
Presentation of TC-2

Assistants 2009

May 6, 2014

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Presentation of TC-2

1 Overview of the tarball

2 Code to write

3 parsetiger.yy

4 The ast

5 Improvements

YAKA Presentation of TC-2 2 / 31

Overview of the tarball

1 Overview of the tarball

2 Code to write

3 parsetiger.yy

4 The ast

5 Improvements

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The tree structure of TC-2

It is the same structure as TC-1.

Only the ‘src/ast’ directory has been added.

YAKA Presentation of TC-2 4 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The tree structure of TC-2

It is the same structure as TC-1.

Only the ‘src/ast’ directory has been added.

YAKA Presentation of TC-2 4 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

misc::Error

It is a class used to centralize all error reporting.

One global error handler of that class lays in
‘src/common.cc’.

Used like a stream (redefines operator<<)

We can use it for printing any object (if it implements
operator<<).
It defines several manipulators for setting error states.

error_ << misc::Error::scan

<< e.location_get ()

<< ": unexpected end of file " << std::endl;

exit and exit on error throw an Error object when needed,
caught in ‘tc.cc’.

YAKA Presentation of TC-2 5 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Introduction of main

The body of a Tiger program is outside any function

This will require a specific handling in the rest of the compiler

To simplify the compiler, the main function (entry point) is
introduced after the initial parsing via an AST transformation

YAKA Presentation of TC-2 6 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Introduction of main

The body of a Tiger program is outside any function

This will require a specific handling in the rest of the compiler

To simplify the compiler, the main function (entry point) is
introduced after the initial parsing via an AST transformation

YAKA Presentation of TC-2 6 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Introduction of main

The body of a Tiger program is outside any function

This will require a specific handling in the rest of the compiler

To simplify the compiler, the main function (entry point) is
introduced after the initial parsing via an AST transformation

YAKA Presentation of TC-2 6 / 31

Code to write

1 Overview of the tarball

2 Code to write

3 parsetiger.yy

4 The ast

5 Improvements

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

‘src/parse/parsetiger.yy’

Implement error recovery using the error token.

Chunks.

Create ast nodes.

YAKA Presentation of TC-2 8 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

‘src/parse/parsetiger.yy’

Implement error recovery using the error token.

Chunks.

Create ast nodes.

YAKA Presentation of TC-2 8 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

‘src/parse/parsetiger.yy’

Implement error recovery using the error token.

Chunks.

Create ast nodes.

YAKA Presentation of TC-2 8 / 31

parsetiger.yy

1 Overview of the tarball

2 Code to write

3 parsetiger.yy

4 The ast

5 Improvements

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Parser enhancement: GLR

Upgrade your parser from LALR(1) to GLR

Difficult reduce/reduce conflicts will disappear without
grammar massaging

Add %skeleton "glr.cc", %glr-parser, %expect,
%expect-rr

YAKA Presentation of TC-2 10 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Parser enhancement: GLR

Upgrade your parser from LALR(1) to GLR

Difficult reduce/reduce conflicts will disappear without
grammar massaging

Add %skeleton "glr.cc", %glr-parser, %expect,
%expect-rr

YAKA Presentation of TC-2 10 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Parser enhancement: GLR

Upgrade your parser from LALR(1) to GLR

Difficult reduce/reduce conflicts will disappear without
grammar massaging

Add %skeleton "glr.cc", %glr-parser, %expect,
%expect-rr

YAKA Presentation of TC-2 10 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The error token (extract from the Bison documentation)

You can define how to recover from a syntax error by writing
rules to recognize the special token ‘error’.

This is a terminal symbol that is always defined (you need not
declare it) and reserved for error handling.

The Bison parser generates an ‘error’ token whenever a syntax
error happens; if you have provided a rule to recognize this
token in the current context, the parse can continue.

YAKA Presentation of TC-2 11 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The error token (extract from the Bison documentation)

You can define how to recover from a syntax error by writing
rules to recognize the special token ‘error’.

This is a terminal symbol that is always defined (you need not
declare it) and reserved for error handling.

The Bison parser generates an ‘error’ token whenever a syntax
error happens; if you have provided a rule to recognize this
token in the current context, the parse can continue.

YAKA Presentation of TC-2 11 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The error token (extract from the Bison documentation)

You can define how to recover from a syntax error by writing
rules to recognize the special token ‘error’.

This is a terminal symbol that is always defined (you need not
declare it) and reserved for error handling.

The Bison parser generates an ‘error’ token whenever a syntax
error happens; if you have provided a rule to recognize this
token in the current context, the parse can continue.

YAKA Presentation of TC-2 11 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Declarations problems

function foo() = bar()

function bar() = foo()

Problem: foo() does not know bar().

Swapping declarations does not solve the problem.

Several solutions:

Introducing forward declarations (C/C++).
Introducing simultaneous declarations (Tiger/Caml).

The problem arises only for types and functions (not for
variables).

YAKA Presentation of TC-2 12 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

What is a chunk?

It is a bunch of declarations of the same type (for types and
functions). Each declaration of variable uses a chunk. For
example :
let

/* declarations of a and b are not in the same chunk. */

var a := 1

var b := 2

/* declarations of foo and bar are in another chunk. */

function foo () : int = 1

function bar () : int = 2

/* declaration of c is in a fourth one. */

var c := 3

/* declarations of tree and graph are in another chunk. */

type tree = {graph : g, tree : fg, tree : fd}

type graph = {int index, tree : tree}

in

0

end

YAKA Presentation of TC-2 13 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Why chunks?

“Chunks” is a name only used in EPITA.

It is useful for interdependant functions or types.

All the entities in a chunk are declared simultaneously. So, the
following example is illegal:

let

type tree = {graph : g, tree : fg, tree : fd}

var a := 1

type graph = {int index, tree : tree}

in

0

end

YAKA Presentation of TC-2 14 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Why chunks?

“Chunks” is a name only used in EPITA.

It is useful for interdependant functions or types.

All the entities in a chunk are declared simultaneously. So, the
following example is illegal:

let

type tree = {graph : g, tree : fg, tree : fd}

var a := 1

type graph = {int index, tree : tree}

in

0

end

YAKA Presentation of TC-2 14 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Why chunks?

“Chunks” is a name only used in EPITA.

It is useful for interdependant functions or types.

All the entities in a chunk are declared simultaneously. So, the
following example is illegal:

let

type tree = {graph : g, tree : fg, tree : fd}

var a := 1

type graph = {int index, tree : tree}

in

0

end

YAKA Presentation of TC-2 14 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

How are the chunks implemented?

A list of Decs is used in the LetExp class. It is declared in the
‘ast/decs-list’ class:

/// DecsList.

class DecsList: public Ast

{

public:

typedef std::list<Decs*> decs_type;

YAKA Presentation of TC-2 15 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Creation of the ast nodes

You have to implement the creation of the ast nodes in the
Bison file (by creating the corresponding classes)

Beware of default action when specifying no code: $$=$1

Pay attention to memory leaks!

YAKA Presentation of TC-2 16 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Creation of the ast nodes

You have to implement the creation of the ast nodes in the
Bison file (by creating the corresponding classes)

Beware of default action when specifying no code: $$=$1

Pay attention to memory leaks!

YAKA Presentation of TC-2 16 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Creation of the ast nodes

You have to implement the creation of the ast nodes in the
Bison file (by creating the corresponding classes)

Beware of default action when specifying no code: $$=$1

Pay attention to memory leaks!

YAKA Presentation of TC-2 16 / 31

The ast

1 Overview of the tarball

2 Code to write

3 parsetiger.yy

4 The ast

5 Improvements

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

‘src/ast’

The different Visitors.

The different Nodes.

YAKA Presentation of TC-2 18 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

‘src/ast’

The different Visitors.

The different Nodes.

YAKA Presentation of TC-2 18 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The visitor

Encapsulate an operation you want to perform on a data
structure.

Adding new operations without changing the classes of the
visited elements.

Decouple the classes and the algorithms used.

YAKA Presentation of TC-2 19 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The visitor

Encapsulate an operation you want to perform on a data
structure.

Adding new operations without changing the classes of the
visited elements.

Decouple the classes and the algorithms used.

YAKA Presentation of TC-2 19 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The visitor

Encapsulate an operation you want to perform on a data
structure.

Adding new operations without changing the classes of the
visited elements.

Decouple the classes and the algorithms used.

YAKA Presentation of TC-2 19 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The visitor

A node “accepts” a Visitor passing itself in. The visitor then
executes the algorithm.

This is ”Double Dispatching”.

Call depends on the Visitor and on the Host (data structure
node),

YAKA Presentation of TC-2 20 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The visitor

A node “accepts” a Visitor passing itself in. The visitor then
executes the algorithm.

This is ”Double Dispatching”.

Call depends on the Visitor and on the Host (data structure
node),

YAKA Presentation of TC-2 20 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The visitor

A node “accepts” a Visitor passing itself in. The visitor then
executes the algorithm.

This is ”Double Dispatching”.

Call depends on the Visitor and on the Host (data structure
node),

YAKA Presentation of TC-2 20 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The Visitor Hierarchy

2 main sorts of visitors: const and non const.
/// Shorthand for a const visitor.

typedef GenDefaultVisitor<misc::constify_traits>

DefaultConstVisitor;

/// Shorthand for a non const visitor.

typedef GenDefaultVisitor<misc::id_traits>

DefaultVisitor;

YAKA Presentation of TC-2 21 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The PrettyPrinter

Think about using misc::indent to indent your ast printing.

Instead of using the accept method on each node of the ast,
use operator<<, which is cleaner and easier to read, as
defined in ‘ast/libast.cc’.
// Print the TREE on OSTR.

std::ostream&

operator<< (std::ostream& ostr, const Ast& tree)

{

PrettyPrinter pv (ostr);

tree.accept (pv);

return ostr;

}

YAKA Presentation of TC-2 22 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

The PrettyPrinter

Think about using misc::indent to indent your ast printing.

Instead of using the accept method on each node of the ast,
use operator<<, which is cleaner and easier to read, as
defined in ‘ast/libast.cc’.
// Print the TREE on OSTR.

std::ostream&

operator<< (std::ostream& ostr, const Ast& tree)

{

PrettyPrinter pv (ostr);

tree.accept (pv);

return ostr;

}

YAKA Presentation of TC-2 22 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc [1]

When user-defined I/O operators are being written, it is often
desirable to have formatting flags specific to these operators,
probably set by using a corresponding manipulator.

The stream objects support this by providing a mechanism to
associate data with a stream. This mechanism can be used to
associate corresponding data (for example, using a
manipulator), and later retrieve the data.

The class ios base defines the two functions iword() and
pword(), each taking an int argument as the index, to access
a specific long& or void*& respectively.

YAKA Presentation of TC-2 23 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc [1]

When user-defined I/O operators are being written, it is often
desirable to have formatting flags specific to these operators,
probably set by using a corresponding manipulator.

The stream objects support this by providing a mechanism to
associate data with a stream. This mechanism can be used to
associate corresponding data (for example, using a
manipulator), and later retrieve the data.

The class ios base defines the two functions iword() and
pword(), each taking an int argument as the index, to access
a specific long& or void*& respectively.

YAKA Presentation of TC-2 23 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc [1]

When user-defined I/O operators are being written, it is often
desirable to have formatting flags specific to these operators,
probably set by using a corresponding manipulator.

The stream objects support this by providing a mechanism to
associate data with a stream. This mechanism can be used to
associate corresponding data (for example, using a
manipulator), and later retrieve the data.

The class ios base defines the two functions iword() and
pword(), each taking an int argument as the index, to access
a specific long& or void*& respectively.

YAKA Presentation of TC-2 23 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc [1]

The idea is that iword() and pword() access long or void*
objects in an array of arbitrary size stored with a stream
object. Formatting flags to be stored for a stream are then
placed at the same index for all streams.

The static member function xalloc() of the class ios base

is used to obtain an index that is not yet used for this purpose.

Initially, the objects accessed with iword() or pword() are
set to 0. This value can be used to represent the default
formatting or to indicate that the corresponding data was not
yet accessed.

YAKA Presentation of TC-2 24 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc [1]

The idea is that iword() and pword() access long or void*
objects in an array of arbitrary size stored with a stream
object. Formatting flags to be stored for a stream are then
placed at the same index for all streams.

The static member function xalloc() of the class ios base

is used to obtain an index that is not yet used for this purpose.

Initially, the objects accessed with iword() or pword() are
set to 0. This value can be used to represent the default
formatting or to indicate that the corresponding data was not
yet accessed.

YAKA Presentation of TC-2 24 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc [1]

The idea is that iword() and pword() access long or void*
objects in an array of arbitrary size stored with a stream
object. Formatting flags to be stored for a stream are then
placed at the same index for all streams.

The static member function xalloc() of the class ios base

is used to obtain an index that is not yet used for this purpose.

Initially, the objects accessed with iword() or pword() are
set to 0. This value can be used to represent the default
formatting or to indicate that the corresponding data was not
yet accessed.

YAKA Presentation of TC-2 24 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

xalloc: example

// get index for new ostream data

static const int iword_index = std::ios_base::xalloc();

// define manipulator that sets this data

std::ostream& fraction_spaces (std::ostream& o)

{

o.iword(iword_index) = true;

return o;

}

std::ostream& operator<< (std::ostream& o,

const Fraction& f)

{

if (o.iword(iword_index))

o << f.numerator() << " / " << f.denominator();

else

o << f.numerator() << "/" << f.denominator();

return o;

}

YAKA Presentation of TC-2 25 / 31

Improvements

1 Overview of the tarball

2 Code to write

3 parsetiger.yy

4 The ast

5 Improvements

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

& and | desugaring

Desugar the & and | operators using if statements

2 solutions:

Instantiate AST nodes by hand (IfExp, etc.)
Use the power of the parser and Tweast to desugar in concrete
syntax

YAKA Presentation of TC-2 27 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

& and | desugaring

Desugar the & and | operators using if statements

2 solutions:

Instantiate AST nodes by hand (IfExp, etc.)
Use the power of the parser and Tweast to desugar in concrete
syntax

YAKA Presentation of TC-2 27 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

& and | desugaring

Desugar the & and | operators using if statements

2 solutions:

Instantiate AST nodes by hand (IfExp, etc.)
Use the power of the parser and Tweast to desugar in concrete
syntax

YAKA Presentation of TC-2 27 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

& and | desugaring

Desugar the & and | operators using if statements

2 solutions:

Instantiate AST nodes by hand (IfExp, etc.)
Use the power of the parser and Tweast to desugar in concrete
syntax

YAKA Presentation of TC-2 27 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Tweast

The parser is very good at creating AST

Why should we do it by hand?

The Tweast mixes Tiger code (strings) with already
constructed AST

When parsing a Tweast, strings are parsed again, but AST are
just plugged in “holes”

YAKA Presentation of TC-2 28 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Tweast

The parser is very good at creating AST

Why should we do it by hand?

The Tweast mixes Tiger code (strings) with already
constructed AST

When parsing a Tweast, strings are parsed again, but AST are
just plugged in “holes”

YAKA Presentation of TC-2 28 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Tweast

The parser is very good at creating AST

Why should we do it by hand?

The Tweast mixes Tiger code (strings) with already
constructed AST

When parsing a Tweast, strings are parsed again, but AST are
just plugged in “holes”

YAKA Presentation of TC-2 28 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Tweast

The parser is very good at creating AST

Why should we do it by hand?

The Tweast mixes Tiger code (strings) with already
constructed AST

When parsing a Tweast, strings are parsed again, but AST are
just plugged in “holes”

YAKA Presentation of TC-2 28 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Adding an entry point (1/2)

A good example of the use of concrete syntax with Tweast is
main

Goal Apply this transformation:
program 7→ function main () = (program; ())

where program is an exp

YAKA Presentation of TC-2 29 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Adding an entry point (1/2)

A good example of the use of concrete syntax with Tweast is
main

Goal Apply this transformation:
program 7→ function main () = (program; ())

where program is an exp

YAKA Presentation of TC-2 29 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Adding an entry point (2/2)

Using abstract syntax:
ast::Exp** exp = boost::get<ast::Exp*> (&tree);

ast::Location loc = exp->location_get ();

ast::exps_type* exps = new exps_type ();

exps->push_back (*exp);

exps->push_back (new ast::SeqExp ());

ast::SeqExp* body = new ast::SeqExp (loc, exps);

ast::FunctionDecs* fundecs = new ast::FunctionDecs ();

fundecs.push_back

(ast::FunctionDec (loc, "_main", new ast::VarDecs (loc),

0, body));

res = new ast::DecsList ()

res.push_front (fundecs);

Using concrete syntax:
ast::Exp** exp = boost::get<ast::Exp*> (&tree);

res = tp.enable_extensions ().parse (Tweast () <<

"function _main () = (" << *exp << "; ())");

Which one do you prefer?

YAKA Presentation of TC-2 30 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Adding an entry point (2/2)

Using abstract syntax:
ast::Exp** exp = boost::get<ast::Exp*> (&tree);

ast::Location loc = exp->location_get ();

ast::exps_type* exps = new exps_type ();

exps->push_back (*exp);

exps->push_back (new ast::SeqExp ());

ast::SeqExp* body = new ast::SeqExp (loc, exps);

ast::FunctionDecs* fundecs = new ast::FunctionDecs ();

fundecs.push_back

(ast::FunctionDec (loc, "_main", new ast::VarDecs (loc),

0, body));

res = new ast::DecsList ()

res.push_front (fundecs);

Using concrete syntax:
ast::Exp** exp = boost::get<ast::Exp*> (&tree);

res = tp.enable_extensions ().parse (Tweast () <<

"function _main () = (" << *exp << "; ())");

Which one do you prefer?

YAKA Presentation of TC-2 30 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Adding an entry point (2/2)

Using abstract syntax:
ast::Exp** exp = boost::get<ast::Exp*> (&tree);

ast::Location loc = exp->location_get ();

ast::exps_type* exps = new exps_type ();

exps->push_back (*exp);

exps->push_back (new ast::SeqExp ());

ast::SeqExp* body = new ast::SeqExp (loc, exps);

ast::FunctionDecs* fundecs = new ast::FunctionDecs ();

fundecs.push_back

(ast::FunctionDec (loc, "_main", new ast::VarDecs (loc),

0, body));

res = new ast::DecsList ()

res.push_front (fundecs);

Using concrete syntax:
ast::Exp** exp = boost::get<ast::Exp*> (&tree);

res = tp.enable_extensions ().parse (Tweast () <<

"function _main () = (" << *exp << "; ())");

Which one do you prefer?

YAKA Presentation of TC-2 30 / 31

Overview of the tarball
Code to write
parsetiger.yy

The ast
Improvements

Bibliography I

Nicolai M. Josuttis.
The C++ standard library: A tutorial and reference, 1999.

YAKA Presentation of TC-2 31 / 31

	Overview of the tarball
	Code to write
	parsetiger.yy
	The ast
	Improvements

