Presentation of TC-8

Assistants 2009

May 6, 2014

Presentation of TC-8

- Overview of the tarball
- 2 Graph
- 3 Flowgraph
- 4 Liveness
- Interference
- 6 Testing

Overview of the tarball

- 1 Overview of the tarball
- @ Graph
- 3 Flowgraph
- 4 Liveness
- 5 Interference
- 6 Testing

- New directory:
 - 'src/liveness': Where you will work. Graphs describing the flow of control, the liveness and the interferences.
- New files:

- New directory:
 - 'src/liveness': Where you will work. Graphs describing the flow of control, the liveness and the interferences.
- New files:

- New directory:
 - 'src/liveness': Where you will work. Graphs describing the flow of control, the liveness and the interferences.
- New files:
 - 'lib/misc/graph*': Generic implementation of graph

- New directory:
 - 'src/liveness': Where you will work. Graphs describing the flow of control, the liveness and the interferences.
- New files:
 - 'lib/misc/graph*': Generic implementation of graph.

Graph

- 1 Overview of the tarball
- 2 Graph
- Flowgraph
- 4 Liveness
- Interference
- 6 Testing

Quick overview of Graph

- Rely on boost.
- Implemented as an adjacency graph.
- Take a look at methods and free functions for the class adjacency_list.

Quick overview of Graph

- Rely on boost.
- Implemented as an adjacency graph.
- Take a look at methods and free functions for the class adjacency_list.

Quick overview of Graph

- Rely on boost.
- Implemented as an adjacency graph.
- Take a look at methods and free functions for the class adjacency_list.

6 / 14

Presentation of TC-8

Flowgraph

- Overview of the tarball
- @ Graph
- 3 Flowgraph
- 4 Liveness
- 5 Interference
- 6 Testing

Quick overview of Flowgraph

- Nodes of the graph are instructions.
- If an instruction a can be followed by another b, then an edge is created between a and b.
- The flowgraph is an input for the creation of the liveness graph.

8 / 14

Quick overview of Flowgraph

- Nodes of the graph are instructions.
- If an instruction a can be followed by another b, then an edge is created between a and b.
- The flowgraph is an input for the creation of the liveness graph.

Quick overview of Flowgraph

- Nodes of the graph are instructions.
- If an instruction a can be followed by another b, then an edge is created between a and b.
- The flowgraph is an input for the creation of the liveness graph.

Liveness

- 1 Overview of the tarball
- 2 Graph
- 3 Flowgraph
- 4 Liveness
- 5 Interference
- 6 Testing

Quick overview of Liveness

- Answer to the question: who is alive just before the instruction, and who just afterwards?
- Rely on an iterative algorithm with a fixed point (even the least fixed point!).

Quick overview of Liveness

- Answer to the question: who is alive just before the instruction, and who just afterwards?
- Rely on an iterative algorithm with a fixed point (even the least fixed point!).

Interference

- Overview of the tarball
- 2 Graph
- 3 Flowgraph
- 4 Liveness
- 5 Interference
- 6 Testing

- Nodes of the graph are temporaries.
- If temporary a is alive at the same time than b, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation
- What about MOVE?

- Nodes of the graph are temporaries.
- If temporary *a* is alive at the same time than *b*, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation
- What about MOVE?

- Nodes of the graph are temporaries.
- If temporary *a* is alive at the same time than *b*, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation.
- What about MOVE?

- Nodes of the graph are temporaries.
- If temporary *a* is alive at the same time than *b*, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation.
- What about MOVE?
 - If one move a in b, an interference edge should be created.
 - But, in fact we want a and b to be in the same register.
 - No edge, but remember it was a MOVE

12 / 14

YAKA Presentation of TC-8

- Nodes of the graph are temporaries.
- If temporary *a* is alive at the same time than *b*, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation.
- What about MOVE?
 - If one move a in b, an interference edge should be created.
 - But, in fact we want a and b to be in the same register.
 - No edge, but remember it was a MOVE

- Nodes of the graph are temporaries.
- If temporary *a* is alive at the same time than *b*, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation.
- What about MOVE?
 - If one move a in b, an interference edge should be created.
 - But, in fact we want a and b to be in the same register.
 - No edge, but remember it was a MOVE

- Nodes of the graph are temporaries.
- If temporary a is alive at the same time than b, then they interfere, and an edge is created.
- The Interference graph is used for the register allocation.
- What about MOVE?
 - If one move a in b, an interference edge should be created.
 - But, in fact we want a and b to be in the same register.
 - No edge, but remember it was a MOVE!

Testing

- 1 Overview of the tarball
- 2 Graph
- 3 Flowgraph
- 4 Liveness
- 5 Interference
- **6** Testing

Testing TC-8

- No automated way to do it!
- A few unit tests, but principally:
- By looking at the generated graphs with dotty.

Testing TC-8

- No automated way to do it!
- A few unit tests, but principally:
- By looking at the generated graphs with dotty.

YAKA Presentation of TC-8

Testing TC-8

- No automated way to do it!
- A few unit tests, but principally:
- By looking at the generated graphs with dotty.

14 / 14

YAKA Presentation of TC-8