
Compiler Construction
e Flex E

Compiler Construction Flex 1 / 10



Flex

Flex: Fast Lexical Analyzer generator

Initial release: 1987

Written in C by Vern Paxson

Generates lexical analyzers

GNU version of Lex (written by Mike Lesk and Eric Schmidt in 1975 – BellLabs)

Disclaimer
TC now uses RE/Flex as its lexer generator. This enables more features than Flex and
generates higher quality code, but is nonetheless very similar (especially since it is mostly
compatible with Flex files).

Compiler Construction Flex 2 / 10

https://www.genivia.com/doc/reflex/html/


Overview

Flex 
File FLEX

C
Generated

File

EXE

Compiler Construction Flex 3 / 10



Typical Flex file

%{
[pre-code C (nec. def.)]

%}

[definitions and options]

%%

[rules]

%%

[post-code C (subprograms)]

Compiler Construction Flex 4 / 10



Flex file structure

C declarations, prologue and custom code are copied to the lexer verbatim and can be
used for auxiliary functions, global variables…

Definitions can be used specify regex shorthands.

Rules have the form pattern { action } where pattern is a regex and
action is C/C++ code.

Compiler Construction Flex 5 / 10



First example
%{
%}
/* Only one input file */
%option noyywrap
num [0-9]+
%%
{num} { printf("NUMBER [%s]\n",

yytext); }
" " {}
. { printf("UNKNOWN [%s]\n",

yytext); }
%%
int main(void) {
yylex();
return 0;

}

Try it:

$ ls
tmp.lex
$ flex tmp.lex
$ gcc lex.yy.c
$ echo "1 ==1" | ./a.out
NUMBER [1]
UNKNOWN [=]
UNKNOWN [=]
NUMBER [1]

Compiler Construction Flex 6 / 10



Flex – details

yytext the recognized text

yyleng the size of the recognized text

yylex starts the scanning

yywrap called when the end of the text to analyze is encountered. Can be refined if
needed.

For each of matched regexps one can return and identifier (a token)

Bison (the parser) will analyze
this stream of tokens…

Compiler Construction Flex 7 / 10



Flex – details

yytext the recognized text

yyleng the size of the recognized text

yylex starts the scanning

yywrap called when the end of the text to analyze is encountered. Can be refined if
needed.

For each of matched regexps one can return and identifier (a token)

Bison (the parser) will analyze
this stream of tokens…

Compiler Construction Flex 7 / 10



Flex example – wc linux command
%{
#include <stdio.h>
static int chars_ = 0, lines_ = 0, words_ = 0;
%}

%%
\n { ++chars_; ++lines_; }
[^ \t\n]+ { chars_ += yyleng; ++words_; }
. { ++chars_; }
%%
int yywrap () {
printf ("%7d %7d %7d\n", lines_, words_, chars_);
return 1;

}
int main(){ yylex(); return 1; }

Compiler Construction Flex 8 / 10



Remarks

Rules order
Always start by the more specific rule!

Reentrency
Problems may occur when using simultaneously multiple instances of the lexer.

Compiler Construction Flex 9 / 10



Summary

yylex yytext

yyleng yywrap

Compiler Construction Flex 10 / 10


