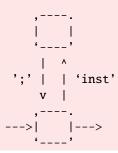
Correction du QCM Théorie des Langages

Qcm N^0 1:


À quelle(s) classe(s) appartient la grammaire suivante ? (NB: si elle est de type A et $A \subset B$, cocher A et B).

$$P \rightarrow P \text{ inst ';'}$$

 $P \rightarrow \varepsilon$

Réponses possibles :

- a. Régulière
- b. Hors Contexte
- c. Ambigüe
- d. Engendre un langage reconnaissable par un automate fini déterministe
- **e.** Produit un langage vide

Correction: Linéaire à gauche, donc régulière. Elle est non ambigüe, et engendre une suite de zéro ou plusieurs inst *terminés* par des ;. Ce langage est infini, régulier (puisqu'engendré par une grammaire régulière) : type 3. Il existe donc un automate, comme par exemple :

Qcm N^o 2:

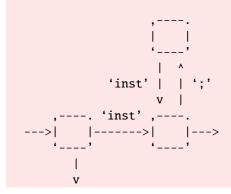
À quelle(s) classe(s) appartient la grammaire suivante ? (NB: si elle est de type A et $A \subset B$, cocher A et B).

$$L \rightarrow L \ l \ '.'$$

 $L \rightarrow \varepsilon$

Réponses possibles :

- a. Régulière
- b. Hors Contexte
- c. Ambigüe
- d. Engendre un langage reconnaissable par un automate fini déterministe
- e. Engendre un langage vide


Qcm N^o 3:

À quelle(s) classe(s) appartient la grammaire suivante ? (NB: si elle est de type A et $A \subset B$, cocher A et B).

$$P \rightarrow P_1$$

 $P \rightarrow \varepsilon$
 $P_1 \rightarrow P_1$ ';' inst
 $P_1 \rightarrow inst$

- a. Régulière
- b. Hors Contexte
- c. Ambigüe
- d. Engendre un langage reconnaissable par un automate fini déterministe
- **e.** Produit un langage vide

Correction: Linéaire à gauche, donc régulière. Elle est non ambigüe. P1 engendre une liste de une ou plusieurs inst séparés par des ;. Donc, cette grammaire engendre une liste de zéro ou plusieurs inst séparés par des ;. Ce langage est infini, régulier (puisqu'engendré par une grammaire régulière) : type 3. Il existe donc un automate, comme par exemple :

Qcm Nº 4:

À quelle(s) classe(s) appartient la grammaire suivante ? (NB: si elle est de type A et $A \subset B$, cocher A et B).

$$S \rightarrow S$$
 '%' S $S \rightarrow num$

- a. Régulière
- b. Hors Contexte
- c. Ambigüe
- d. Engendre un langage reconnaissable par un automate fini déterministe
- e. Produit un langage vide

Qcm N^o 5:

À quelle(s) classe(s) appartient la grammaire suivante ? (NB: si elle est de type A et $A \subset B$, cocher A et B).

$$\begin{array}{l} P{\to}P_1 \\ P{\to}\varepsilon \\ P_1{\to}P_1 \ ';' \ P_1 \\ P_1{\to}inst \end{array}$$

Réponses possibles :

- a. Régulière
- b. Hors Contexte
- c. Ambigüe
- d. Reconnaissable par un automate fini déterministe
- e. Produit un langage non vide

Correction: Cette grammaire est très visiblement une version ambigüe de la grammaire précédente. On pourrait dire que dans la grammaire l'opérateur ; est associatif à gauche, ici il est associatif à droite et à gauche, i.e., une phrase comme inst ; inst ; inst peut se lire comme (inst ; inst) ; inst ou inst ; (inst ; inst). Le langage, lui, reste évidemment de type 3, et reconnu par le même automate.

Qcm N^o 6:

À quelle(s) classe(s) appartient la grammaire suivante ? (NB: si elle est de type A et $A \subset B$, cocher A et B).

$$S \rightarrow P$$

 $P \rightarrow pPQR$
 $P \rightarrow pqR$
 $RQ \rightarrow QR$
 $qQ \rightarrow qq$
 $qR \rightarrow qr$
 $rR \rightarrow rr$

- a. Régulière
- b. Hors Contexte
- c. Ambigüe
- d. Reconnaissable par un automate fini déterministe
- e. Produit un langage non vide

Correction: Cette grammaire est visiblement monotone, non hors contexte. Bien qu'il ne soit pas simple de le montrer formellement, une "exécution" de cette grammaire à la main montre qu'elle n'est pas ambigüe.

On reconnaît l'exemple de grammaire engendrant $a^nb^nc^n$, i.e., le langage des mots commençant par un certain nombre (non nul) de a, puis d'autant de b, et enfin autant de c. Mais avec \mathfrak{p} , \mathfrak{q} et r. Ce langage est bien connu comme l'exemple type des langages sensibles au contexte (et non hors-contexte), comme vu en cours.

Bien entendu, il est impossible de trouver un automate fini (le langage n'est pas régulier), ni même un d'automate à pile (le langage n'est pas hors-contexte).

Qcm N^o 7:

Quelles sont les propriétés de toute grammaire ambigüe ?

Réponses possibles :

- a. Elle produit un langage non vide
- **b.** Il en existe une version hors-contexte
- c. Elle produit un langage hors-contexte
- d. Elle produit un langage rationnel

e.

Ocm N^{o} 8:

Est-il possible de tester si une grammaire régulière engendre un langage non vide?

- a. Oui.
- **b.** Non.
- c.
- d.
- e.

Qcm N° 9:				
Il existe un formalisme qui permette une description finie de tout langage.				
Réponses possibles :				
a. Oui.				
b. Non.				
c.				
d.				
e.				
Qcm Nº 10:				
Une grammaire est ambiguë ssi il existe				
Réponses possibles :				
a. deux mots ayant le même arbre de dérivation.				
b. un mot ayant deux arbres de dérivation.				
c. un mot ayant une dérivation droite, et une dérivation gauche.				
d. une dérivation gauche (ou droite) ayant deux arbres de dérivation.				
e. un automate nondéterministe qui reconnaisse ses arbres de dérivation.				
Qcm N ^o 11:				
Le langage a^n est				
Réponses possibles :				
a. fini				
b. rationnel				
c. hors contexte				
d. sensible au contexte				
e. vide				

Qcm N ^o 12 :
Le langage $a^n b^n$ est
Réponses possibles :
a. fini
b. rationnel
c. hors contexte
d. sensible au contexte
e. vide
Qcm N ^o 13:
Le langage $a^n a^n$ est
Réponses possibles :
a. fini
b. rationnel
c. hors contexte
d. sensible au contexte
e. vide
Qcm N° 14:
Le langage $a^nb^nc^n$ est
Réponses possibles :
a. fini
b. rationnel
c. hors contexte
d. sensible au contexte
e. vide

Ocm	N^o	15	
Oth	IN	13	

Le langage des nombres binaires premiers compris entre 0 et $2^{2^{2^2}} - 1$ est

Réponses possibles :

- **a.** rationnel
- **b.** hors contexte
- c. sensible au contexte
- **d.** vide
- e. non vide

Qcm Nº 16:

Soit une expression rationnelle α et un automate A. Il possible de déterminer en un temps fini si :

Réponses possibles :

- **a.** $L(A) \subset L(\alpha)$
- **b.** $L(\alpha) \subset L(A)$
- **c.** $\alpha \in L(A)$
- **d.** $L(\alpha) = L(A)$
- **e.** $\alpha \in A$

Qcm N° 17:

Le langage des palindromes (mots égaux qu'on les lise de gauche à droite ou de droite à gauche) sur $\{a,b\}$ est

- a. vide
- **b.** rationnel
- c. infini
- d. hors contexte
- e.

Qcm Nº 18:

L'équation $P \subset NP$ signifie

Réponses possibles :

- a. les fonctions polynômes sont des fonctions non particulières
- **b.** un problème de résolution de polynômes est plus facile qu'un problème de résolution d'équations exponentielles
- c. on ne perd pas de performances en ayant plus de CPU
- d. les problèmes solubles dans un polynôme précipitent dans une solution non polynomiale
- **e.** un problème solvable par une machine de Turing à une bande P est solvable par une machine de Turing ayant en plus une bande N.

Qcm Nº 19:

Un transducteur est

Réponses possibles :

- a. un élément de transitor
- b. une machine ayant une entrée et une sortie
- c. un automate fini n'ayant pas de transduction spontanée
- d. un modèle de traducteur
- e. un automate infini

Qcm Nº 20:

Quelle est l'écriture la plus raisonnable

- a. machine à état fini
- **b.** machine à état finis
- c. machine à états finie
- d. machine à états finis
- e. machine à états finies

Correction du QCM Théorie des Langages

	a	b	С	d	e
Question					
n º 1					
Question					
nº 2					
Question					
nº 3					
Question					
nº 4					
Question					
n ^o 5					
Question					
nº 6					
Question					
nº 7					
Question					
nº 8					
Question					
nº 9					
Question n° 10					
Question					
nº 11					
Question					
nº 12					
Question					
nº 13					
Question					
n° 14					
Question					
nº 15					
Question					
$\tilde{\mathbf{n}}^o$ 16					
Question					
nº 17					
Question					
nº 18					
Question					
nº 19					
Question					
nº 20					

Correction du QCM Théorie des Langages

	a	b	С	d	e
Question n° 1	х	Х		х	
Question n° 2	х	Х		х	
Question n° 3	Х	Х		Х	
Question n° 4		Х	Х	Х	
Question n° 5		Х	Х	Х	Х
Question n° 6					X
Question n° 7	х				
Question n° 8	Х				
Question n° 9		Х			
Question n° 10		Х			
Question n° 11		Х	Х	Х	
Question n° 12			Х	Х	
Question n° 13		Х	Х	Х	
Question n° 14				X	
Question n° 15	Х	X	X		Х
Question n° 16	Х	X		Х	
Question n° 17			X	X	
Question n° 18			Х		
Question n° 19		Х		Х	
Question n° 20			Х		