Compiler Construction

~~ Loop unrolling

Loop unrolling 1/12

Can we do better?

Consider the following code
(representing a basic block):

Loop: 1w $t0, 0($s1)
addu $t0o, $t0o, $s2
SW $t0, 0($s1)

addi $s1, $s1,-4
bne $s1, $0, Loop

Compiler Construction Loop unrolling

t0=array element
add scalar in s2

store result

decrement pointer
branch s1!=0

2/12

Can we do better?

Consider the following code
(representing a basic block):

Loop: 1w $t0, 0($s1) # t0=array element
addu $t0, $t0, $s2 # add scalar in s2
SW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer

bne $s1, $0, Loop # branch s1!=0

¢4 ¢ 3 ¢4 5 6 ¢ €g € Clo €1 2 €13 €4 15 €16
|l l IF ‘ D ‘ EX ME WB 1 1 1 1 1 1 1 1 1 1 1
io | D EX ME WB | | | | |
iz 1 I G D EX ME WB) | | | |
[| | IF D EX ME wB_ |)) ,
is , , IF [o [& [me [ws |

Compiler Construction Loop unrolling 2/12

Can we do better?

Consider the following code
(representing a basic block):

Loop: 1w $t0, 0($s1) # t0=array element
addu $t0, $t0, $s2 # add scalar in s2
sSw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer

bne $s1, $0, Loop #branchsi!=0

C1 Cc2 €3 Cq4 5 6 cr g8 €9 €10 €11 €12 €13 €14 €15 €16
|l 1 IF I D I EX ME WB I I I I I I I I I I I
io [F [o EX ME WB | | | | |
iz 1 ! T F D EX ME w8) | | | |
i1 | | IF D EX ME wB_ | , , , ,
i5 . . IF [o | e [me [ws |

16 cycles for 5 instructions that are all
dependant (IPC = 0.31)!

Compiler Construction Loop unrolling 2/12

Loop Unrolling

@ Replicate loop body to expose more
parallelism

@ Reduces loop-control overhead

At high level, it can be seen as following;:

Without Loop Unrolling | With Loop Unrolling

int i; int i
for (i = 0; x < 100; ++i) for (i = 0; x < 100; i+=5)
tab[i] = tab[i] +42; tab[i] = tab[i] +42;

tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Compiler Construction Loop unrolling 3/12

Loop Unrolling — back to the example

Loop: 1w $to,
addu $t0,
sw $tO0,
addi $s1,
bne $s1,

Loop: 1w $t0,
addu $to0,
sSw $t0,
addi $s1,
bne $s1,

Loop: 1w $to,
addu $tO0,
sw $t0,
addi $s1,
bne $s1,

First duplicate N times the the body of the loop!

Compiler Construction

0($s1)
$to, $s2
0($s1)
$s1,-4
$0, Loop
0($s1)
$t0, $s2
0($s1)
$s1, -4
$0, Loop
0($s1)
$t0, $s2
0($s1)
$s1, -4
$0, Loop

Loop unrolling

4/12

Loop Unrolling — back to the example

Loop: 1w
addu
Sw
addi
1w
addu
sSw
addi
1w
addu
sSw
addi
bne

$to,
$to,
$to,
$s1,
$to,
$to,
$to,
$s1,
$to,
$to,
$to,
$s1,
$s1,

0($s1)
$t0, $s2
0($s1)
$s1, -4
0($s1)
$t0, $s2
0($s1)
$s1, -4
0($s1)
$to, $s2
0($s1)
$s1, -4
$0, Loop

Remove redundant labels and jump
(by supposing that we are able to do it!)

Compiler Construction

Loop unrolling

5/12

Loop Unrolling — back to the example

Loop: 1w
addu
sSw
addi
1w
addu
sSw
addi
1w
addu
sSw
addi
bne

$to,
$to,
$to,
$s1,
$t1,
$t1,
$t1,
$s1,
$t2,
$t2,
$t2,
$s1,
$s1,

0($s1)
$t0, $s2
0($s1)
$s1, -4
0($s1)
$t1, $s2
0($s1)
$s1, -4
0($s1)
$t2, $s2
0($s1)
$s1, -4
$0, Loop

Use other temporaries name when possible!

Compiler Construction

Loop unrolling

6/12

Loop Unrolling — back to the example

Loop: addi
1w
addu
sw
1w
addu
sSw
1w
addu
sSw
bne

Grab redundant operation and merge them carefully!

$s1,
$to,
$to,
$to,
$t1,
$t1,
$t1,
$t2,
$t2,
$t2,
$s1,

Compiler Construction

$s1,-12
0($s1)
$to, $s2
0($s1)
4($s1)
$t1, $s2
4($s1)
8($s1)
$t2, $s2
8($s1)
$0, Loop

Loop unrolling

7/12

Loop Unrolling — back to the example

Loop: addi
1w
1w
1w
addu
addu
addu
sSw
sSw
sSw
bne

$s1,
$to,
$t1,
$t2,
$to,
$t1,
$t2,
$to,
$t1,
$t2,
$s1,

$s1,-12
0($s1)
4($s1)
8($s1)
$t0, $s2
$t1, $s2
$t2, $s2
0($s1)
4($s1)
8($s1)
$0, Loop

Schedule the instructions and renumber them

Compiler Construction

Loop unrolling

8/12

Pros & Cons

@ We avoid a lot of conditional jumps
(and many stall hence)

@ We require 19 cycles for 11
instructions: IPC=0.57
(a lot better than the previous 0.31)

@ This trick allows to have more
independent instructions to insert,
and thus, less stalls!

@ But we have now a prologue and an
epilogue: i.e., two more basic blocks

@ Require more temporaries: register
allocation will be harder!

@ Try it by yourself in gcc
-funroll-loops

Compiler Construction Loop unrolling 9/12

A very last word on Branch Hazards 1/2

@ Conditional jumps often introduce
delays since we cannot pre-fetch
instrcutions

@ Can we avoid them?

We only know i at cycle 5!

ID | EX | ME | WB
F ID EX ME | WB

nop

nop

nop

bne $1,$2, loop ‘ IF
I
|
|
|
|
|
|
!

Tnext

IF | ID | EX | ME | WB
IF 1D EX | ME | WB
! IF ID EX | ME | WB

Compiler Construction

Loop unrolling

10/12

A very last word on Branch Hazards 2/2

@ X delayed slot: the X instructions
after a branch are systematically
executed

@ The original SPARC and MIPS
processors each used a single branch
delay slot to eliminate single-cycle
stalls after branches

@ We need branch prediction... but
nowadays, most of processors do it
for us (and use s1t...)!

@ Some architectures have bypass
between stages to avoid stalls

Avoid as possible floating points and
jumps! J

Compiler Construction Loop unrolling

11/12

Summary

”Do you program in mips?” she asked.
"nop”, he said. J

Loop Unrolling Delayed slots

Compiler Construction Loop unrolling 12/12

