · p1TSF · p2TSE · p3R · p4rEnd−Work · p5g0

(r8)↔ (r15) STOPPING-EVENT sends has− stopped to REQUEST that
aborts;

p010 · p1TSF · p2TSE · p3R · p4A · p5g0

102 Chapter 5. Static Analysis of SDPNs

This is an erroneous configuration reachable in 12 steps. We can find it
using a prefix abstraction of order 12.

5.9 Related work

Wenner introduced in [Wen10] a model of weighted dynamic pushdown
networks (WDPNs), extending the work of Reps et al. on weighted push-
down systems in [RSJM05] to DPNs. WDPNs share some similarities
with our abstraction framework on SDPNs: each transition is labelled
by a weight in a bounded idempotent semiring, these weights can be
composed along execution paths, and the sum of the weights of all
execution paths between two sets of configurations can be computed,
provided that a simple extension of the original semiring to an ab-
stract set of execution hedges can be found. WDPNs, however, do not
feature simultaneous, synchronized actions between pushdown pro-
cesses. Moreover, in order to be efficient, the extensions of the abstract
domain have to be chosen on a case-by-case basis in order to label tree
automata, whereas our framework works for every finite-domain ab-
straction and only uses finite state automata.

Multi-stack pushdown systems (MPDSs) are pushdown systems with two
or more stacks, and can be used to model synchronized parallel pro-
grams. Qadeer et al. introduced in [QR05] the notion of context, that
is, a part of an execution path during which only one stack of the au-
tomaton can be modified. The reachability problem within a bounded
number of context switches is decidable for MPDSs. However, MPDSs
have a bounded number of stacks and, unlike SDPNs, cannot therefore
handle the dynamic creation of new threads.

Bouajjani et al. introduced in [BESS05] asynchronous dynamic pushdown
networks, or ADPNs. This model extends DPNs by adding a global con-
trol state to the whole network as a mean of communication between
processes; each pushdown process can then apply rules either by read-
ing its own local state or the global state of the network. The reachabil-
ity problem within a bounded number of context switches is decidable
for ADPNs, where a context here stands for a part of an execution path
during which transitions altering global variables are all executed by
the same process. This is an under-approximation of the actual reach-
ability problem for synchronized parallel programs, whereas we com-
pute in this chapter an over-approximation of the same problem. The
former can be used to find errors in a program but, unlike the latter,
does not allow one to check that a program is free from errors.

5.10. Conclusion 103

Concurrent program with recursive procedures can be modeled as a
network of synchronized pushdown systems. This model, called com-
municating pushdown systems (CPDSs), was introduced by Bouajjani et
al. in [BET03]. The reachability problem being undecidable for this
class of automata, a Kleene algebra framework was designed in order
to find an over-approximation of the answer. Extensions of the abstrac-
tion framework of [BET03] were defined in [BET05, Tou05] to compute
abstractions of execution paths of multi-threaded recursive programs
communicating via rendez-vous. However, unlike SDPNs, the models
considered in these articles cannot describe thread spawns, where the
father of a new thread can resume its execution independently of its
children.

5.10 Conclusion

Our first contribution in this chapter is a new pushdown system model
that can handle both synchronization by rendez-vous between parallel
threads and thread spawns. The reachability problem being undecid-
able for this class of automata, we seek to approximate it by abstracting
the set of paths between two regular sets of configurations C and C′.

To this end, we introduce relaxed semantics with weaker synchroniza-
tion constraints and extend the Kleene algebra abstraction framework
shown in [BET03]. We label an automaton accepting the set of pre-
decessors of C′ with functions on a finite Kleene abstraction. These
functions depend on a set of constraints computed according to the
pushdown rules used during the saturation procedure.

This over-approximation allows us to define an iterative abstraction
refinement scheme. We then apply it to find an erroneous execution
trace in a Windows Bluetooth driver.

105

Chapter 6

Conclusion and Future Work

6.1 A brief summary of this thesis

In Chapter 3, we showed that model-checking hyper-properties ex-
pressed by the logic HyperLTL against PDSs is an undecidable prob-
lem. The restricted class of visibly pushdown systems did not help us to
regain decidability. We therefore designed methods in order to approx-
imate answers to the model-checking problem. We then applied these
techniques to check security policies on toy examples.

In Chapter 4, we introduced pushdown systems with an upper stack (UP-
DSs), a model that allows us to keep track of the content of the mem-
ory region just above the stack. We proved that their reachability sets
are not regular but nonetheless context-sensitive, and introduced tech-
niques to under-approximate and over-approximate these sets. We
then showed how this model could be used to look for safety or se-
curity flaws.

In Chapter 5, we introduced synchronized dynamic pushdown systems
(SDPNs) in order to model multi-threaded programs with recursive
procedure calls, synchronization, and dynamic creation of new threads.
We designed an abstraction based on finite Kleene algebras in order to
over-approximate the undecidable reachability problem. We then used
this abstraction in an iterative abstraction refinement scheme that we
applied to find an error in a Windows Bluetooth driver.

6.2 Future work

6.2.1 Tools for the model-checking of hyperproperties

In Chapter 3, we introduced algorithms to approximate the model-
checking problem of HyperLTL against PDSs. An implementation of

106 Chapter 6. Conclusion

these algorithms would be a valuable addition to existing model check-
ing software.

We plan to design a new tool that would take as an input either a bi-
nary program or a Java program. We could perform in the former case
a static analysis of the binary code with the tool Jakstab [KV08] that al-
lows us to model the program as a control flow graph (CFG). By pars-
ing this CFG, we could design a PDS model of the original code. In
the latter case, we could use the PDS generated by the tool Jimple-
ToPDSolver [HO10]. We could also handle C and C++ programs if we
translate them into boolean programs with the tool SATABS [CKSY05].

If we could compute a PDS model of a program, we could then im-
plement and apply one of the model-checking techniques described in
Chapter 3 depending on the hyperproperty we want to verify.

6.2.2 Further reachability analysis of UPDSs

An obvious problem is to determine whether the reachability sets of
the UPDS model introduced in Chapter 4 are context-free. However,
the pumping lemma being significantly more complex for context-free
languages, we did not manage to find a potential context-free counter-
example.

If we managed to prove that at least one of the two reachability sets
(predecessors and successors) of UPDSs is always context free, we then
could determine whether a regular set C′ of configurations is reachable
from another regular set C. Indeed, since the emptiness of the inter-
section of a regular and a context-free language is decidable, we would
only have to check whether pre∗(C′) ∩ C = ∅ or C′ ∩ post∗(C) = ∅.

6.2.3 Tools for the model-checking of concurrent pro-
grams

We plan to program a tool that would implement the abstraction frame-
work for SDPNs designed in Chapter 5 in order to approximate the
reachability problem.

We could model each thread of a program as a PDS that can spawn
new PDSs and synchronize with other threads, using the tools SA-
TABS [CKSY05] and JimpleToPDSolver [HO10] for C / C++ and Java
programs respectively. We could then fully automate the iterative ab-
straction refinement scheme outlined in Section 5.7.

6.2. Future work 107

6.2.4 Abstract model-checking for SDPNs

A LTL model-checking framework for DPNs has been introduced by
Song et al. in [ST15]. The reachability problem for SDPNs is unfortu-
nately undecidable, and so is the model-checking problem as well.

We could nonetheless look for approximations using our abstraction
framework based on finite Kleene algebras. Methods for abstracting
the answer to the LTL and CTL model-checking problems for SDPNs
would be a worthy addition to existing verification techniques on con-
current programs.

109

Bibliography

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown lan-
guages. In Proceedings of the Thirty-sixth Annual ACM Sym-
posium on Theory of Computing, STOC ’04, pages 202–211,
New York, NY, USA, 2004. ACM.

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reach-
ability analysis of pushdown automata: Application to
model-checking. In Antoni Mazurkiewicz and Józef
Winkowski, editors, CONCUR ’97: Concurrency Theory,
pages 135–150, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[BESS05] Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan
Strejček. Reachability analysis of multithreaded software
with asynchronous communication. In Sundar Sarukkai
and Sandeep Sen, editors, FSTTCS 2005: Foundations of
Software Technology and Theoretical Computer Science, pages
348–359, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg.

[BET03] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A
generic approach to the static analysis of concurrent pro-
grams with procedures. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’03, pages 62–73, New York, NY, USA,
2003. ACM.

[BET05] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili.
Reachability analysis of synchronized pa systems. Elec-
tronic Notes in Theoretical Computer Science, 138(3):153 – 178,
2005. Proceedings of the 6th International Workshop on
Verification of Infinite-State Systems (INFINITY 2004).

[BMOT05] Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili.
Regular symbolic analysis of dynamic networks of push-
down systems. In Martı́n Abadi and Luca de Alfaro, edi-
tors, CONCUR 2005 – Concurrency Theory, pages 473–487,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

110 BIBLIOGRAPHY

[BS90] Manuel E. Bermudez and Karl M. Schimpf. Practical arbi-
trary lookahead lr parsing. Journal of Computer and System
Sciences, 41(2):230 – 250, 1990.

[Cau92] Didier Caucal. On the regular structure of prefix rewriting.
Theoretical Computer Science, 106(1):61 – 86, 1992.

[CCK+06] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verify-
ing concurrent message-passing c programs with recursive
calls. In Holger Hermanns and Jens Palsberg, editors, Tools
and Algorithms for the Construction and Analysis of Systems,
ETAPS ’06, Berlin, Heidelberg, 2006. Springer Berlin Hei-
delberg.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and syn-
thesis of synchronization skeletons using branching time
temporal logic. In Dexter Kozen, editor, Logics of Programs,
pages 52–71, Berlin, Heidelberg, 1982. Springer Berlin Hei-
delberg.

[CFK+14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini,
Kristopher K. Micinski, Markus N. Rabe, and César
Sánchez. Temporal logics for hyperproperties. In Martı́n
Abadi and Steve Kremer, editors, Principles of Security and
Trust, pages 265–284, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[CKSY05] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and
Karen Yorav. Satabs: Sat-based predicate abstraction for
ansi-c. In Nicolas Halbwachs and Lenore D. Zuck, edi-
tors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 570–574, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[CMP07] Dario Carotenuto, Aniello Murano, and Adriano Peron.
2-visibly pushdown automata. In Tero Harju, Juhani
Karhumäki, and Arto Lepistö, editors, Developments in Lan-
guage Theory, DLT ’07, pages 132–144, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproper-
ties. J. Comput. Secur., 18(6):1157–1210, September 2010.

[EHRS00] Javier Esparza, David Hansel, Peter Rossmanith, and Ste-
fan Schwoon. Efficient algorithms for model checking
pushdown systems. In Proceedings of the 12th International
Conference on Computer Aided Verification, CAV ’00, pages
232–247, London, UK, UK, 2000. Springer-Verlag.

BIBLIOGRAPHY 111

[FRS15] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Al-
gorithms for model checking hyperltl and hyperctl*. In
Daniel Kroening and Corina S. Păsăreanu, editors, Com-
puter Aided Verification, pages 30–48, Cham, 2015. Springer
International Publishing.

[GGH67] Seymour Ginsburg, Sheila A. Greibach, and Michael A.
Harrison. Stack automata and compiling. J. ACM,
14(1):172–201, January 1967.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years
of Model Checking: History, Achievements, Perspectives.
Springer-Verlag, Berlin, Heidelberg, 2008.

[HMRU00] John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D.
Ullman. Introduction to Automata Theory, Languages and
Computability. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 2000.

[HO10] Matthew Hague and C.-H. Luke Ong. Analysing mu-
calculus properties of pushdown systems. In Proceedings
of the 17th International SPIN Conference on Model Checking
Software, SPIN’10, pages 187–192, Berlin, Heidelberg, 2010.
Springer-Verlag.

[HU68] J.E. Hopcroft and J.D. Ullman. Sets accepted by one-way
stack automata are context sensitive. Information and Con-
trol, 13(2):114 – 133, 1968.

[KMMP93] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A de-
cision algorithm for full propositional temporal logic. In
Costas Courcoubetis, editor, Computer Aided Verification,
pages 97–109, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg.

[KV08] Johannes Kinder and Helmut Veith. Jakstab: A static anal-
ysis platform for binaries. In CAV, volume 5123 of Lecture
Notes in Computer Science, pages 423–427. Springer, 2008.

[KYV01] Orna Kupferman and Moshe Y. Vardi. Model checking of
safety properties. Form. Methods Syst. Des., 19(3):291–314,
October 2001.

[lot97] Combinatorics on words. Cambridge Mathematical Li-
brary, page 126. Cambridge University Press, 1997.

[PDT17] Adrien Pommellet, Marcio Diaz, and Tayssir Touili. Reach-
ability analysis of pushdown systems with an upper stack.
In LATA, volume 10168 of Lecture Notes in Computer Science,
pages 447–459, 2017.

112 BIBLIOGRAPHY

[Pnu77] Amir Pnueli. The temporal logic of programs. In Pro-
ceedings of the 18th Annual Symposium on Foundations of
Computer Science, SFCS ’77, pages 46–57, Washington, DC,
USA, 1977. IEEE Computer Society.

[PST07] Gaël Patin, Mihaela Sighireanu, and Tayssir Touili. Spade:
Verification of multithreaded dynamic and recursive pro-
grams. In Werner Damm and Holger Hermanns, editors,
Computer Aided Verification, pages 254–257, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg.

[PT17] Adrien Pommellet and Tayssir Touili. Static analysis
of multithreaded recursive programs communicating via
rendez-vous. In APLAS, volume 10695 of Lecture Notes in
Computer Science, pages 235–254. Springer, 2017.

[PT18] Adrien Pommellet and Tayssir Touili. Model-checking hy-
perltl for pushdown systems. In SPIN, 2018.

[PW91] Fernando C. N. Pereira and Rebecca N. Wright. Finite-state
approximation of phrase structure grammars. In Proceed-
ings of the 29th Annual Meeting on Association for Compu-
tational Linguistics, ACL ’91, pages 246–255, Stroudsburg,
PA, USA, 1991. Association for Computational Linguistics.

[QR05] Shaz Qadeer and Jakob Rehof. Context-bounded model
checking of concurrent software. In Nicolas Halbwachs
and Lenore D. Zuck, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 93–107, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in cesar. In Proceedings
of the 5th Colloquium on International Symposium on Program-
ming, pages 337–351, London, UK, UK, 1982. Springer-
Verlag.

[QW04] Shaz Qadeer and Dinghao Wu. Kiss: Keep it simple and
sequential. In Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implementation,
PLDI ’04, pages 14–24, New York, NY, USA, 2004. ACM.

[Ram00] G. Ramalingam. Context-sensitive synchronization-
sensitive analysis is undecidable. ACM Trans. Program.
Lang. Syst., 22(2):416–430, March 2000.

[RSJM05] Thomas Reps, Stefan Schwoon, Somesh Jha, and David
Melski. Weighted pushdown systems and their applica-
tion to interprocedural dataflow analysis. Science of Com-
puter Programming, 58(1):206 – 263, 2005. Special Issue on

BIBLIOGRAPHY 113

the Static Analysis Symposium 2003.

[Set10] Anil Seth. Global reachability in bounded phase multi-
stack pushdown systems. In Tayssir Touili, Byron Cook,
and Paul Jackson, editors, Computer Aided Verification,
pages 615–628, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[ST11] Fu Song and Tayssir Touili. Efficient ctl model-checking
for pushdown systems. In Joost-Pieter Katoen and Barbara
König, editors, CONCUR 2011 – Concurrency Theory, pages
434–449, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

[ST15] Fu Song and Tayssir Touili. Model-checking dynamic
pushdown networks. Formal Aspects of Computing,
27(2):397–421, Mar 2015.

[SVW87] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The
complementation problem for büchi automata with ap-
plications to temporal logic. Theoretical Computer Science,
49(2):217 – 237, 1987.

[TMP07] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class
of context-sensitive languages. In 22nd Annual IEEE Sym-
posium on Logic in Computer Science (LICS 2007), pages 161–
170, July 2007.

[Tou05] Tayssir Touili. Dealing with communication for dy-
namic multithreaded recursive programs. In Verification of
Infinite-State Systems with Applications to Security, Proceed-
ings of the NATO Advanced Research Workshop ”Verification
of Infinite State Systems with Applications to Security VISSAS
2005”, Timisoara, Romania, March 17-22, 2005, pages 213–
227, 2005.

[UM13] Yuya Uezato and Yasuhiko Minamide. Pushdown sys-
tems with stack manipulation. In Dang Van Hung and
Mizuhito Ogawa, editors, Automated Technology for Verifi-
cation and Analysis, pages 412–426, Cham, 2013. Springer
International Publishing.

[Var96] Moshe Y. Vardi. An automata-theoretic approach to linear
temporal logic, pages 238–266. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

[Wal00] Igor Walukiewicz. Model checking ctl properties of push-
down systems. In Sanjiv Kapoor and Sanjiva Prasad, edi-
tors, FST TCS 2000: Foundations of Software Technology and

114 BIBLIOGRAPHY

Theoretical Computer Science, pages 127–138, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg.

[Wal01] Igor Walukiewicz. Pushdown processes: Games and
model-checking. Information and Computation, 164(2):234
– 263, 2001.

[Wen10] Alexander Wenner. Weighted dynamic pushdown net-
works. In Andrew D. Gordon, editor, Programming Lan-
guages and Systems, ESOP ’10, pages 590–609, Berlin, Hei-
delberg, 2010. Springer Berlin Heidelberg.

	Acknowledgements
	Introduction
	The need for model-checking
	Temporal logics
	Model-checking the logic HyperLTL for pushdown systems
	Pushdown systems with an upper stack
	Synchronized dynamic pushdown networks
	Thesis outline

	Model-checking Pushdown Systems
	Pushdown systems
	The model
	P-automata
	From a program to a pushdown system

	Reachability sets
	Computing pre*
	Computing post*

	Model-checking LTL on pushdown systems
	The linear-time temporal logic LTL
	Büchi automata
	The model-checking problem

	Model-checking HyperLTL for Pushdown Systems
	Visibly pushdown systems
	HyperLTL
	The logic
	HyperLTL and PDSs
	HyperLTL and VPDSs

	Model-checking constrained HyperLTL
	Regular over-approximations of context-free languages
	With one context-free variable and n regular variables
	With one visibly pushdown variable and n regular variables

	Model-checking HyperLTL with bounded phases
	Multi-stack pushdown systems
	Application to HyperLTL model-checking

	Applications to security properties
	Observational determinism
	Declassification
	Non-inference

	Related work
	Conclusion

	Reachability Analysis of Pushdown Systems with an Upper Stack
	Pushdown systems with an upper stack
	Reachability properties
	post* is not regular
	pre* is not regular
	post* is context-sensitive

	Under-approximating pre*
	Over-approximating post*
	A relationship between runs and the upper stack
	Computing an over-approximation

	Applications
	Stack overflow detection
	Reading the upper stack
	Changing the stack pointer

	Related work
	Conclusion

	Static Analysis of Multi-threaded Recursive Programs Communicating via Rendez-vous
	Synchronized dynamic pushdown networks
	Dynamic pushdown networks
	The model and its semantics
	The strict semantics.
	The relaxed semantics.

	From a program to a SDPN model

	The reachability problem
	From the strict to the relaxed semantics
	Representing infinite sets of configurations

	Representing the set of paths
	-configurations
	The shuffle product
	-automata
	The transition relation.

	Characterizing the set of paths
	Computing pre* (M, C)
	From pre* (M, C) to pre*(M, C)
	The need for functions.
	The constraints.
	The intuition.

	Proof of Theorem 22
	Proof of Lemma 15
	Proof of Lemma 16

	An abstraction framework for paths
	Abstractions and Galois connections
	Kleene algebras
	Kleene abstractions
	Prefix abstractions.
	Suffix abstractions.

	Abstracting the set of paths
	From the language of paths to the Kleene abstraction
	Computing pre*K (M, C)
	Finding the abstraction

	Using our framework in a iterative abstraction refinement scheme
	A case study
	The program
	From the driver to the SDPN model
	The process COUNTER.
	The process STOPPING-FLAG.
	The process STOPPING-EVENT.
	The process STOP-D.
	The process REQUEST.
	The process GEN-REQ.
	The function Increment.
	The function Decrement.

	An erroneous execution path

	Related work
	Conclusion

	Conclusion and Future Work
	A brief summary of this thesis
	Future work
	Tools for the model-checking of hyperproperties
	Further reachability analysis of UPDSs
	Tools for the model-checking of concurrent programs
	Abstract model-checking for SDPNs

