
Compiler Construction
e Activation Blocks E

Compiler Construction Activation Blocks 1 / 16

Memory Hierarchy

Different kinds of memory in a computer,
with different performance:

Registers Small memory units built on
the cpu (bytes, 1 cycle)

L1 Cache Last main memory access
results (kB, 2-3 cycles)

L2 Cache (MB, 10 cycles)

Memory The usual ram (GB, 100
cycles)

Storage Disks (100GB, TB, >
1Mcycles)

Use the registers as much as possible.

Compiler Construction Activation Blocks 2 / 16

Register Overflow

What if there are not enough registers?
Use the main memory, but how?
Recursion:

Without Each name is bound once. It
can be statically allocated a
single unit of main memory.
(Cobol, Concurrent Pascal,
Fortran (unless recursive)).

With A single name can be part of
several concurrent bindings.
Memory allocation must be
dynamic.

Compiler Construction Activation Blocks 3 / 16

Dynamic Memory Allocation (1/2)

Depending on the persistence, several
models:

Global Global objects, whose
liveness is equal to that of the
program, are statically
allocated
(e.g., static variables in C)

Automatic Liveness is bound to that of
the host function
(e.g., auto variables in C)

Heap Liveness is independent of
function liveness:

Compiler Construction Activation Blocks 4 / 16

Dynamic Memory Allocation (2/2)

Heap Liveness is independent of
function liveness:
User Controlled

malloc/free (C),
new/dispose (Pascal),
new/delete (C++) etc.

Garbage Collected
With or without new
(lisp, Smalltalk, ML,
Haskell, Tiger, Perl etc.).

Compiler Construction Activation Blocks 5 / 16

spimMemory Model

Stack Segment

Reserved

Text Segment

Data Segment

0x7fffff

0x400000

Compiler Construction Activation Blocks 6 / 16

Stack Management

Function calls is a last-in first-out
process, hence, it is properly represented

by a stack.

Or…

“Call tree”: the complete history of calls.
The execution of the program is its depth

first traversal.
Depth-first walk requires a stack.

Compiler Construction Activation Blocks 7 / 16

Activation Blocks

In recursive languages, a single
routine can be “opened” several
times concurrently.

An activation designates one single
instance of execution.

Automatic variables are bound to
the liveness of the activation.

Their location is naturally called
activation block, or stack frame.

Compiler Construction Activation Blocks 8 / 16

Activation Blocks Contents

Data to store on the stack:

arguments incoming

local variables user automatic variables

return address where to return
saved registers the caller’s environment

to restore

temp compiler automatic
variables, spills

static link when needed

Compiler Construction Activation Blocks 9 / 16

Activation Blocks Layout

The layout is suggested by the
constructor.
Usually the layout is from earliest
known, to latest.

Compiler Construction Activation Blocks 10 / 16

Activation Blocks Layout on mips

$fp argument 6

Dynamic Area

$sp

argument 5

argument 4

argument 3

argument 2

argument 1

saved registers

others Memory
Adresses

…

Compiler Construction Activation Blocks 11 / 16

Frame & Stack Pointers

The stack of activation blocks is
implemented as an array with

frame pointer the inner frontier of the
activation block

stack pointer the outer frontier

Usually the stack is represented growing
towards the bottom.

Compiler Construction Activation Blocks 12 / 16

Flexible Automatic Memory

auto Static size, automatic memory.

malloc Dynamic size, persistent memory.

Automatic memory is extremely convenient…

int
open2(char* str1, char* str2, int flags, int mode)
{
char name[strlen(str1) + strlen(str2) + 1];
stpcpy(stpcpy(name, str1), str2);
return open(name, flags, mode);

}

Compiler Construction Activation Blocks 13 / 16

Flexible Automatic Memory
malloc is a poor replacement.

int
open2(char* str1, char* str2, int flags, int mode)
{
char* name
= (char*) malloc(strlen(str1) + strlen(str2) + 1);

if (name == 0)
fatal("virtual memory exceeded");

stpcpy(stpcpy(name, str1), str2);
int fd = open(name, flags, mode);
free(name);
return fd;

}

Compiler Construction Activation Blocks 14 / 16

Flexible Automatic Memory

alloca is a good replacement.

int
open2(char *str1, char *str2, int flags, int mode)
{
char *name
= (char *) alloca(strlen(str1) + strlen(str2) + 1);

stpcpy(stpcpy(name, str1), str2);
return open(name, flags, mode);

}

Compiler Construction Activation Blocks 15 / 16

Summary

Activation
Block

Memory
Hierarchy

Layout Flexible
Memory

Compiler Construction Activation Blocks 16 / 16

