
Compiler Construction
e Dependencies and RISC pipelines E

Compiler Construction Dependencies and RISC pipelines 1 / 15



Why and When reordering?

Goal
Reorder the instructions within each
basic block

preserves the dependencies between
those instructions (and hence the
correctness of the program)

obtains the best performances

Compiler Construction Dependencies and RISC pipelines 2 / 15



A word on Dependencies 1/4

Two instructions are independent if they
can be permuted without altering the
consistency

Compiler Construction Dependencies and RISC pipelines 3 / 15



A word on Dependencies 2/4
The 3 following instructions are
independent

inst1 : a← 42
inst2 : b← 51
inst3 : c← 0

inst1, inst2 and inst3 can then be
reordered

inst1 : a← 42 inst1 : a← 42 inst3 : c← 0
inst2 : b← 51 inst3 : c← 0 inst1 : a← 42
inst3 : c← 0 inst2 : b← 51 inst2 : b← 51

inst1 : c← 0 inst1 : b← 51 inst3 : b← 51
inst2 : b← 51 inst3 : c← 0 inst1 : a← 42
inst3 : a← 42 inst2 : a← 42 inst2 : c← 0

Compiler Construction Dependencies and RISC pipelines 4 / 15



A word on Dependencies 3/4

Two instructions are dependant if the
first one needs to be executed before the
second one.

Compiler Construction Dependencies and RISC pipelines 5 / 15



A word on Dependencies 4/4
The 3 following instructions are
dependent, i.e. no reordering is
possible!

inst1 : a← 42
inst2 : b← a + 51
inst3 : c← b × 12

Two kind of dependencies:
I Data dependencies: the

instruction manipulates a
”variable” computed by another
instruction.

I Instruction dependencies: the
instruction is a ”cjump”, the next
instruction depends of the
”cjump”.

Compiler Construction Dependencies and RISC pipelines 6 / 15



Read after Write (RAW)

An instruction reads from a location after
an earlier instruction has written to it.

inst1 : lw $2, 0($4)
inst2 : addi $6, $2, 42

inst1 and inst2 cannot be permuted,
otherwise inst2 would read an old value
from $2.

Compiler Construction Dependencies and RISC pipelines 7 / 15



Write after Read (WAR)

An instruction writes to a location after
an earlier instruction has read from it.

inst1 : lw $2, 0($4)
inst2 : addi $4, $12, 42

inst1 and inst2 cannot be permuted,
otherwise inst1 would read a new value
for $4

Compiler Construction Dependencies and RISC pipelines 8 / 15



Write after Write (WAW)

An instruction writes to a location after
an earlier instruction has written to it.

inst1 : add $1, $2, $3
inst2 : add $1, $5, $6

inst1 and inst2 cannot be permuted,
otherwise inst1 would write an old value
in $1

Compiler Construction Dependencies and RISC pipelines 9 / 15



Instructions Pipeline

The microprocessor (MIPS) contains 5 stages:

if: Instruction Fetch

id: Instruction Decode. Read operands from registers,
compute the address of the next instruction

ex Execute instructions requiring the ALU

me Read/write into Memory

wb Write Back. Results are written into registers.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instr1 if id ex me wb
instr2 if id ex me wb
instr3 if id ex me wb
instr4 if id ex me wb
instr5 if id ex me wb

Compiler Construction Dependencies and RISC pipelines 10 / 15



Hazard: RAW dependencies 1/2

Some instruction requires a result
computed by a previous one!

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

lw $2, 0($4) if id ex me wb
addi $5, $2, 10 if id ex me wb

lw produces its result into $2 during
the me stage

addi requires $2 for the ex stage

In this example, 1 stall (cycle 4)

Compiler Construction Dependencies and RISC pipelines 11 / 15



Hazard: RAW dependencies 2/2

Consider now the following example:
cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
addi $5, $2, 10 if id ex me wb
add $12, $9, $11 if id ex me wb

Instruction 3 is independent from the others so we can
change the order!

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
add $12, $9, $11 if id ex me wb
addi $5, $2, 10 if id ex me wb

Compiler Construction Dependencies and RISC pipelines 12 / 15



Hazard: WAW dependencies

Two instructions write in the same register!

Consider the following example:
cycle1 cycle2 cycle3 cycle4 cycle5 cycle6

addi $5, $11, 42 if id ex me wb
addi $5, $2, 10 if id ex me wb

WAW do not produce stalls !
(even when writing in the same memory address)

Compiler Construction Dependencies and RISC pipelines 13 / 15



Hazard: WAR dependencies

One instruction writes where a previous one reads!

Consider the following example:
cycle1 cycle2 cycle3 cycle4 cycle5 cycle6

addi $5, $11, 42 if id ex me wb
addi $11, $2, 10 if id ex me wb

WAR do not produce stalls !

Compiler Construction Dependencies and RISC pipelines 14 / 15



Summary

RAW, RAR, 
WAR, WAW Data Hazard

RISC pipeline

Compiler Construction Dependencies and RISC pipelines 15 / 15


