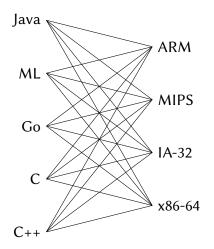

Compiler Construction

 \sim Middle End \checkmark

General layout – Compiler structure

Goal of middle end

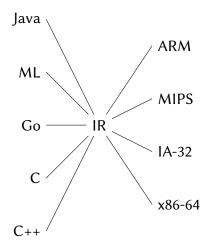

- Generic optimisations
- Prepare and simplify backend !
 - No nested sequences in ASM
 - No expressions in ASM
 - No two-way conditional jumps in ASM
 - ASM has calling convention

Goal of middle end

- Generic optimisations
- Prepare and simplify backend !
 - No nested sequences in ASM
 - No expressions in ASM
 - No two-way conditional jumps in ASM
 - ASM has calling convention

Do we require an intermediate representation?

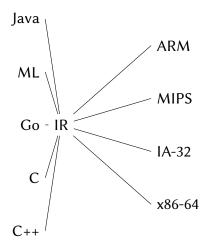
Retargetable Compilers (1/2)

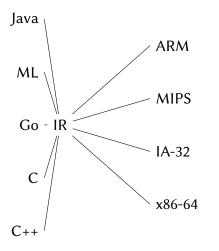

Goal of middle end

An intermediate representation is not required

BUT

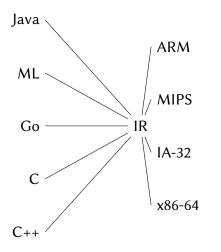
.. preferable for optimisations and retargetable compilers


Retargetable Compilers (2/2)

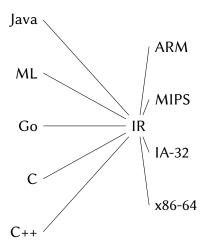

What abstraction?

What is the best abstraction level for the intermediate representation?

Strategy 1: close to front end

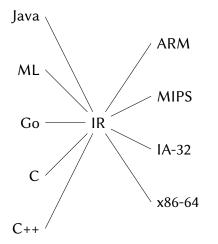


Strategy 1: close to front end

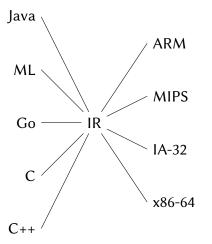


- Easy translation from source language
- Very hard translation from IR to ASM

Strategy 2: close to back end

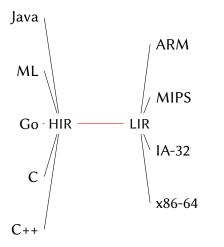


Strategy 2: close to back end

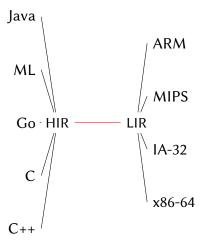


- Very hard translation from source language
- Easy translation from IR to ASM

Strategy 3: barycenter of sources and targets

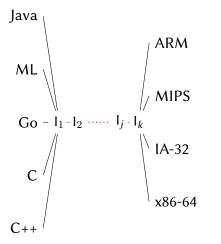


Strategy 3: barycenter of sources and targets

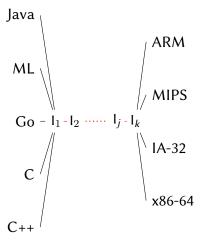


- Hard to find the barycenter of languages
- Not so easy translation from source to IR and from IR to ASM

Strategy 4: Two IRs



Strategy 4: Two IRs



- Easy translation from source to HIR and from LIR to ASM
- Hard translation from HIR to LIR

Strategy 5: Many IRs

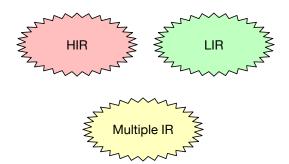
Strategy 5: Many IRs

- Easy translation from source to I₁ and from I_k to ASM
- Hard to define multiple language

Solution

 $I_1, I_2, ..., I_j, I_k$ are the same language!

```
l_j is sugar over l_k
...
l_2 is sugar over l_3
l_1 is sugar over l_2
```


Solution

 $I_1, I_2, ..., I_j, I_k$ are the same language!

```
I_j is sugar over I_k
...
I_2 is sugar over I_3
I_1 is sugar over I_2
```

⇒ Translation from HIR to LIR will only a **form** of unsugarring

Summary

