Compiler Construction

 \sim Spilling \checkmark

Map coloring

A map can always be colored with 4 colors

...BUT for graph coloring, there is no reason for a solution to always exist

Problem Statement

Not enough registers!

... t1 := t1 + t2 ...

Solution

Spilling

Put variables onto the stack!

- t1 will be stored at [sp + 4]
- t2 will be stored at [sp + 8]

The code can then be rewrited:

```
...
[sp+4] := [sp+4] + [sp+8]
...
```

Spilling on RISC Architectures

RISC architecture does not support such operations:

[sp+4] := [sp+4] + [sp+8]

So we need to use temporaries

t12 := [sp + 4] t13 := [sp + 8] t12 := t12 + t13 [sp + 4] := t12

Why should it solve the problem?

All is about lifetimes (1/2)

All is about lifetimes (2/2)

Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters Spilling decreases the degree of the neighbors . . . hence it enables additional simplifications
 - so "first spilled, last served"
 - therefore: spill cheap temporaries
- few def/uses => pay attention to loops

Spill Priority

Let us consider this example:

		uses+defs outside loop		uses+defs within loop		degree		spill priority
a	(2	+	0	*10)/	4	=	0.50
b	(1	+	1	*10)/	4	=	2.75
с	(2	+	0	*10)/	6	=	0.33
d	(2	+	2	*10)/	4	=	5.50
e	(1	+	3	*10)/	3	=	10.3

c has the lowest priority-it inteferes with many other temporaries but is rarely used-so it should be spilled first.

Complete workflow

potential spill nodes with significant degree actual spill do assign color, wait to identify other spills.

Summary

