Compiler Construction

~ Instruction Scheduling

Instruction Scheduling 1/23

Preserving and computing dependencies?

We construct a directed acyclic graph
(DAG) to represent the dependencies
between instructions:

@ For each instruction in the basic
block, create a corresponding vertex
in the graph

@ For each dependency between two
instructions, create a corresponding
(annotated) edge in the graph. Note
that this edge is annotated.

Compiler Construction Instruction Scheduling 2/23

Computing the dependency graph

1w $1,0($10) i5: lw $4,8($10)
1w $2,4($10) |ig: add $3,$1,$4
add $3,%$1,%2 i7: sw $3,16($10)
sw $3,12($10)

Instruction Scheduling

3/23

Computing the dependency graph

1w $1,0($10) i5: lw $4,8($10)
1w $2,4($10) |ig: add $3,$1,$4
add $3,%$1,%2 i7: sw $3,16($10)
sw $3,12($10)

Instruction Scheduling

3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

OO

Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

OO

OO

Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

W © ©

OO

Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

O ® ®
& O ®

Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

W © ©
O,

& ® ©

Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

OO0
& O ®

Type of dependency: RAW, WAW, WAR

O

Compiler Construction Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

(@ ®
OO0

Type of dependency: RAW, WAW, WAR

O

Compiler Construction Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

O—® ©
& OE

Type of dependency: RAW, WAW, WAR

O

Compiler Construction Instruction Scheduling 3/23

Computing the dependency graph

ill lW $1,0($10) i52
ir: 1w $2,4(%$10) i :
is: add $3,%$1,%$2 i7:

ig: sw $3,12($10)

O—(©
‘\

(&)

1w $4,8($10)
add $3,%1,%4
sw $3,16($10)

O

Type of dependency: RAW, WAW, WAR

Compiler Construction

Instruction Scheduling

3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

0“0
OO0

Type of dependency: RAW, WAW, WAR

Compiler Construction Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

0“0 O,

a§30

Type of dependency: RAW, WAW, WAR

Compiler Construction Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

Ads

Type of dependency: RAW, WAW, WAR

Compiler Construction Instruction Scheduling 3/23

Computing the dependency graph

ii: 1w $1,0($10) is: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,%$1,%$2 i7: sw $3,16($10)
is: sw $3,12($10)

Type of dependency: RAW, WAW, WAR

Compiler Construction Instruction Scheduling 3/23

Preserving dependencies: Critical Path 1/3

The critical path represents the longest
path between two nodes. We add delays
(weights) to edges:
@ 0 for WAW and WAR dependencies
@ 2 for RAW dependencies with
memory access

@ 1 for other RAW dependencies

Compiler Construction Instruction Scheduling 4/23

Preserving dependencies: Critical Path 2/3

Any (reverse) topological sort of this
DAG (i.e. any linear ordering of the
vertices which keeps all the edges
“pointing forwards”) will maintain the
dependencies and hence preserve the
correctness of the program.

Compiler Construction Instruction Scheduling 5/23

Preserving dependencies: Critical Path 3/3

Algorithm:

@ Associate a weight 1 to each
“instruction node”
@ For all nodes n; in topological
postorder
» If n; is not a leaf

* For all nodes n; in succ(n;) do
ni.weight <— max (n;.weight,
nj.weight+ delay(nj, n;))

Remember “important” edges during
computations, they will form the critical
path.

Compiler Construction Instruction Scheduling 6/23

Computing the critical path

Delays: blue arrows 2, red and green 0

53

Compiler Construction Instruction Scheduling 7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

iz doesn’t have successors, skip it!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(ig, i7)=2 > 1, change ig weight!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

Jhen

Compiler Construction Instruction Scheduling 7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, ig)=2 > 1, change i5 weight!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

e

Compiler Construction Instruction Scheduling 7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

ig.weight=3 > 1, change i, weight!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

Joen

Compiler Construction Instruction Scheduling 7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, is) + ig.weight=3 > 1, change i3 weight!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

Joun

Compiler Construction Instruction Scheduling 7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(iy, i) + is.weight=7 > 1, change i; weight!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

Joun

Compiler Construction Instruction Scheduling 7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, i3) + iz.weight=7 > 1, change i, weight!

Compiler Construction Instruction Scheduling

7/23

Computing the critical path

Delays: blue arrows 2, red and green 0

Jour

Compiler Construction Instruction Scheduling 7/23

So many orders ...with one critial path

11,12,13,14,15,16,17
12,11,13,15,14,l6,17
i1,i2,15,13,14,i6,i7
i1,15,12,i3,14,l6,17
i5501,12,13,14,l6,17

11,i2,13,15,14,i6,17
12,11,13,14,15,i6,17
12,11,15,13,i4,i6,17
12,15,11,13,14,i6,17
i5,12,11,13,14,i6,17

All these permutations respect
dependencies
but is there a best instruction scheduling?

Compiler Construction

Instruction Scheduling

8/23

Performances and Pipeline

Not all orders are equivalent!)

@ Some dependencies can bring
hazards that slow down
performances inside of the pipeline

@ Hazard occurs when:
» 1instruction requires the previous
instruction has finished
» 2 instructions need the same data

at the same time: one of the two is
blocked

Compiler Construction Instruction Scheduling 9/23

Back to the example — without scheduling

i: 1w $1,0($10)

1w $4,8(%$10)

I5 @
iro: 1w $2,4(%$10) ig: add $3,%1,%$4
is: add $3,%$1,$%$2 i7: sw $3,16($10)
ig: sw $3,12($10)
o [[[Ex [ME [ws | ; | | | |
bl [F o [ex | ME | ws ! | | | | |
i : : IF | D EX | ME | WB ! | : : |
i | \ IF ID | EX | ME | WB ‘ \ | !
is : : : : IF | ID | Ex | ME | wB ! ! :
i | \ | IF 1D EX | ME | WB ‘
i ‘ ! ‘ ! IF ID EX | ME | WB

Without scheduling: 2 dependencies, 2 stalls, 13 cycles!

Compiler Construction

Instruction Scheduling

10/23

Minimizing Stalls (1/2)

Each time we emit the next instruction,
we should try to choose one which

@ P, does not conflict with the
previous emitted instruction

@ Py: is most likely to conflict if first
of a pair (e.g. prefer 1w to add)

@ Ps: is as far away as possible (along
paths in the DAG) from an
instruction which can validly be
scheduled last

Compiler Construction Instruction Scheduling 11/23

Minimizing Stalls (2/2)

Algorithm:
@ Compute the dependency graph

@ While the list of candidate
instructions is not empty
» If one instruction satisfies Py, Po,
and P3: remove it from the list and
emit it.

* Remove the instruction from
the DAG and insert the newly
minimal elements into the
candidate list.

» Otherwise emit a nop instruction

12/23

Compiler Construction Instruction Scheduling

Applying scheduling algorithm to the example

ip: 1w $1,0($10) i5: 1w $4,8($10)
. 1w $2,4($10) |ig: add $3,$1,$4

i3: add $3,$1,$2 |ir: sw $3,16($10)
ig: sw $3,12($10)

Candidates
Final Order

{i1, i, is}

Choose iy since it satisfies Py, P, and P
Instruction Scheduling 13/23

Applying scheduling algorithm to the example

ip: 1w $1,0($10) i5: 1w $4,8($10)
. 1w $2,4($10) |ig: add $3,$1,$4

i3: add $3,$1,$2 |ir: sw $3,16($10)
ig: sw $3,12($10)

Candidates
Final Order

{i1, i, is}

Choose iy since it satisfies Py, P, and P
Instruction Scheduling 13/23

Applying scheduling algorithm to the example

ip: 1w $1,0($10) i5: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4

i3: add $3,$1,$2 |ir: sw $3,16($10)
ig: sw $3,12($10)

Candidates
Final Order

{il’ i2, |5}
i

Choose iy since it satisfies Py, P, and P
Instruction Scheduling 13/23

Applying scheduling algorithm to the example

ip: 1w $1,0($10) i5: 1w $4,8($10)
i22 1w $2,4($10) i6: add $3,$1,$4
i3: add $3,9%$1,9%$2 i7: sw $3,16($10)
is: sw $3,12($10)

Candidates
Final Order

{il’ i2, |5}
i

Choose iy since it satisfies Py, P, and P
Instruction Scheduling 13/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

{12, is)

I

Candidates
Final Order

Choose iy since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling

14/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

{12, is)

I

Candidates
Final Order

Choose iy since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling

14/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

{ia, is}

i, 1o

Candidates
Final Order

Choose iy since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling

14/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

{ia, is}

i, 1o

Candidates
Final Order

Choose iy since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling

14/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

{is, is}

i1, Ig

Candidates
Final Order

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling

15/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

{is, is}

i1, Ig

Candidates
Final Order

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling

15/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

{is, is}

I, 12,15

Candidates
Final Order

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling

15/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

{is, is}

I, 12,15

Candidates
Final Order

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling

15/23

Applying scheduling algorithm to the example

i12 1w $1,0($10) i5: 1w $4,8($10)
in: 1w $2,4($10) |ig: add $3,$1,%4
is: add $3,%$1,%2 i7: sw $3,16($10)
iy: sw $3,12($10)

{is}

11, 12, 15

Candidates
Final Order

Choose i3 since it satisfies Py, P and P3

Compiler Construction Instruction Scheduling

16/23

Applying scheduling algorithm to the example

i12 1w $1,0($10) i5: 1w $4,8($10)
in: 1w $2,4($10) |ig: add $3,$1,%4
is: add $3,%$1,%2 i7: sw $3,16($10)
iy: sw $3,12($10)

{is}

11, 12, 15

Candidates
Final Order

Choose i3 since it satisfies Py, P and P3

Compiler Construction Instruction Scheduling

16/23

Applying scheduling algorithm to the example

i12 1w $1,0($10) i5: 1w $4,8($10)
in: 1w $2,4($10) |ig: add $3,$1,%4
is: add $3,%$1,%2 i7: sw $3,16($10)
iy: sw $3,12($10)

{is}

11, 12, 15, 13

Candidates
Final Order

Choose i3 since it satisfies Py, P and P3

Compiler Construction Instruction Scheduling

16/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,%$1,%2 i7: sw $3,16($10)
iy: sw $3,12($10)

{is}

11, 12, 15, 13

Candidates
Final Order

Choose i3 since it satisfies Py, P and P3

Compiler Construction Instruction Scheduling 16/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {ia}
Final Order = iy, iy, is, i3

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 17/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {ia}
Final Order = iy, iy, is, i3

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 17/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {is}
Final Order = il, iQ, i5, i3, i4

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 17/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {is}

Final Order = iy, i9, i5, i3, iy

Choose iy since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 17/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {ig}

Final Order = iy, iy, is, i3, is

Choose ig since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling 18/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {ig}

Final Order = iy, iy, is, i3, is

Choose ig since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling 18/23

Applying scheduling algorithm to the example
i 1w $1,0($10) |is: 1w $4,8($10)
ib: 1w $2,4($10) |ig: add $3,$1,$4

is: add $3,$1,$2 i sw $3,16($10)
i1: sw $3,12($10)

Candidates {ig}

Final Order = iy, iy, is, i3, 14, ig

Choose ig since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling 18/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

O

Candidates {ig}
Final Order = iy, iy, is, i3, 14, ig

Choose ig since it satisfies Py, P, and Ps

Compiler Construction Instruction Scheduling 18/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

O

Candidates {i7}
Final Order = iy, iy, is, i3, 14, ig

Choose i7 since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 19/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

O

Candidates {i7}
Final Order = iy, iy, is, i3, 14, ig

Choose i7 since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 19/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

O

Candidates {i7}
Final Order = iy, i, is, i3, 14, ig, i7

Choose i7 since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 19/23

Applying scheduling algorithm to the example

ii: 1w $1,0(%$10) is: 1w $4,8($10)
iQ: 1w $2,4($10) i6: add $3,$1,$4
is: add $3,%$1,%$2 i7: sw $3,16($10)
i1: sw $3,12($10)

Candidates {i7}
Final Order = iy, i, is, i3, 14, ig, i7

Choose i7 since it satisfies P, P, and Ps

Compiler Construction Instruction Scheduling 19/23

Applying scheduling algorithm to the example

i 1w $1,0($10) |is:
in: 1w $2,4($10) |ig:
i3 : add $3,$1,$2 i7:
iy: sw $3,12($10)

Final Order = il, i2, i5, i3, i4, i6, i7

€2 €3 C4 <5 <6

1w $4,8($10)
add $3,%$1,%4

sw $3,16($10)

1
n]ur ID | Ex | ME | wB
|
|
|
|
|
|
|
|

[
‘] IF | ID | EX | ME | WB :
is ‘ IF ID EX ME | WB |
is : [IF ID EX ME | WB ‘
i : : : IF ID EX | ME | WB :
i | [| [IF ID EX ME | WB ‘
ir ! ! ! ! | IF D | Ex | ME | wB ‘

With schedl)ling} still 2 debendencies but 0 stalls and 11 cycles!

Compiler Construction

Instruction Scheduling

20/23

A word on scheduling strategies

@ Sometimes we cannot avoid some
stalls

@ Computing the critical path can be
smarter

@ Computing the DAG of
dependencies can be done in O(n?)
by scanning backwards through the
basic block and adding edges as
dependencies arise

Compiler Construction Instruction Scheduling 21/23

A word on performances

We can statically compute instructions

per cycle IPC=%, to evaluate 2

possible schedulings.

In the previous example:
@ without scheduling IPC=1—73 =0.53

@ with scheduling IPC=1—71 = 0.63
(better!)

Compiler Construction Instruction Scheduling

22/23

Summary

Dependency
Graph

Critical Path

Instruction
scheduling

Compiler Construction Instruction Scheduling 23/23

