
Compiler Construction
e Liveness Analysis E

Compiler Construction Liveness Analysis 1 / 16

Goals

How to precisely catch the liveness of
each variable?

If a variable is in register $1 then we can
reuse this register as soon as the variable

is no longer used

Compiler Construction Liveness Analysis 2 / 16

Scopes vs. Liveness

Scopes
Front-end analysis

Detect names visibility according to
textual rules

Liveness
Back-end analysis

Focus on all generated variables
(even temporaries)

Exact computation of which
variables are used at the same time

Compiler Construction Liveness Analysis 3 / 16

Liveness Definition

Definition
A variable is live if it holds a value that

may be needed in the future.

Compiler Construction Liveness Analysis 4 / 16

Example

1a := 0
2L1: b := a + 1
3c := c + b
4a := b * 2
5if a < N goto L1
6return c

Question:
What are the liveness of a, b and c?

Compiler Construction Liveness Analysis 5 / 16

Flow Graph

Liveness computation requires an
adequate data-structure.

Control Flow graph (CFG):
A representation, using graph notation,
of all paths that might be traversed
through a program during its execution.

Remark: pred [n] (resp. succ[n]) denotes the
predecessors (resp. successors) of node n

Compiler Construction Liveness Analysis 6 / 16

Flow Graph for the example

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Compiler Construction Liveness Analysis 7 / 16

Liveness

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Liveness for a

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Liveness for b

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Liveness for c

Compiler Construction Liveness Analysis 8 / 16

Terminology

defs: nodes that define a variable,
i.e. left (lhs) part of assignment
nodes.

uses: nodes that use (read) a
variable (rhs).

live-in: a variable is live-in of a
node n, if it lives on any in-edges of
that node.

live-out: a variable is live-out of a
node n, if it lives on any out-edges
of that node.

Compiler Construction Liveness Analysis 9 / 16

Liveness computation

1 If a variable is in use[n] then it is
live-in at node n.

2 If a variable is live-in at node n then
it is live-out at all nodes m in
pred [m].

3 If a variable is live-out at node n and
not in def [n], then it is live-in at
node n.

Compiler Construction Liveness Analysis 10 / 16

Dataflow Equations for Liveness Analysis

in[n] = use[n] ∪ (out[n] \ def[n])
out[n] =

⋃
s∈succ[n]

in[s]

Compiler Construction Liveness Analysis 11 / 16

Possible Implementation (quadratic)

foreach n
in[n] ← { }
out[n] ← { }

repeat
foreach n

in_t[n] ← in[n]
out_t[n] ← out[n]
in[n] ← use[n] ∪ (out[n] \ def[n])
out[n] ←

⋃
s∈succ[n] in[s]

until in_t[n] = in[n] and out_t[n] = out[n] (∀n)

Compiler Construction Liveness Analysis 12 / 16

Liveness Calculation

(Forward)

1st step 2nd step 3rd step 4th step

n use def succ in out in out in out in out
1 a 2

a a ac

2 a b 3

a a bc ac bc ac bc

3 bc c 4

bc bc b bc b bc b

4 b a 5

b b a b a b ac

5 a 2,6

a a a ac ac ac ac ac

6 c

c c c c

5th step 6th step 7th step

n use def succ in out in out in out
1 a 2

c ac c ac c ac

2 a b 3

ac bc ac bc ac bc

3 bc c 4

bc b bc bc bc bc

4 b a 5

bc ac bc ac bc ac

5 a 2,6

ac ac ac ac ac ac

6 c

c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step

2nd step 3rd step 4th step

n use def succ in out in out in out in out
1 a 2

a a ac

2 a b 3 a

a bc ac bc ac bc

3 bc c 4 bc

bc b bc b bc b

4 b a 5 b

b a b a b ac

5 a 2,6 a a

a ac ac ac ac ac

6 c c

c c c

5th step 6th step 7th step

n use def succ in out in out in out
1 a 2

c ac c ac c ac

2 a b 3

ac bc ac bc ac bc

3 bc c 4

bc b bc bc bc bc

4 b a 5

bc ac bc ac bc ac

5 a 2,6

ac ac ac ac ac ac

6 c

c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step 2nd step

3rd step 4th step

n use def succ in out in out in out in out
1 a 2 a

a ac

2 a b 3 a a bc

ac bc ac bc

3 bc c 4 bc bc b

bc b bc b

4 b a 5 b b a

b a b ac

5 a 2,6 a a a ac

ac ac ac ac

6 c c c

c c

5th step 6th step 7th step

n use def succ in out in out in out
1 a 2

c ac c ac c ac

2 a b 3

ac bc ac bc ac bc

3 bc c 4

bc b bc bc bc bc

4 b a 5

bc ac bc ac bc ac

5 a 2,6

ac ac ac ac ac ac

6 c

c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step 2nd step 3rd step

4th step

n use def succ in out in out in out in out
1 a 2 a a

ac

2 a b 3 a a bc ac bc

ac bc

3 bc c 4 bc bc b bc b

bc b

4 b a 5 b b a b a

b ac

5 a 2,6 a a a ac ac ac

ac ac

6 c c c c

c

5th step 6th step 7th step

n use def succ in out in out in out
1 a 2

c ac c ac c ac

2 a b 3

ac bc ac bc ac bc

3 bc c 4

bc b bc bc bc bc

4 b a 5

bc ac bc ac bc ac

5 a 2,6

ac ac ac ac ac ac

6 c

c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step 2nd step 3rd step 4th step
n use def succ in out in out in out in out
1 a 2 a a ac
2 a b 3 a a bc ac bc ac bc
3 bc c 4 bc bc b bc b bc b
4 b a 5 b b a b a b ac
5 a 2,6 a a a ac ac ac ac ac
6 c c c c c

5th step 6th step 7th step

n use def succ in out in out in out
1 a 2

c ac c ac c ac

2 a b 3

ac bc ac bc ac bc

3 bc c 4

bc b bc bc bc bc

4 b a 5

bc ac bc ac bc ac

5 a 2,6

ac ac ac ac ac ac

6 c

c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step 2nd step 3rd step 4th step
n use def succ in out in out in out in out
1 a 2 a a ac
2 a b 3 a a bc ac bc ac bc
3 bc c 4 bc bc b bc b bc b
4 b a 5 b b a b a b ac
5 a 2,6 a a a ac ac ac ac ac
6 c c c c c

5th step

6th step 7th step

n use def succ in out in out in out
1 a 2 c ac

c ac c ac

2 a b 3 ac bc

ac bc ac bc

3 bc c 4 bc b

bc bc bc bc

4 b a 5 bc ac

bc ac bc ac

5 a 2,6 ac ac

ac ac ac ac

6 c c

c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step 2nd step 3rd step 4th step
n use def succ in out in out in out in out
1 a 2 a a ac
2 a b 3 a a bc ac bc ac bc
3 bc c 4 bc bc b bc b bc b
4 b a 5 b b a b a b ac
5 a 2,6 a a a ac ac ac ac ac
6 c c c c c

5th step 6th step

7th step

n use def succ in out in out in out
1 a 2 c ac c ac

c ac

2 a b 3 ac bc ac bc

ac bc

3 bc c 4 bc b bc bc

bc bc

4 b a 5 bc ac bc ac

bc ac

5 a 2,6 ac ac ac ac

ac ac

6 c c c

c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation

(Forward)

1st step 2nd step 3rd step 4th step
n use def succ in out in out in out in out
1 a 2 a a ac
2 a b 3 a a bc ac bc ac bc
3 bc c 4 bc bc b bc b bc b
4 b a 5 b b a b a b ac
5 a 2,6 a a a ac ac ac ac ac
6 c c c c c

5th step 6th step 7th step
n use def succ in out in out in out
1 a 2 c ac c ac c ac
2 a b 3 ac bc ac bc ac bc
3 bc c 4 bc b bc bc bc bc
4 b a 5 bc ac bc ac bc ac
5 a 2,6 ac ac ac ac ac ac
6 c c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness Calculation (Forward)

1st step 2nd step 3rd step 4th step
n use def succ in out in out in out in out
1 a 2 a a ac
2 a b 3 a a bc ac bc ac bc
3 bc c 4 bc bc b bc b bc b
4 b a 5 b b a b a b ac
5 a 2,6 a a a ac ac ac ac ac
6 c c c c c

5th step 6th step 7th step
n use def succ in out in out in out
1 a 2 c ac c ac c ac
2 a b 3 ac bc ac bc ac bc
3 bc c 4 bc b bc bc bc bc
4 b a 5 bc ac bc ac bc ac
5 a 2,6 ac ac ac ac ac ac
6 c c c c

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

s∈succ[n]
in[s]

Compiler Construction Liveness Analysis 13 / 16

Liveness

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Liveness for a

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Liveness for b

a := 0

1

b := a + 1

2

c := c + b

3

a := b * 2

4

a < N

5

return c

6

Liveness for c

Compiler Construction Liveness Analysis 14 / 16

Liveness Calculation (Backward)

1st step 2nd step 3rd step

n use def succ out in out in out in
6 c

c c c

5 a 2,6

c ac ac ac ac ac

4 b a 5

ac bc ac bc ac bc

3 bc c 4

bc bc bc bc bc bc

2 a b 3

bc ac bc ac bc ac

1 a 2

ac c ac c ac c

in[n] = use[n] ∪ (out[n] \ def[n])
out[n] =

⋃
s∈succ[n]

in[s]

Calculation done following reverse control-flow edges.

Compiler Construction Liveness Analysis 15 / 16

Liveness Calculation (Backward)

1st step

2nd step 3rd step

n use def succ out in out in out in
6 c c

c c

5 a 2,6 c ac

ac ac ac ac

4 b a 5 ac bc

ac bc ac bc

3 bc c 4 bc bc

bc bc bc bc

2 a b 3 bc ac

bc ac bc ac

1 a 2 ac c

ac c ac c

in[n] = use[n] ∪ (out[n] \ def[n])
out[n] =

⋃
s∈succ[n]

in[s]

Calculation done following reverse control-flow edges.

Compiler Construction Liveness Analysis 15 / 16

Liveness Calculation (Backward)

1st step 2nd step

3rd step

n use def succ out in out in out in
6 c c c

c

5 a 2,6 c ac ac ac

ac ac

4 b a 5 ac bc ac bc

ac bc

3 bc c 4 bc bc bc bc

bc bc

2 a b 3 bc ac bc ac

bc ac

1 a 2 ac c ac c

ac c

in[n] = use[n] ∪ (out[n] \ def[n])
out[n] =

⋃
s∈succ[n]

in[s]

Calculation done following reverse control-flow edges.

Compiler Construction Liveness Analysis 15 / 16

Liveness Calculation (Backward)

1st step 2nd step 3rd step
n use def succ out in out in out in
6 c c c c
5 a 2,6 c ac ac ac ac ac
4 b a 5 ac bc ac bc ac bc
3 bc c 4 bc bc bc bc bc bc
2 a b 3 bc ac bc ac bc ac
1 a 2 ac c ac c ac c

in[n] = use[n] ∪ (out[n] \ def[n])
out[n] =

⋃
s∈succ[n]

in[s]

Calculation done following reverse control-flow edges.

Compiler Construction Liveness Analysis 15 / 16

Summary

Control Flow
Graph

Dataflow
Equations

Live-in
Live-out

Liveness

Compiler Construction Liveness Analysis 16 / 16

