
Presentation of TC-1

Assistants 2009

May 6, 2014



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Presentation of TC-1

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server

YAKA Presentation of TC-1 2 / 31



Overview of the tarball

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The tree structure of TC-1

lib/misc : Contains many tools used in the whole project:
unique : Contains the class Unique that implements the design
pattern Flyweight.
symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.
variant : Contains the class Variant which inherits from
boost::variant.

src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).
src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern
Command.
src/object : Contains the code for Tiger object
implementation.

YAKA Presentation of TC-1 4 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 / 31



The gnu Build System

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The gnu Build System [2]

Customize the configure.ac

Bootstrap the package

Compile:
$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/

$ make

Deliver your tarball: make distcheck

YAKA Presentation of TC-1 7 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The gnu Build System [2]

Customize the configure.ac

Bootstrap the package

Compile:
$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/

$ make

Deliver your tarball: make distcheck

YAKA Presentation of TC-1 7 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The gnu Build System [2]

Customize the configure.ac

Bootstrap the package

Compile:
$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/

$ make

Deliver your tarball: make distcheck

YAKA Presentation of TC-1 7 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The gnu Build System [2]

Customize the configure.ac

Bootstrap the package

Compile:
$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/

$ make

Deliver your tarball: make distcheck

YAKA Presentation of TC-1 7 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The gnu Build System [2]

Customize the configure.ac

Bootstrap the package

Compile:
$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/

$ make

Deliver your tarball: make distcheck

YAKA Presentation of TC-1 7 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The use of CONFIG SITE

The configure script needs options when compiling on the
PIE

The environment variable CONFIG SITE allows to specify a
shell script that will be used by configure

In particular, this script allows to set the path to boost or the
C++ compiler to use

YAKA Presentation of TC-1 8 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The use of CONFIG SITE

The configure script needs options when compiling on the
PIE

The environment variable CONFIG SITE allows to specify a
shell script that will be used by configure

In particular, this script allows to set the path to boost or the
C++ compiler to use

YAKA Presentation of TC-1 8 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The use of CONFIG SITE

The configure script needs options when compiling on the
PIE

The environment variable CONFIG SITE allows to specify a
shell script that will be used by configure

In particular, this script allows to set the path to boost or the
C++ compiler to use

YAKA Presentation of TC-1 8 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Example of CONFIG SITE

$ cat ~/config.site

MAKE=gmake

CC=/usr/local/bin/gcc41

CXX=/usr/local/bin/g++41

BISON=/u/all/acu/public/bin/bison

FLEX=flex

$ export CONFIG_SITE=~/config.site

YAKA Presentation of TC-1 9 / 31



Variant types

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Unions in C++

Unions in C++ are quite useless.

Can be used only with POD (Plain Old Data).

How to initialize v?
union Value

{

ast::IntExp ival;

ast::StringExp str;

};

int main()

{

Value v;

}

The compiler cannot know which constructor to call.

YAKA Presentation of TC-1 11 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)

It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".

v = "a string";

std::cout << v << std::endl;

// Print 42.

v = 42;

std::cout << v << std::endl;

YAKA Presentation of TC-1 12 / 31

http://www.boost.org


Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)

It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".

v = "a string";

std::cout << v << std::endl;

// Print 42.

v = 42;

std::cout << v << std::endl;

YAKA Presentation of TC-1 12 / 31

http://www.boost.org


Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)

It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".

v = "a string";

std::cout << v << std::endl;

// Print 42.

v = 42;

std::cout << v << std::endl;

YAKA Presentation of TC-1 12 / 31

http://www.boost.org


Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)

It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".

v = "a string";

std::cout << v << std::endl;

// Print 42.

v = 42;

std::cout << v << std::endl;

YAKA Presentation of TC-1 12 / 31

http://www.boost.org


Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)

It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".

v = "a string";

std::cout << v << std::endl;

// Print 42.

v = 42;

std::cout << v << std::endl;

YAKA Presentation of TC-1 12 / 31

http://www.boost.org


Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Using Variant: get

get allows to specify the expected content type.

Only run-time check

When returning a pointer, get returns 0 if the actual value of
the variant does not match the requested type:
boost::variant<int, std::string> v;

// value == 0.

v = "a string";

int* value = boost::get<int> (&v);

YAKA Presentation of TC-1 13 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Using Variant: get

get allows to specify the expected content type.

Only run-time check

When returning a pointer, get returns 0 if the actual value of
the variant does not match the requested type:
boost::variant<int, std::string> v;

// value == 0.

v = "a string";

int* value = boost::get<int> (&v);

YAKA Presentation of TC-1 13 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Using Variant: get

get allows to specify the expected content type.

Only run-time check

When returning a pointer, get returns 0 if the actual value of
the variant does not match the requested type:
boost::variant<int, std::string> v;

// value == 0.

v = "a string";

int* value = boost::get<int> (&v);

YAKA Presentation of TC-1 13 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Using Variant: get

When returning a reference, get throws a exception.
boost::variant<int, std::string> v;

// Throw a bad_get exception.

// Note that we do not pass ‘&v‘ but ‘v‘.

v = "a string";

int& value = boost::get<int> (v);

Do you want to know more ? See src/parse/tiger-parser
and lib/misc/variant

YAKA Presentation of TC-1 14 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Using Variant: get

When returning a reference, get throws a exception.
boost::variant<int, std::string> v;

// Throw a bad_get exception.

// Note that we do not pass ‘&v‘ but ‘v‘.

v = "a string";

int& value = boost::get<int> (v);

Do you want to know more ? See src/parse/tiger-parser
and lib/misc/variant

YAKA Presentation of TC-1 14 / 31



Templates: Declarations

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Implicit Declaration

You are used to using explicit instantiation

The compiler automatically creates the class or function when
needed

For example
template <typename T>

class List<T>

{

//...

}

int main ()

{

List<int> l;

}

YAKA Presentation of TC-1 16 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Implicit Declaration

You are used to using explicit instantiation

The compiler automatically creates the class or function when
needed

For example
template <typename T>

class List<T>

{

//...

}

int main ()

{

List<int> l;

}

YAKA Presentation of TC-1 16 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Implicit Declaration

You are used to using explicit instantiation

The compiler automatically creates the class or function when
needed

For example
template <typename T>

class List<T>

{

//...

}

int main ()

{

List<int> l;

}

YAKA Presentation of TC-1 16 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Explicit Declaration

Templates are used both for genericity and for code
factorization

When used to factor code, some parameters’ values should
not be allowed.

Hence, tell the compiler explicitely what parameters are
expected. It’s the Template Specialization.

Templates are present almost everywhere in TC.

YAKA Presentation of TC-1 17 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Explicit Declaration

Templates are used both for genericity and for code
factorization

When used to factor code, some parameters’ values should
not be allowed.

Hence, tell the compiler explicitely what parameters are
expected. It’s the Template Specialization.

Templates are present almost everywhere in TC.

YAKA Presentation of TC-1 17 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Explicit Declaration

Templates are used both for genericity and for code
factorization

When used to factor code, some parameters’ values should
not be allowed.

Hence, tell the compiler explicitely what parameters are
expected. It’s the Template Specialization.

Templates are present almost everywhere in TC.

YAKA Presentation of TC-1 17 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Explicit Declaration

Templates are used both for genericity and for code
factorization

When used to factor code, some parameters’ values should
not be allowed.

Hence, tell the compiler explicitely what parameters are
expected. It’s the Template Specialization.

Templates are present almost everywhere in TC.

YAKA Presentation of TC-1 17 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Explicit Declaration

template <typename T>

T

TigerParser::example ()

{

// Implicit Declaration

}

Template <>

TigerParser::ast_type

TigerParser::example<TigerParser::ast_type> ()

{

// Specialization

}

YAKA Presentation of TC-1 18 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The Explicit Declaration

// ast_type is a typedef on a

// boost::variant<ast::Exp*, ast::DecsList*>

// So, using this instanciations are valid.

Template <>

ast::Exp*

TigerParser::example<ast::Exp*> ();

Template <>

ast::DecsList*

TigerParser::example<ast::DecsList*> ();

YAKA Presentation of TC-1 19 / 31



The Unique Class

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The goal

Implements the design pattern Flyweight.

Relies on a std::set to do the job

YAKA Presentation of TC-1 21 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The goal

Implements the design pattern Flyweight.

Relies on a std::set to do the job

YAKA Presentation of TC-1 21 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The design pattern Flyweight [3]

Definition : The Flyweight pattern provides a method to
pool and share a large number of contexts. It allows a single
object to be used in several contexts simultaneously.

It looks like the pattern Singleton seen in the “C++-week”.

YAKA Presentation of TC-1 22 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The design pattern Flyweight [3]

Definition : The Flyweight pattern provides a method to
pool and share a large number of contexts. It allows a single
object to be used in several contexts simultaneously.

It looks like the pattern Singleton seen in the “C++-week”.

YAKA Presentation of TC-1 22 / 31



The Symbol Class

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The goal

Same symbol can be present numerous time.

We want to save space and time.

We use the Unique class.

Used with the parser.

YAKA Presentation of TC-1 24 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The goal

Same symbol can be present numerous time.

We want to save space and time.

We use the Unique class.

Used with the parser.

YAKA Presentation of TC-1 24 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The goal

Same symbol can be present numerous time.

We want to save space and time.

We use the Unique class.

Used with the parser.

YAKA Presentation of TC-1 24 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The goal

Same symbol can be present numerous time.

We want to save space and time.

We use the Unique class.

Used with the parser.

YAKA Presentation of TC-1 24 / 31



The import system

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"

in

...

end

YAKA Presentation of TC-1 26 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"

in

...

end

YAKA Presentation of TC-1 26 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"

in

...

end

YAKA Presentation of TC-1 26 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"

in

...

end

YAKA Presentation of TC-1 26 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"

in

...

end

YAKA Presentation of TC-1 26 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Import processing

Start by looking in the current directory (where the file lies).

Then look in the include path.

Default path contains the path PKGDATADIR or
TC PKGDATADIR environment variable if set.

Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 / 31



The SVN server

1 Overview of the tarball

2 The gnu Build System

3 Variant types

4 Templates: Declarations

5 The Unique Class

6 The Symbol Class

7 The import system

8 The SVN server



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Versioning systems

The usage of a versioning system is mandatory.

As usual, the SVN server from the Assistant laboratory [1] is
available.

YAKA Presentation of TC-1 29 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Versioning systems

The usage of a versioning system is mandatory.

As usual, the SVN server from the Assistant laboratory [1] is
available.

YAKA Presentation of TC-1 29 / 31



Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Bibliography I

B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.
Version Control With Subversion, 2004.
http://svnbook.red-bean.com.

Alexandre Duret-Lutz.
The Autotools Tutorial, 2006.
http://www-src.lip6.fr/homepages/Alexandre.

Duret-Lutz/dl/autotools.pdf/.

YAKA Presentation of TC-1 30 / 31

http://svnbook.red-bean.com
http://www-src.lip6.fr/homepages/Alexandre.Duret-Lutz/dl/autotools.pdf/
http://www-src.lip6.fr/homepages/Alexandre.Duret-Lutz/dl/autotools.pdf/


Overview of the tarball
The gnu Build System

Variant types
Templates: Declarations

The Unique Class
The Symbol Class
The import system

The SVN server

Bibliography II

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software.
Addison-Wesley Professional Computing Series.
Addison-Wesley Publishing Company, New York, NY, 1995.

YAKA Presentation of TC-1 31 / 31


	Overview of the tarball
	The gnu Build System
	Variant types
	Templates: Declarations
	The Unique Class
	The Symbol Class
	The import system
	The SVN server

