Presentation of TC-1

Assistants 2009

May 6, 2014



Presentation of TC-1

@ Overview of the tarball
© The anNU Build System
© Variant types

@ Templates: Declarations
© The Unique Class

@ The Symbol Class

YAKA Presentation of TC-1 2/31



Overview of the tarball

@ Overview of the tarball



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:

YAKA Presentation of TC-1 4/31



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:
e unique : Contains the class Unique that implements the design
pattern Flyweight.

YAKA Presentation of TC-1 4 /31



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:
e unique : Contains the class Unique that implements the design
pattern Flyweight.
e symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.

YAKA Presentation of TC-1 4/31



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:

e unique : Contains the class Unique that implements the design
pattern Flyweight.

e symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.

e variant : Contains the class Variant which inherits from
boost::variant.

YAKA Presentation of TC-1 4/31



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:

e unique : Contains the class Unique that implements the design
pattern Flyweight.

e symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.

e variant : Contains the class Variant which inherits from
boost::variant.

@ src/parse : Contains the flex and bison files (parsetiger.yy,

scantiger.ll).

YAKA Presentation of TC-1 4 /31



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:

e unique : Contains the class Unique that implements the design
pattern Flyweight.

e symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.

e variant : Contains the class Variant which inherits from
boost::variant.

@ src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).

@ src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern

Presentation of TC-1



Overview of the tarball

The tree structure of TC-1

@ lib/misc : Contains many tools used in the whole project:

e unique : Contains the class Unique that implements the design
pattern Flyweight.

e symbol : Contains the class Symbol which inherits from
misc:unique<std::string>. This class maps any string to a
unique reference.

e variant : Contains the class Variant which inherits from
boost::variant.

@ src/parse : Contains the flex and bison files (parsetiger.yy,
scantiger.ll).

@ src/task : Tiger is cut in “tasks” (parse, building of the ast,
type-checking, etc.). The tasks manager is contained in that
directory. This module is based on the design pattern

Presentation of TC-1



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

YAKA Presentation of TC-1 5/31



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.
@ src/parse/scantiger.ll : Complete the scanner.

YAKA Presentation of TC-1 5/31



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

@ src/parse/scantiger.ll : Complete the scanner.

@ src/parse/parsetiger.yy : Complete the parser.

YAKA Presentation of TC-1 5 /31



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

@ src/parse/scantiger.ll : Complete the scanner.

@ src/parse/parsetiger.yy : Complete the parser.

@ src/parse/tiger-parser.cc : Complete the driver.

YAKA Presentation of TC-1 5 /31



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.
src/parse/parsetiger.yy : Complete the parser.
src/parse/tiger-parser.cc : Complete the driver.
lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

YAKA Presentation of TC-1 5/31



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,

Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in

Unique class.

@ lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

YAKA Presentation of TC-1 5 /31



Overview of the tarball

Code to write

@ autotools : Customize the main files: configure.ac,

Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.

src/parse/parsetiger.yy : Complete the parser.

src/parse/tiger-parser.cc : Complete the driver.

lib/misc/unique.* : Complete the Flyweight design pattern in

Unique class.

@ lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

@ lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

YAKA Presentation of TC-1 5 /31



Overview of the tarball

Code to write

autotools : Customize the main files: configure.ac,
Makefile.am, AUTHORS.

src/parse/scantiger.ll : Complete the scanner.
src/parse/parsetiger.yy : Complete the parser.
src/parse/tiger-parser.cc : Complete the driver.
lib/misc/unique.* : Complete the Flyweight design pattern in
Unique class.

lib/misc/symbol.* : Complete the Symbol class which inherits
from Unique.

lib/misc/variant.* : Complete the Variant class which inherits
from boost::variant.

More details on assignments.

YAKA Presentation of TC-1 5 /31



The GNU Build System

The gNU Build System
(%) y



The GNU Build System

The gnu Build System [2]

@ Customize the configure.ac

YAKA Presentation of TC-1 7 /31



The GNU Build System

The gnu Build System [2]

@ Customize the configure.ac
@ Bootstrap the package

YAKA Presentation of TC-1 7 /31



The GNU Build System

The gnu Build System [2]

@ Customize the configure.ac
@ Bootstrap the package

o Compile:

YAKA Presentation of TC-1 7 /31



The GNU Build System

The gnu Build System [2]

@ Customize the configure.ac

@ Bootstrap the package

o Compile:

@ $ mkdir -m 700 _build
$ cd _build
$ ../configure --with-boost=/usr/local/
$ make

YAKA Presentation of TC-1 7 /31



The GNU Build System

The gnu Build System [2]

Customize the configure.ac
Bootstrap the package

Compile:

$ mkdir -m 700 _build

$ cd _build

$ ../configure --with-boost=/usr/local/
$ make

Deliver your tarball: make distcheck

YAKA Presentation of TC-1 7 /31



The GNU Build System

The use of CONFIG_SITE

@ The configure script needs options when compiling on the
PIE

YAKA Presentation of TC-1 8 /31



The GNU Build System

The use of CONFIG_SITE

@ The configure script needs options when compiling on the
PIE

@ The environment variable CONFIG_SITE allows to specify a
shell script that will be used by configure

YAKA Presentation of TC-1 8 /31



The GNU Build System

The use of CONFIG_SITE

@ The configure script needs options when compiling on the
PIE

@ The environment variable CONFIG_SITE allows to specify a
shell script that will be used by configure

@ In particular, this script allows to set the path to boost or the
C++ compiler to use

YAKA Presentation of TC-1 8 /31



The GNU Build System

Example of CONFIG_SITE

@ $ cat “/config.site
MAKE=gmake
CC=/usr/local/bin/gcc4l
CXX=/usr/local/bin/g++41
BISON=/u/all/acu/public/bin/bison
FLEX=flex
$ export CONFIG_SITE="/config.site

YAKA Presentation of TC-1 9 /31



© Variant types



Variant types

Unions in C++

@ Unions in C4++ are quite useless.
@ Can be used only with POD (Plain Old Data).

@ How to initialize v?
union Value

{
ast::IntExp ival;
ast::StringExp str;
};

int main()
{
Value v;

}
@ The compiler cannot know which constructor to call.

YAKA Presentation of TC-1 11 /31



Variant types

Unions in C++

@ Using pointer to objects “solves” the issue.

YAKA Presentation of TC-1 12 / 31


http://www.boost.org

Variant types

Unions in C++

@ Using pointer to objects “solves” the issue.
@ Boost addresses the issue with Variant.

YAKA Presentation of TC-1 12 / 31


http://www.boost.org

Variant types

Unions in C++

@ Using pointer to objects “solves” the issue.
@ Boost addresses the issue with Variant.
@ Boost is a C++ library like the STL. (http://www.boost.org)

YAKA Presentation of TC-1 12 / 31


http://www.boost.org

Variant types

Unions in C++

YAKA Presentation of TC-1 12 / 31

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)
It provides a lot of useful classes.


http://www.boost.org

Variant types

Unions in C++

Using pointer to objects “solves” the issue.

Boost addresses the issue with Variant.

Boost is a C++ library like the STL. (http://www.boost.org)
It provides a lot of useful classes.

Simple example of Variant use:
boost::variant<int, std::string> v;

// Print "a string".
v = "a string";
std::cout << v << std::endl;

// Print 42.
v = 42;
std::cout << v << std::endl;

YAKA Presentation of TC-1 12 / 31


http://www.boost.org

Variant types

Using Variant: get

o get allows to specify the expected content type.

YAKA Presentation of TC-1 13 /31



Variant types

Using Variant: get

o get allows to specify the expected content type.

@ Only run-time check

YAKA Presentation of TC-1 13 /31



Variant types

Using Variant: get

o get allows to specify the expected content type.
@ Only run-time check

@ When returning a pointer, get returns 0 if the actual value of
the variant does not match the requested type:

boost::variant<int, std::string> v;

// value ==
v = "a string";
int* value = boost::get<int> (&v);

YAKA Presentation of TC-1 13 /31



Variant types

Using Variant: get

@ When returning a reference, get throws a exception.
boost::variant<int, std::string> v;

// Throw a bad_get exception.

// Note that we do not pass ‘&v‘ but ‘v‘.
v = "a string";

int& value = boost::get<int> (v);

YAKA Presentation of TC-1 14 / 31



Variant types

Using Variant: get

@ When returning a reference, get throws a exception.
boost::variant<int, std::string> v;

// Throw a bad_get exception.
// Note that we do not pass ‘&v‘ but ‘v‘.
v = "a string";
int& value = boost::get<int> (v);
@ Do you want to know more ? See src/parse/tiger-parser

and lib/misc/variant

YAKA Presentation of TC-1 14 / 31



Templates: Declarations

@ Templates: Declarations



Templates: Declarations

The Implicit Declaration

@ You are used to using explicit instantiation

YAKA Presentation of TC-1 16 / 31



Templates: Declarations

The Implicit Declaration

@ You are used to using explicit instantiation

@ The compiler automatically creates the class or function when
needed

YAKA Presentation of TC-1 16 / 31



Templates: Declarations

The Implicit Declaration

@ You are used to using explicit instantiation

@ The compiler automatically creates the class or function when
needed

@ For example
template <typename T>
class List<T>
{

/...
}

int main ()

{
List<int> 1;
}

YAKA Presentation of TC-1 16 / 31



Templates: Declarations

The Explicit Declaration

@ Templates are used both for genericity and for code
factorization

YAKA Presentation of TC-1 17 / 31



Templates: Declarations

The Explicit Declaration

@ Templates are used both for genericity and for code
factorization

@ When used to factor code, some parameters’ values should
not be allowed.

YAKA Presentation of TC-1 17 / 31



Templates: Declarations

The Explicit Declaration

@ Templates are used both for genericity and for code
factorization

@ When used to factor code, some parameters’ values should
not be allowed.

@ Hence, tell the compiler explicitely what parameters are
expected. It's the Template Specialization.

YAKA Presentation of TC-1 17 / 31



Templates: Declarations

The Explicit Declaration

@ Templates are used both for genericity and for code
factorization

@ When used to factor code, some parameters’ values should
not be allowed.

@ Hence, tell the compiler explicitely what parameters are
expected. It's the Template Specialization.

@ Templates are present almost everywhere in TC.

YAKA Presentation of TC-1 17 / 31



Templates: Declarations

The Explicit Declaration

template <typename T>

T
TigerParser: :example ()
{
// Implicit Declaration
}

Template <>
TigerParser::ast_type
TigerParser: :example<TigerParser: :ast_type> ()
{
// Specialization

}

YAKA Presentation of TC-1




Templates: Declarations

The Explicit Declaration

// ast_type is a typedef on a
// boost::variant<ast::Exp*, ast::DecsList*>

// So, using this instanciations are valid.
Template <>

ast: :Exp*

TigerParser: :example<ast: :Expx> ();

Template <>

ast::DecsListx*
TigerParser: :example<ast::DecsList*> ();

YAKA Presentation of TC-1 19 / 31



The Unique Class

© The Unique Class



The Unique Class

The goal

@ Implements the design pattern Flyweight.

YAKA Presentation of TC-1 21 /31



The Unique Class

The goal

@ Implements the design pattern Flyweight.
@ Relies on a std::set to do the job

YAKA Presentation of TC-1 21 /31



The Unique Class

The design pattern Flyweight [3]

@ Definition : The Flyweight pattern provides a method to
pool and share a large number of contexts. It allows a single
object to be used in several contexts simultaneously.

YAKA Presentation of TC-1 22 /31



The Unique Class

The design pattern Flyweight [3]

@ Definition : The Flyweight pattern provides a method to
pool and share a large number of contexts. It allows a single
object to be used in several contexts simultaneously.

o It looks like the pattern Singleton seen in the “C+4+-week".

YAKA Presentation of TC-1 22 /31



The Symbol Class

@ The Symbol Class



The Symbol Class

The goal

@ Same symbol can be present numerous time.

YAKA Presentation of TC-1 24 /31



The Symbol Class

The goal

@ Same symbol can be present numerous time.

@ We want to save space and time.

YAKA Presentation of TC-1 24 /31



The Symbol Class

The goal

@ Same symbol can be present numerous time.
@ We want to save space and time.

® We use the Unique class.

YAKA Presentation of TC-1 24 /31



The Symbol Class

The goal

@ Same symbol can be present numerous time.
@ We want to save space and time.

® We use the Unique class.

@ Used with the parser.

YAKA Presentation of TC-1 24 /31



The import system

@ The import system



The import system

The prelude

@ Tiger automatically imports the prelude file.

YAKA Presentation of TC-1 26 /31



The import system

The prelude

@ Tiger automatically imports the prelude file.

@ It is mandatory for builtins.

YAKA Presentation of TC-1 26 /31



The import system

The prelude

@ Tiger automatically imports the prelude file.
@ It is mandatory for builtins.

@ Default name for the prelude is “prelude.tih”.

YAKA Presentation of TC-1 26 /31



The import system

The prelude

Tiger automatically imports the prelude file.
It is mandatory for builtins.
Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

YAKA Presentation of TC-1 26 /31



The import system

The prelude

Tiger automatically imports the prelude file.

It is mandatory for builtins.

Default name for the prelude is “prelude.tih”.

Default name can be changed by using “--prelude=filename”.

It is exactly as if the program were written:
let

import "prelude.tih"
in

end

YAKA Presentation of TC-1 26 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).

YAKA Presentation of TC-1 27 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).
@ Then look in the include path.

YAKA Presentation of TC-1 27 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).
@ Then look in the include path.

@ Default path contains the path PKGDATADIR or
TC_PKGDATADIR environment variable if set.

YAKA Presentation of TC-1 27 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).
@ Then look in the include path.

@ Default path contains the path PKGDATADIR or
TC_PKGDATADIR environment variable if set.

@ Include path can be controlled by :

YAKA Presentation of TC-1 27 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).
@ Then look in the include path.

@ Default path contains the path PKGDATADIR or
TC_PKGDATADIR environment variable if set.

@ Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

YAKA Presentation of TC-1 27 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).

@ Then look in the include path.

@ Default path contains the path PKGDATADIR or
TC_PKGDATADIR environment variable if set.

@ Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

YAKA Presentation of TC-1 27 /31



The import system

Import processing

e Start by looking in the current directory (where the file lies).

@ Then look in the include path.

@ Default path contains the path PKGDATADIR or
TC_PKGDATADIR environment variable if set.

@ Include path can be controlled by :

--library-prepend=DIR : prepend directory DIR to the search
path.

--library-append=DIR : append directory DIR to the search
path.

@ See src/parse/tasks.* and TigerParser for more infos.

YAKA Presentation of TC-1 27 /31



The SVN server

© The SVN server



The SVN server

Versioning systems

@ The usage of a versioning system is mandatory.

YAKA Presentation of TC-1 29 /31



The SVN server

Versioning systems

@ The usage of a versioning system is mandatory.

@ As usual, the SVN server from the Assistant laboratory [1] is
available.

YAKA Presentation of TC-1 29 /31



The SVN server

Bibliography |

@ B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.
Version Control With Subversion, 2004.
http://svnbook.red-bean. com.

[§] Alexandre Duret-Lutz.
The Autotools Tutorial, 2006.
http://www-src.lip6.fr/homepages/Alexandre.
Duret-Lutz/dl/autotools.pdf/.

YAKA Presentation of TC-1 30 /31


http://svnbook.red-bean.com
http://www-src.lip6.fr/homepages/Alexandre.Duret-Lutz/dl/autotools.pdf/
http://www-src.lip6.fr/homepages/Alexandre.Duret-Lutz/dl/autotools.pdf/

The SVN server

Bibliography Il

@ Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design Patterns: Elements of Reusable Object-Oriented

Software.
Addison-Wesley Professional Computing Series.
Addison-Wesley Publishing Company, New York, NY, 1995.

YAKA Presentation of TC-1 31 /31



	Overview of the tarball
	The gnu Build System
	Variant types
	Templates: Declarations
	The Unique Class
	The Symbol Class
	The import system
	The SVN server

