
Typology of programming languages
e Evaluation strategy E

Typology of programming languages Evaluation strategy 1 / 27

Argument passing
From a naive point of view (and for strict
evaluation), three possible modes: in, out,
in-out. But there are different flavors.

Va
l

Va
lC

on
st

R
ef
C
on

st

R
es

R
ef

Va
lR

es

N
am

e

ALGOL 60 * *
Fortran ? ?
PL/1 ? ?
ALGOL 68 * *
Pascal * *
C * ? ?
Modula 2 * ?
Ada (simple types) * * *
Ada (others) ? ? ? ? ?
Alphard * * *

Typology of programming languages Evaluation strategy 2 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 3 / 27

Call by Value – definition

Passing arguments to a function copies
the actual value of an argument into the
formal parameter of the function.

In this case, changes made to the
parameter inside the function have no
effect on the argument.

def foo(val):
val = 1

i = 12
foo(i)
print (i)

Call by value in Python – output: 12

Typology of programming languages Evaluation strategy 4 / 27

Pros & Cons

Safer: variables cannot be
accidentally modified

Copy: variables are copied into
formal parameter even for huge data

Evaluation before call: resolution
of formal parameters must be done
before a call

I Left-to-right: Java, Common Lisp,
Effeil, C#, Forth

I Right-to-left: Caml, Pascal
I Unspecified: C, C++, Delphi, ,

Ruby

Typology of programming languages Evaluation strategy 5 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 6 / 27

Call by Reference – definition
Passing arguments to a function
copies the actual address of an
argument into the formal parameter.
In this case, changes made to the
parameter inside the function will have
effect on the argument.

void swap(int &x, int &y){
int t = x; x = y; y = t;

}
int main() {
int x = 2, y = 3;
swap(a, b);
printf("%d, %d\n", x, y);

}

Call by reference in C++ – output: 3 2
Typology of programming languages Evaluation strategy 7 / 27

Pros & Cons
Faster than call-by-value if data
structure have a large size.

Readability & Undesirable
behavior: a special attention may
be considered when doing
operations on multiple references
since they can all refer to the
same object

void xor_swap(int &x, int &y) {
x = x ^ y;
y = y ^ x;
x = x ^ y;

}

Undesirable behavior when x and y refers
the same object (zeroing x and y)

Typology of programming languages Evaluation strategy 8 / 27

Note on call-by-reference

swap(foo, foo) is forbidden in Pascal but
what about swap(foo[bar], foo[baz]) …

Typology of programming languages Evaluation strategy 9 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 10 / 27

Call by Value-Result – definition

Passing arguments to a function copies
the argument into the formal parameter
of the function.
The values are then copied back when
exiting the function

In this case, changes made to the parameter
inside the function will only reflect on the
argument at the end of the function.

Typology of programming languages Evaluation strategy 11 / 27

Call by Value-Result – Example

procedure Tryit is
procedure swap (i1, i2: in out integer) is

tmp: integer;
begin

tmp := i1; i1 := i2; i2 := tmp;
end swap;

a : integer := 1; b : integer := 2;
begin
swap(a, b);
Put_Line(Integer'Image (a) & " " &

Integer'Image (b)) ;
end Tryit;

Call by Value-result in Ada – output: 2 1

Typology of programming languages Evaluation strategy 12 / 27

Pros & Cons

Safety other thread will only see
consistent values since changes
made will not show up until after
the end of the function.

Local copies: but they can be
sometimes avoided by the compiler

Typology of programming languages Evaluation strategy 13 / 27

Notes on call-by-value-result

Also called: Call by copy-restore,
Call by copy-in copy-out

If the reference is passed to the
callee uninitialized, this evaluation
strategy is called call by result.
Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once,

during function call
I AlgolW: Evaluates arguments

during call AND when exiting the
function

Typology of programming languages Evaluation strategy 14 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 15 / 27

An outsider: call by name
(In ALGOL 60) It behaves as a macro
would, including with name captures:
the argument is evaluated at each use.

Try to write some code which
results in a completely different
result had SWAP been a function.

#define SWAP(Foo, Bar) \
do { \
int tmp_ = (Foo); \
(Foo) = (Bar); \
(Bar) = tmp_; \

} while (0)

ALGOL 60 introduced “thunks” :
snippets of code that return the
l-value when evaluated.

Typology of programming languages Evaluation strategy 16 / 27

An application of call by name: Jensen’s Device
General computation of a sum of a series

∑u
k=l ak :

real procedure Sum(k, l, u, ak)
value l, u;
integer k, l, u;
real ak;
comment `k' and `ak' are passed by name;

begin
real s;
s := 0;
for k := l step 1 until u do

s := s + ak;
Sum := s

end;

Computing the first 100 terms of a real array V[]:

Sum(i, 1, 100, V[i])

Typology of programming languages Evaluation strategy 17 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 18 / 27

Call by Need
Call by need is a memoized variant of call
by name where, if the function argument
is evaluated, that value is stored for
subsequent uses.

The argument is then evaluated only once,
during its first use.

What if y = 0 in the following code?

let function loop (z: int):int =
if z > 0 then z else loop (z)

function f (x: int):int =
if y > 8 then x else -y

in
// if y > 8 then loop (y) else -y ?
f (loop (y))

end

Typology of programming languages Evaluation strategy 19 / 27

Call by name vs. Call by need

Call by name
Don’t pass the evaluation of the
expression, but a “thunk” computing
it:

let var a := 5 + 7 in
a + 10

end
==>
let function a () := 5 + 7 in

a () + 10
end

Call by need
The thunk is evaluated once and only
once. Add a “memo” field.

Typology of programming languages Evaluation strategy 20 / 27

Lazy evaluation
easydiff f x h = (f (x + h) - f (x)) / h

repeat f a = a : repeat f (f a)
halve x = x / 2
differentiate h0 f x = map (easydiff f x) (repeat halve h0)

within eps (a : b : rest)
| abs (b - a) <= eps = b
| otherwise = within eps (b : rest)

relative eps (a : b : rest)) =
| abs (b - a) <= eps * abs b = b
| otherwise = relative eps (b : rest)

within eps (differentiate h0 f x)

Slow convergence…Suppose the existence of an error term:

a (i) = A + B * (2 ** n) * (h ** n)
a (i + 1) = A + B * (h ** n)

Typology of programming languages Evaluation strategy 21 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 22 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val

6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val

6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val 6 2 2
Val-Res (ALGOL W)

6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada)

4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref

9 2 2
Name 6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name

6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Exhibit the differences (Explicit lyrics…)

var t : integer
foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);
begin
foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t
Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Evaluation strategy 23 / 27

Table of Contents

1 Call by Value

2 Call by Reference

3 Call by Value-Result

4 Call by Name

5 Call by Need

6 Summary

7 Notes on Call-by-sharing

Typology of programming languages Evaluation strategy 24 / 27

Call by Sharing – definition
Call by sharing implies that values in the language are based on objects rather than
primitive types, i.e. that all values are ”boxed”

Differs from both call-by-value and call-by-reference.

call by sharing is not in common use; the terminology is inconsistent across different
sources.

def f(list):
list.append(1)

m = []
f(m)
print(m)

Call by sharing in Python – out-
put: [1]

def f(list):
list = [1]

m = []
f(m)
print(m)

Call by sharing in Python – out-
put: []

Typology of programming languages Evaluation strategy 25 / 27

Notes on Call-by-sharing
Mutations of arguments perfors mall by

the called routine
will be visible to the caller.

Access is not given to the variables of the
caller,

but merely to certain objects

Can be seen as ”call by value” in the case
where the value is an object reference

First introduced by Barbara Liskov
for CLU language (1974)

Widely used by: Python, Java, Ruby,
JavaScript, Scheme, OCaml, …

Typology of programming languages Evaluation strategy 26 / 27

Notes on Call-by-sharing
Mutations of arguments perfors mall by

the called routine
will be visible to the caller.

Access is not given to the variables of the
caller,

but merely to certain objects

Can be seen as ”call by value” in the case
where the value is an object reference

First introduced by Barbara Liskov
for CLU language (1974)

Widely used by: Python, Java, Ruby,
JavaScript, Scheme, OCaml, …

Typology of programming languages Evaluation strategy 26 / 27

Notes on Call-by-sharing
Mutations of arguments perfors mall by

the called routine
will be visible to the caller.

Access is not given to the variables of the
caller,

but merely to certain objects

Can be seen as ”call by value” in the case
where the value is an object reference

First introduced by Barbara Liskov
for CLU language (1974)

Widely used by: Python, Java, Ruby,
JavaScript, Scheme, OCaml, …

Typology of programming languages Evaluation strategy 26 / 27

Notes on Call-by-sharing
Mutations of arguments perfors mall by

the called routine
will be visible to the caller.

Access is not given to the variables of the
caller,

but merely to certain objects

Can be seen as ”call by value” in the case
where the value is an object reference

First introduced by Barbara Liskov
for CLU language (1974)

Widely used by: Python, Java, Ruby,
JavaScript, Scheme, OCaml, …

Typology of programming languages Evaluation strategy 26 / 27

Summary

call by name call by need

call by value call by value
result

call by
reference

Typology of programming languages Evaluation strategy 27 / 27

	Call by Value
	Call by Reference
	Call by Value-Result
	Call by Name
	Call by Need
	Summary
	Notes on Call-by-sharing

