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Overview of the tarball

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.
src/parse/parsetiger.yy : Complete the parser.
src/parse/tiger-parser.cc : Complete the driver.
lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.
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The gnu Build System [2]

@ Customize the configure.ac

@ Bootstrap the package

o Compile:

@ $ mkdir -m 700 _build
$ cd _build
$ ../configure --with-boost=/usr/local/
$ make
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The GNU Build System

The gnu Build System [2]

Customize the configure.ac
Bootstrap the package

Compile:

$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/
$ make

Deliver your tarball: make distcheck
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The GNU Build System
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@ The configure script needs options when compiling on the
PIE
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The GNU Build System

The use of CONFIG_SITE

@ The configure script needs options when compiling on the
PIE

@ The environment variable CONFIG_SITE allows to specify a
shell script that will be used by configure

@ In particular, this script allows to set the path to boost or the
C++ compiler to use
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The GNU Build System

Example of CONFIG_SITE

@ $ cat “/config.site
MAKE=gmake
CC=/usr/local/bin/gcc4l
CXX=/usr/local/bin/g++41
BISON=/u/all/acu/public/bin/bison
FLEX=flex
$ export CONFIG_SITE="/config.site
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Variant types

Unions in C++

@ Unions in C4++ are quite useless.
@ Can be used only with POD (Plain Old Data).

@ How to initialize v?
union Value

{
ast::IntExp ival;
ast::StringExp str;
};

int main()
{
Value v;

}
@ The compiler cannot know which constructor to call.
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Variant types

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)
It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".
v = "a string";
std::cout << v << std::endl;

// Print 42.
v = 42;
std::cout << v << std::endl;
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Using Variant: get

o get allows to specify the expected content type.
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Variant types

Using Variant: get

o get allows to specify the expected content type.
@ Only run-time check

@ When returning a pointer, get returns 0 if the actual value of
the variant does not match the requested type:

boost::variant<int, std::string> v;

// value ==
v = "a string";
int* value = boost::get<int> (&v);
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Variant types

Using Variant: get

@ When returning a reference, get throws a exception.
boost::variant<int, std::string> v;

// Throw a bad_get exception.

// Note that we do not pass ‘&v‘ but ‘v‘.
v = "a string";

int& value = boost::get<int> (v);
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Variant types

Using Variant: get

@ When returning a reference, get throws a exception.
boost::variant<int, std::string> v;

// Throw a bad_get exception.
// Note that we do not pass ‘&v‘ but ‘v‘.
v = "a string";
int& value = boost::get<int> (v);
@ Do you want to know more ? See src/parse/tiger-parser

and lib/misc/variant
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@ You are used to using explicit instantiation
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Templates: Declarations

The Implicit Declaration

@ You are used to using explicit instantiation

@ The compiler automatically creates the class or function when
needed

@ For example
template <typename T>
class List<T>
{

/...
}

int main ()

{
List<int> 1;
}
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The Explicit Declaration

@ Templates are used both for genericity and for code
factorization
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Templates: Declarations

The Explicit Declaration

@ Templates are used both for genericity and for code
factorization

@ When used to factor code, some parameters’ values should
not be allowed.

@ Hence, tell the compiler explicitely what parameters are
expected. It's the Template Specialization.

@ Templates are present almost everywhere in TC.
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Templates: Declarations

The Explicit Declaration

template <typename T>

T
TigerParser: :example ()
{
// Implicit Declaration
}

Template <>
TigerParser::ast_type
TigerParser: :example<TigerParser: :ast_type> ()
{
// Specialization

}
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Templates: Declarations

The Explicit Declaration

// ast_type is a typedef on a
// boost::variant<ast::Exp*, ast::DecsList*>

// So, using this instanciations are valid.
Template <>

ast: :Exp*

TigerParser: :example<ast: :Expx> ();

Template <>

ast::DecsListx*
TigerParser: :example<ast::DecsList*> ();
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The Unique Class

The goal

@ Implements the design pattern Flyweight.
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The Unique Class

The goal

@ Implements the design pattern Flyweight.
@ Relies on a std::set to do the job
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The Unique Class

The design pattern Flyweight [3]

@ Definition : The Flyweight pattern provides a method to
pool and share a large number of contexts. It allows a single
object to be used in several contexts simultaneously.
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The Unique Class

The design pattern Flyweight [3]

@ Definition : The Flyweight pattern provides a method to
pool and share a large number of contexts. It allows a single
object to be used in several contexts simultaneously.

o It looks like the pattern Singleton seen in the “C+4+-week".
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The Symbol Class

The goal

@ Same symbol can be present numerous time.
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The Symbol Class

The goal

@ Same symbol can be present numerous time.
@ We want to save space and time.

® We use the Unique class.

@ Used with the parser.
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The import system

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"
in

end
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The import system

Import processing

e Start by looking in the current directory (where the file lies).
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The import system

Import processing

e Start by looking in the current directory (where the file lies).

@ Then look in the include path.

@ Default path contains the path PKGDATADIR or
TC_PKGDATADIR environment variable if set.

@ Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

@ See src/parse/tasks.* and TigerParser for more infos.
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The SVN server

Versioning systems

@ The usage of a versioning system is mandatory.

YAKA Presentation of TC-1 29 /31



The SVN server

Versioning systems

@ The usage of a versioning system is mandatory.

@ As usual, the SVN server from the Assistant laboratory [1] is
available.
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The SVN server
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