
Compiler Construction
e Basic Blocks E

Compiler Construction Basic Blocks 1 / 14



Problem statement (1/2)

How to translate two way conditional
jumps from HIR to LIR?

Compiler Construction Basic Blocks 2 / 14



Problem statement (2/2)

This does not exist in ASM

cjump xxx α β

Since cjump (in assembly language) has a
label, rather than an expression AND

only one label…

cjump xxx Label_alpha
β
...
Label_alpha:
α

Compiler Construction Basic Blocks 3 / 14



TwoWay Jumps

Obviously, to enable the translation of a
cjump into actual assembly instructions,
the “false” label must follow the cjump.

How?

Compiler Construction Basic Blocks 4 / 14



Basic Blocks

We must analyze the flow of the program

Basic Block
A basic block is a sequence of statements
that is always entered at the beginning
and exited at the end.

The first statement is a Label

The last statement is a jump or a
cjump

The are no other Labels, jumps or
cjump in the block

Compiler Construction Basic Blocks 5 / 14



Algorithm for building Basic Blocks

1 Scan the sequence from the
beginning to the end

2 When a label is found, start a new
block (and end the previous block)

3 Whenever a cjump/jump is found
the current block is ended (and the
next block is started)

4 If this leaves a block ending without
a cjump/jump, then append a jump
to the next block

5 If a block has no Label at the
begining, invent one, and add it

Compiler Construction Basic Blocks 6 / 14



Rearranging Basic Blocks

How basic blocks can help to solve two
ways conditional jumps?

⇒ They will be used to build a correct
trace for our program!

Compiler Construction Basic Blocks 7 / 14



Traces

A trace
is a sequence of statements that could be
consecutively executed during the
execution of the program.

It can include conditional branches.

Compiler Construction Basic Blocks 8 / 14



Remarks on Traces

A program has many, different,
overlapping traces.

For our purpose (arranging cjump) we
want to make a set of traces that exactly
covers the program: each block must
be in exactly one trace

Compiler Construction Basic Blocks 9 / 14



Algorithm to build Traces (1/2)

Main Idea
Start from the initial block, and “sew”
each remaining basic block to this
growing “trace”.

Compiler Construction Basic Blocks 10 / 14



Algorithm to build Traces (2/2)

1 If the last instruction is a jump
I if the “destination block” is

available, add it
I otherwise, fetch any other

remaining block.

2 If the last instruction is a cjump
I If the false destination is available,

push it
I If the true destination is available,

flip the cjump and push it,
I otherwise, change the cjump to go

to a fresh label, attach this label,
and finally jump to the initial false
destination.

Compiler Construction Basic Blocks 11 / 14



TwoWay Jumps: Optimizing Traces

label prologue
Prologue.

jump name test

label test
cjump i <= N, body, done

label body
Body.

jump name test

label done
Epilogue

jump name end

Compiler Construction Basic Blocks 12 / 14



TwoWay Jumps: Optimizing Traces

label prologue
Prologue

jump name test

label test
cjump i > N,

done, body

label body
Body

jump name test

label done
Epilogue

jump name end

label prologue
Prologue

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

label body
Body

jump name test

label prologue
Prologue

jump name test

label body
Body

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

Compiler Construction Basic Blocks 13 / 14



TwoWay Jumps: Optimizing Traces
label prologue

Prologue
jump name test

label test
cjump i > N,

done, body

label body
Body

jump name test

label done
Epilogue

jump name end

label prologue
Prologue

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

label body
Body

jump name test

label prologue
Prologue

jump name test

label body
Body

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

Compiler Construction Basic Blocks 13 / 14



TwoWay Jumps: Optimizing Traces
label prologue

Prologue
jump name test

label test
cjump i > N,

done, body

label body
Body

jump name test

label done
Epilogue

jump name end

label prologue
Prologue

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

label body
Body

jump name test

label prologue
Prologue

jump name test

label body
Body

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

Compiler Construction Basic Blocks 13 / 14



TwoWay Jumps: Optimizing Traces
label prologue

Prologue
jump name test

label test
cjump i > N,

done, body

label body
Body

jump name test

label done
Epilogue

jump name end

label prologue
Prologue

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

label body
Body

jump name test

label prologue
Prologue

jump name test

label body
Body

jump name test

label test
cjump i <= N,

body, done

label done
Epilogue

jump name end

Compiler Construction Basic Blocks 13 / 14



Summary

Basic Blocks Traces

2-ways 
cjumps

Compiler Construction Basic Blocks 14 / 14


