
Compiler Construction
e AST in C++ E

Compiler Construction AST in C++ 1 / 15

Simple Unambiguous Concrete Grammar (BNF)

<E> ::= <E> "+" <T>
| <E> "-" <T>
| <T>

<T> ::= <T> "*" <F>
| <T> "/" <F>
| <F>

<F> ::= "(" <E> ")"
| <num>

E stands for expression

T stands for term

F stands for factor

Conventionally, terms are things you add, factor are things you multiply

Compiler Construction AST in C++ 2 / 15

Parse Tree: 1*(2+3)
E

T

T * F

(E)

E + T

T F

F num

num

num

Compiler Construction AST in C++ 3 / 15

A need for abstraction

Parse trees are not adapted to writing the whole compiler with them only (even if we could):

they retain syntactic information (punctuation symbols, …)

they reflect the underlying grammar

they have redundant information: parenthesis and tree child for instance

All these elements could clutter the semantic analysis!

Compiler Construction AST in C++ 4 / 15

Abstract Gramnar (RTG)

RTG
A regular tree grammar (RTG) is a formal grammar used to describe trees

<exp> ::= Add(<exp>, <exp>)
| Sub(<exp>, <exp>)
| Mul(<exp>, <exp>)
| Div(<exp>, <exp>)
| Num(<num>)

Compiler Construction AST in C++ 5 / 15

AST

Abstract Syntax Tree
An AST is the translation of the parse tree in order to match the abstract grammar.

From Parse trees to AST
The translation from parse tree to AST is straightforward!

⇒ Just use production rules of the parser

exp:
exp "+" term { $$ = new Add($1, $3); }

Compiler Construction AST in C++ 6 / 15

From Parse tree to AST
E

T

T * F

(E)

E + T

T F

F num

num

num

Mul

Num Add

Num Num

Compiler Construction AST in C++ 7 / 15

First AST Hierarchy

Exp

Add Num

Mult

DivSub

BAD OO Design!
Sub, Add, Div and Mult share a lot !

⇒ Refactor it!

Compiler Construction AST in C++ 8 / 15

Refined AST Hierarchy

Exp

NumBinop

Compiler Construction AST in C++ 9 / 15

C++ code (1/3)
class Exp
{
protected:

// default constructor
Exp() = default;

// default copy-constructor
Exp(const Exp& e) = default;

// default assign operator
Exp& operator=(const Exp& e) = default;

public:
virtual ~Exp();

};

Compiler Construction AST in C++ 10 / 15

C++ code (2/3)

class Num : public Exp
{
public:

Num(int val)
: Exp(), val_(val)

{}

private:
int val_;

};

Compiler Construction AST in C++ 11 / 15

C++ code (3/3)
class Binop : public Exp
{
public:

Binop(char oper, Exp* lhs, Exp* rhs)
: Exp(), oper_(oper), lhs_(lhs), rhs_(rhs)

{}

~Binop() override {
delete lhs_; delete rhs_;

}

private:
char oper_; // For simplicity, in reality use an enum
Exp* lhs_; Exp* rhs_;

};

Compiler Construction AST in C++ 12 / 15

Constructing an AST

int main()
{

Exp* tree = new Bin(
'+',
new Num(42),
new Num(51)

);
delete tree;

}

Memory reclamation is (transitively) done through destructors.
Explicit (and recursive) delete instructions! Maybe use smart pointers?

Compiler Construction AST in C++ 13 / 15

From Parse tree to refined AST
E

T

T * F

(E)

E + T

T F

F num

num

num

Binop

Num Binop

Num Num

Compiler Construction AST in C++ 14 / 15

Summary

Concrete
grammar

Abstract
grammar

Parse tree AST

Compiler Construction AST in C++ 15 / 15

