
Compiler Construction
e Syntactic Analysis E

Compiler Construction Syntactic Analysis 1 / 10



Syntactic Analysis

Reminders from the THL lectures!

How to check that a text (stream of token) is valid according to a given grammar?
⇒ We need something more powerful than finite automata!

Parsetokens AST

Compiler Construction Syntactic Analysis 2 / 10



Languages

Language
A Language is a set of strings,

each string is a sequence of symbols from an alphabet

Remark
In our context, the alphabet is the set of token types returned by the lexical analyzer.

Compiler Construction Syntactic Analysis 3 / 10



Context-free grammars (1/2)

Regular expressions
Regular expressions are not enough to represent programming languages.

Context-free Grammar
A context-free grammar is a set of recursive rules used to generate patterns of symbols.

Compiler Construction Syntactic Analysis 4 / 10



Context-free grammars (2/2)

Production rules
A grammar has production rules of the form symbol → symbol symbol symbol
Symbols can be:

terminal, meaning that this is a token from the alphabet.

non-terminal, meaning that it appears on the left-hand side of some production.

Example
E -> E + E
E -> id

Compiler Construction Syntactic Analysis 5 / 10



Derivations

To detect if a sentence is in the expected language we can perform derivations:
1 Start with a symbol
2 Apply productions rules (Replace any non terminal by one of its right-hand side)
3 Repeat until no more replacement

There are many derivations:

the leftmost non-terminal symbol is always expanded

the rightmost non-terminal symbol is always expanded

Compiler Construction Syntactic Analysis 6 / 10



Derivations

To detect if a sentence is in the expected language we can perform derivations:
1 Start with a symbol
2 Apply productions rules (Replace any non terminal by one of its right-hand side)
3 Repeat until no more replacement

There are many derivations:

the leftmost non-terminal symbol is always expanded

the rightmost non-terminal symbol is always expanded

Compiler Construction Syntactic Analysis 6 / 10



Parse tree

Parse tree
A parse tree is made by connecting each symbol in a derivation to the one from which it
was derived

Example input: id + id + id
(One possible) derivation:
E
E + E
E + id
E + E + id
E + id + id
id + id + id

E

E E+

E E+ id

idid

Compiler Construction Syntactic Analysis 7 / 10



Ambiguous Grammar

Ambiguous Grammar
A grammar is ambiguous if we can derive two different parse tree for a sentence

Example: id + id + id

E

E

E E+

E E+ id

idid

E

E+

E E+id

idid

Compiler Construction Syntactic Analysis 8 / 10



Predictive Parsing – Unambiguous Grammar

A predictive parser is a recursive descent parser which is able to predict which production
rule is used to replace the input string.
⇒ each sub-expression must provide enough information to choose a production rule.

LL(k): Left-to-right, Leftmost derivation

LR(k): Left-to-right, Rightmost derivation

Compiler Construction Syntactic Analysis 9 / 10



Predictive Parsing – Unambiguous Grammar

A predictive parser is a recursive descent parser which is able to predict which production
rule is used to replace the input string.
⇒ each sub-expression must provide enough information to choose a production rule.

LL(k): Left-to-right, Leftmost derivation

LR(k): Left-to-right, Rightmost derivation

Compiler Construction Syntactic Analysis 9 / 10



Summary

LR(k)
LL(k)

Parse tree

Grammar

Derivation

Chomsky
GLR
SLR
….

Compiler Construction Syntactic Analysis 10 / 10


