
Compiler Construction
e MIPS overview E

Compiler Construction MIPS overview 1 / 42

MIPS

A simple RISC mircroprocessor

Nintendo 64 game console

PlayStation

Cisco Router

…

Compiler Construction MIPS overview 2 / 42

mips Registers and Use Convention

Name Number Usage
zero 0 Constant 0
at 1 Reserved for assembler
v0–v1 2–3 Expression evaluation and results of a function
a0–a3 4–7 Function argument 1–4
t0–t7 8–15 Temporary (not preserved across call)
s0–s7 16–23 Saved temporary (preserved across call)
t8–t9 24–25 Temporary (not preserved across call)
k0–k1 26–27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address (used by function call)

Compiler Construction MIPS overview 3 / 42

Typical risc Instructions

The following slides are based on.

The assembler translates pseudo-instructions
(marked with † below).
In all instructions below, Src2 can be

I a register
I an immediate value (a 16 bit integer).

The immediate forms are included for reference.

The assembler translates the general form (e.g., add) into the immediate form
(e.g., addi) if the second argument is constant.

Compiler Construction MIPS overview 4 / 42

Table of Contents

1 Integer Arithmetics

2 Logical Operations

3 Control Flow

4 Loads and Stores

5 Floating Point Operations

Compiler Construction MIPS overview 5 / 42

Arithmetic: Addition/Subtraction

add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)
Put the sum of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)
Put the difference of the integers from Rsrc1 and Src2 into Rdest.

Compiler Construction MIPS overview 6 / 42

Arithmetic: Division

If an operand is negative, the remainder is unspecified by the mips architecture and depends on
the conventions of the machine on which spim is run.

div Rsrc1, Rsrc2 Divide (signed)
divu Rsrc1, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. Leave the quotient in register lo and the remainder
in register hi.
div Rdest, Rsrc1, Src2 Divide (signed, with overflow) †

divu Rdest, Rsrc1, Src2 Divide (unsigned, without overflow) †

Put the quotient of the integers from Rsrc1 and Src2 into Rdest.
rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Likewise for the the remainder of the division.

Compiler Construction MIPS overview 7 / 42

Arithmetic: Multiplication

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Put the product of the integers from Rsrc1 and Src2 into Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the product in register
lo and the high-word in register hi.

Compiler Construction MIPS overview 8 / 42

Arithmetic Instructions

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from Rsrc in Rdest.

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Put the negative of the integer from Rsrc into Rdest.

Compiler Construction MIPS overview 9 / 42

Table of Contents

1 Integer Arithmetics

2 Logical Operations

3 Control Flow

4 Loads and Stores

5 Floating Point Operations

Compiler Construction MIPS overview 10 / 42

Logical Instructions

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
Put the logical AND of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from Rsrc into Rdest.

Compiler Construction MIPS overview 11 / 42

Logical Instructions

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from Rsrc1 and Src2 into Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
Put the logical OR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate
Put the logical XOR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

Compiler Construction MIPS overview 12 / 42

Logical Instructions

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Rotate the contents of Rsrc1 left (right) by the distance indicated by Src2 and put the
result in Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable
Shift the contents of Rsrc1 left (right) by the distance indicated by Src2 (Rsrc2) and put
the result in Rdest.

Compiler Construction MIPS overview 13 / 42

Table of Contents

1 Integer Arithmetics

2 Logical Operations

3 Control Flow

4 Loads and Stores

5 Floating Point Operations

Compiler Construction MIPS overview 14 / 42

Comparison Instructions

seq Rdest, Rsrc1, Src2 Set Equal †

Set Rdest to 1 if Rsrc1 equals Src2, otherwise to 0.

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set Rdest to 1 if Rsrc1 is not equal to Src2, otherwise to 0.

Compiler Construction MIPS overview 15 / 42

Comparison Instructions

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set Rdest to 1 if Rsrc1 ≥ Src2, otherwise to 0.

sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set Rdest to 1 if Rsrc1 > Src2, otherwise to 0.

sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set Rdest to 1 if Rsrc1 ≤ Src2, otherwise to 0.

slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set Rdest to 1 if Rsrc1 < Src2 (or Imm), otherwise to 0.

Compiler Construction MIPS overview 16 / 42

Branch and Jump Instructions

Branch instructions use a signed 16-bit offset field: jump from −215 to +215 − 1) instructions
(not bytes). The jump instruction contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to label.

j label Jump
Unconditionally jump to label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to label or whose address is in Rsrc. Save the address of the next
instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

Compiler Construction MIPS overview 17 / 42

Branch and Jump Instructions

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to label if coprocessor z ’s condition flag is true (false).

Compiler Construction MIPS overview 18 / 42

Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ∗ Src2.

beq Rsrc1, Src2, label Branch on Equal
bne Rsrc1, Src2, label Branch on Not Equal

beqz Rsrc, label Branch on Equal Zero †

bnez Rsrc, label Branch on Not Equal Zero †

Compiler Construction MIPS overview 19 / 42

Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ∗ Src2.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

bgez Rsrc, label Branch on Greater Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to label if the contents of Rsrc are greater than or equal to 0. Save the
address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

bgtz Rsrc, label Branch on Greater Than Zero

Compiler Construction MIPS overview 20 / 42

Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 are ∗ to Src2.
ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

blez Rsrc, label Branch on Less Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to label if the contents of Rsrc are greater or equal to 0 or less than 0,
respectively. Save the address of the next instruction in register 31.
blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

bltz Rsrc, label Branch on Less Than Zero

Compiler Construction MIPS overview 21 / 42

Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call provided by spim.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

Compiler Construction MIPS overview 22 / 42

Table of Contents

1 Integer Arithmetics

2 Logical Operations

3 Control Flow

4 Loads and Stores

5 Floating Point Operations

Compiler Construction MIPS overview 23 / 42

Constant-Manipulating Instructions

li Rdest, imm Load Immediate †

Move the immediate imm into Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of Rdest. The lower
bits of the register are set to 0.

Compiler Construction MIPS overview 24 / 42

Load: Byte & Halfword

lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into Rdest. The byte is sign-extended by the lb, but not the lbu,
instruction.

lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is
sign-extended by the lh, but not the lhu, instruction

Compiler Construction MIPS overview 25 / 42

Load: Word

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into Rdest.
lwcz Rdest, address Load Word Coprocessor
Load the word at address into Rdest of coprocessor z (0–3).
lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into Rdest.
ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 16-bit quantity (halfword) at the possibly-unaligned address into Rdest. The
halfword is sign-extended by the ulh, but not the ulhu, instruction
ulw Rdest, address Unaligned Load Word †

Load the 32-bit quantity (word) at the possibly-unaligned address into Rdest.

Compiler Construction MIPS overview 26 / 42

Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into Rdest.

ld Rdest, address Load Double-Word †

Load the 64-bit quantity at address into Rdest and Rdest + 1.

Compiler Construction MIPS overview 27 / 42

Store: Byte & Halfword

sb Rsrc, address Store Byte
Store the low byte from Rsrc at address.

sh Rsrc, address Store Halfword
Store the low halfword from Rsrc at address.

Compiler Construction MIPS overview 28 / 42

Store: Word

sw Rsrc, address Store Word
Store the word from Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword †

Store the low halfword from Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word †

Store the word from Rsrc at the possibly-unaligned address.

Compiler Construction MIPS overview 29 / 42

Store: Double Word

sd Rsrc, address Store Double-Word †

Store the 64-bit quantity in Rsrc and Rsrc + 1 at address.

Compiler Construction MIPS overview 30 / 42

Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo (e.g.,
mul Rdest, Rsrc1, Src2).

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents Rdest to the hi (lo) register.

Compiler Construction MIPS overview 31 / 42

Data Movement Instructions

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z ’s register CPsrc to CPU Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU registers
Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU Rsrc to coprocessor z ’s register CPdest.

Compiler Construction MIPS overview 32 / 42

Table of Contents

1 Integer Arithmetics

2 Logical Operations

3 Control Flow

4 Loads and Stores

5 Floating Point Operations

Compiler Construction MIPS overview 33 / 42

mips Floating Point Instructions

Floating point coprocessor 1 operates on single (32-bit) and double precision
(64-bit) FP numbers.

32 32-bit registers $f0–$f31.
Two FP registers to hold doubles.

FP operations only use even-numbered registers
including instructions that operate on single floats.

Values are moved one word (32-bits) at a time by lwc1, swc1, mtc1, and
mfc1 or by the l.s, l.d, s.s, and s.d pseudo-instructions.

The flag set by FP comparison operations is read by the CPU with its bc1t and
bc1f instructions.

Compiler Construction MIPS overview 34 / 42

Floating Point: Arithmetics

Compute the ∗ of the floating float doubles (singles) in FRsrc1 and FRsrc2 and put it in
FRdest.
add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single
div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single
mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single
sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single
abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

Compiler Construction MIPS overview 35 / 42

Floating Point: Comparison

Compare the floating point double in FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are ∗.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single

Compiler Construction MIPS overview 36 / 42

Floating Point: Conversions

Convert between (i) single, (ii) double precision floating point number or (iii) integer in FRsrc
to FRdest.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer

Compiler Construction MIPS overview 37 / 42

Floating Point: Moves

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from FRsrc to FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in FRdest at address.

Compiler Construction MIPS overview 38 / 42

A Sample: fact

/* Define a recursive function. */
let

/* Calculate n! */
function fact (n : int) : int =

if n = 0
then 1
else n * fact (n - 1)

in
print_int (fact (10));
print ("\n")

end

Compiler Construction MIPS overview 39 / 42

Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra

.data
l4:

.word 1

.asciiz "\n"
.text
Routine: Main
t_main: sw $fp, ($sp)

move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l7: move $a0, $fp
li $a1, 10
jal l0
move $a0, $v0
jal print_int
la $a0, l4
jal print

l8: lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

Compiler Construction MIPS overview 40 / 42

Nolimips (formerly Mipsy)

Another mips emulator

Interactive loop

Unlimited number of $x42 registers!

Compiler Construction MIPS overview 41 / 42

Summary

Integer
operations

Logical
operations

Integer
operations

Load
Stores

Floating

Compiler Construction MIPS overview 42 / 42

	Integer Arithmetics
	Logical Operations
	Control Flow
	Loads and Stores
	Floating Point Operations

