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Preserving and computing dependencies?

We construct a directed acyclic graph
(DAG) to represent the dependencies
between instructions:

@ For each instruction in the basic
block, create a corresponding vertex
in the graph

@ For each dependency between two
instructions, create a corresponding
(annotated) edge in the graph. Note
that this edge is annotated.
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Computing the dependency graph

1w $1,0($10) i5: lw $4,8($10)
1w $2,4($10) |ig: add $3,$1,$4
add $3,%$1,%2 i7: sw  $3,16($10)
sw  $3,12($10)
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Type of dependency: RAW, WAW, WAR

O

Compiler Construction Instruction Scheduling 3/23



Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw  $3,16($10)
is: sw  $3,12($10)

(@ ®
OO0

Type of dependency: RAW, WAW, WAR

O

Compiler Construction Instruction Scheduling 3/23



Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw  $3,16($10)
is: sw  $3,12($10)

O—® ©
& OE

Type of dependency: RAW, WAW, WAR

O

Compiler Construction Instruction Scheduling 3/23



Computing the dependency graph

ill lW $1,0($10) i52
ir: 1w $2,4(%$10) i :
is: add $3,%$1,%$2 i7:

ig: sw  $3,12($10)

O—( ©
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1w $4,8($10)
add $3,%1,%4
sw $3,16($10)

O

Type of dependency: RAW, WAW, WAR
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Computing the dependency graph
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ii: 1w $1,0($10) is: 1w $4,8($10)
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Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw  $3,16($10)
is: sw  $3,12($10)

Type of dependency: RAW, WAW, WAR
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Preserving dependencies: Critical Path 1/3

The critical path represents the longest
path between two nodes. We add delays
(weights) to edges:
@ 0 for WAW and WAR dependencies
@ 2 for RAW dependencies with
memory access

@ 1 for other RAW dependencies
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Preserving dependencies: Critical Path 2/3

Any (reverse) topological sort of this
DAG (i.e. any linear ordering of the
vertices which keeps all the edges
“pointing forwards”) will maintain the
dependencies and hence preserve the
correctness of the program.
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Preserving dependencies: Critical Path 3/3

Algorithm:

@ Associate a weight 1 to each
“instruction node”
@ For all nodes n; in topological
postorder
» If n; is not a leaf

* For all nodes n; in succ(n;) do
ni.weight <— max (n;.weight,
nj.weight+ delay(nj, n;))

Remember “important” edges during
computations, they will form the critical
path.
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Computing the critical path

Delays: blue arrows 2, red and green 0

53

Compiler Construction Instruction Scheduling 7/23



Computing the critical path

Delays: blue arrows 2, red and green 0

iz doesn’t have successors, skip it!
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Computing the critical path

Delays: blue arrows 2, red and green 0

delay(ig, i7)=2 > 1, change ig weight!
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Computing the critical path

Delays: blue arrows 2, red and green 0

ig.weight=3 > 1, change i, weight!
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Computing the critical path

Delays: blue arrows 2, red and green 0
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Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, is) + ig.weight=3 > 1, change i3 weight!
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Computing the critical path

Delays: blue arrows 2, red and green 0

Joun
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Computing the critical path

Delays: blue arrows 2, red and green 0

delay(iy, i) + is.weight=7 > 1, change i; weight!
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Computing the critical path

Delays: blue arrows 2, red and green 0
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Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, i3) + iz.weight=7 > 1, change i, weight!
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Computing the critical path

Delays: blue arrows 2, red and green 0

Jour
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So many orders ...with one critial path

11,12,13,14,15,16,17
12,11,13,15,14,l6,17
i1,i2,15,13,14,i6,i7
i1,15,12,i3,14,l6,17
i5501,12,13,14,l6,17

11,i2,13,15,14,i6,17
12,11,13,14,15,i6,17
12,11,15,13,i4,i6,17
12,15,11,13,14,i6,17
i5,12,11,13,14,i6,17

All these permutations respect
dependencies
but is there a best instruction scheduling?
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Performances and Pipeline

Not all orders are equivalent! )

@ Some dependencies can bring
hazards that slow down
performances inside of the pipeline

@ Hazard occurs when:
» 1instruction requires the previous
instruction has finished
» 2 instructions need the same data

at the same time: one of the two is
blocked
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Back to the example — without scheduling

i: 1w $1,0($10)

1w  $4,8(%$10)

I5 @
iro: 1w $2,4(%$10) ig: add $3,%1,%$4
is: add $3,%$1,$%$2 i7: sw  $3,16($10)
ig: sw  $3,12($10)
o [ [ [ Ex [ ME [ ws | ; | | | |
bl [F o [ ex | ME | ws ! | | | | |
i : : IF | D EX | ME | WB ! | : : |
i | \ IF ID | EX | ME | WB ‘ \ | !
is : : : : IF | ID | Ex | ME | wB ! ! :
i | \ | IF 1D EX | ME | WB ‘
i ‘ ! ‘ ! IF ID EX | ME | WB

Without scheduling: 2 dependencies, 2 stalls, 13 cycles!
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Minimizing Stalls (1/2)

Each time we emit the next instruction,
we should try to choose one which

@ P, does not conflict with the
previous emitted instruction

@ Py: is most likely to conflict if first
of a pair (e.g. prefer 1w to add)

@ Ps: is as far away as possible (along
paths in the DAG) from an
instruction which can validly be
scheduled last
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Minimizing Stalls (2/2)

Algorithm:
@ Compute the dependency graph

@ While the list of candidate
instructions is not empty
» If one instruction satisfies Py, Po,
and P3: remove it from the list and
emit it.

* Remove the instruction from
the DAG and insert the newly
minimal elements into the
candidate list.

» Otherwise emit a nop instruction

12/23
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Applying scheduling algorithm to the example

ip: 1w $1,0($10) i5: 1w $4,8($10)
. 1w $2,4($10) |ig: add $3,$1,$4

i3: add $3,$1,$2 |ir: sw  $3,16($10)
ig: sw  $3,12($10)

Candidates
Final Order

{i1, i, is}

Choose iy since it satisfies Py, P, and P
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Applying scheduling algorithm to the example
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{12, is)

I

Candidates
Final Order

Choose iy since it satisfies Py, P, and Ps
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Applying scheduling algorithm to the example
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Applying scheduling algorithm to the example
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Applying scheduling algorithm to the example
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Applying scheduling algorithm to the example
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Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw  $3,16($10)
i1: sw  $3,12($10)

O

Candidates {ig}
Final Order = iy, iy, is, i3, 14, ig

Choose ig since it satisfies Py, P, and Ps
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Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw  $3,16($10)
i1: sw  $3,12($10)

O

Candidates {i7}
Final Order = iy, iy, is, i3, 14, ig

Choose i7 since it satisfies P, P, and Ps
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Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
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O
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O
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Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw  $3,16($10)
i1: sw  $3,12($10)

Candidates {i7}
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Choose i7 since it satisfies P, P, and Ps
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Applying scheduling algorithm to the example

i 1w $1,0($10) |is:
in: 1w $2,4($10) |ig:
i3 : add $3,$1,$2 i7:
iy: sw $3,12($10)

Final Order = il, i2, i5, i3, i4, i6, i7

€2 €3 C4 <5 <6

1w $4,8($10)
add $3,%$1,%4

sw $3,16($10)

1
n]ur ID | Ex | ME | wB
|
|
|
|
|
|
|
|

[
‘] IF | ID | EX | ME | WB :
is ‘ IF ID EX ME | WB |
is : [ IF ID EX ME | WB ‘
i : : : IF ID EX | ME | WB :
i | [ | [ IF ID EX ME | WB ‘
ir ! ! ! ! | IF D | Ex | ME | wB ‘

With schedl)ling} still 2 debendencies but 0 stalls and 11 cycles!

Compiler Construction
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A word on scheduling strategies

@ Sometimes we cannot avoid some
stalls

@ Computing the critical path can be
smarter

@ Computing the DAG of
dependencies can be done in O(n?)
by scanning backwards through the
basic block and adding edges as
dependencies arise
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A word on performances

We can statically compute instructions

per cycle IPC=%, to evaluate 2

possible schedulings.

In the previous example:
@ without scheduling IPC=1—73 =0.53

@ with scheduling IPC=1—71 = 0.63
(better!)

Compiler Construction Instruction Scheduling
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Summary

Dependency
Graph

Critical Path

Instruction
scheduling
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