
Compiler Construction
e Instruction Selection E

Compiler Construction Instruction Selection 1 / 13



Problem Statement
How would you translate a[i] := x where
x is frame resident, and i is not?

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

Compiler Construction Instruction Selection 2 / 13



Tree Patterns

Translation from Tree to Assembly
corresponds to parsing a tree.

Looking for a covering of the tree,
using tiles.

The set of tiles corresponds to the
instruction set.

+ - * /

Compiler Construction Instruction Selection 3 / 13



Tiles

Missing nodes are plugs for temporaries:
tiles read from temps, and create temps.

+

const

+

const

const -

const

Some architectures rely on a special
register to produce 0.

Compiler Construction Instruction Selection 4 / 13



Tiles: Loading load ri ← M[rj + c]

mem

+

const

mem

+

const

mem

const

mem

Compiler Construction Instruction Selection 5 / 13



Tiles: Storing store M[rj + c]← ri

move

mem

+

const

move

mem

+

const

move

mem

const

move

mem

Compiler Construction Instruction Selection 6 / 13



Simple Instruction: Translation 1

load t17 <- M[fp + a]
addi t18 <- r0 + 4
mul t19 <- ti * t18
add t20 <- t17 + t19
load t21 <- M[fp + x]
store M[t20+0] <- t21

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

Compiler Construction Instruction Selection 7 / 13



Simple Instruction: Translation 2

load t17 <- M[fp + a])
addi t18 <- r0 + 4
mul t19 <- ti * t18
add t20 <- t17 + t19
addi t21 <- fp + x
movem M[t20]

<- M[t21]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

Compiler Construction Instruction Selection 8 / 13



Simple Instruction: Translation 3

addi t17 <- r0 + a
add t18 <- fp + t17
load t19 <- M[t18 + 0]
addi t20 <- r0 + 4
mul t21 <- ti * t20
add t22 <- t19 + t21
addi t23 <- r0 + x
add t24 <- fp + t23
load t25 <- M[t24 + 0]
store M[t22 + 0]

<- t25

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

Compiler Construction Instruction Selection 9 / 13



Translating a Simple Instruction

There is always a solution
(provided the instruction set is
reasonable)

there can be several solutions

given a cost function, some are
better than others:

I some are locally better, optimal
coverings
(no fusion can reduce the cost),

I some are globally better, optimum
coverings.

Compiler Construction Instruction Selection 10 / 13



Algorithms for Instruction Selection (1/2)

Maximal Munch Find an optimal tiling.

Top-down strategy.

Cover the current node with the
largest tile.

Repeat on subtrees.

Generate instructions in
reverse-order after tile placement.

Compiler Construction Instruction Selection 11 / 13



Algorithms for Instruction Selection (2/2)

Dynamic Programming Find an
optimum tiling.

Bottom-up strategy.

Assign cost to each node.

Cost = cost of selected tile + cost of
subtrees.

Select a tile with minimal cost and
recur upward.

Implemented by code generator
generators
(Twig, Burg, iBurg, MonoBURG, …).

Compiler Construction Instruction Selection 12 / 13



Summary

Tiles Tree 
Patterns

Optimum 
covering

Optimal 
covering

Dynamic 
Programming

Maximal 
Munch

Compiler Construction Instruction Selection 13 / 13


