
Typology of programming languages
e Handling inheritance E

Typology of programming languages Handling inheritance 1 / 16

Problem Statement

Simple Inheritance: a class may
herit at most from only one class

Multiple Inheritance: more
powerful than the simple
inheritance but introduces
problems.
Eiffel proposes the adaptation
clauses to solve these problems.

Typology of programming languages Handling inheritance 2 / 16

Problem Statement

Simple Inheritance: a class may
herit at most from only one class

Multiple Inheritance: more
powerful than the simple
inheritance but introduces
problems.
Eiffel proposes the adaptation
clauses to solve these problems.

Class A

primitive

p

Class B

primitive

p

Class C

inherit

 A

 B

X

What does

X.p

 mean ?

Typology of programming languages Handling inheritance 2 / 16

Multiple Inheritance is Sometimes Necessary

SHAPE

POLYGON

SQUARE COLORED_SHAPE

COLORED_SQUARE

Typology of programming languages Handling inheritance 3 / 16

Inheritance for factorization
Simple inheritance helps to factorization:

A B

A B

AB

And multiple inheritance is sometimes
mandatory

A B C A B C

AB BC

Smalltalk, Java, … only propose a
solution for modelisation while Eiffel also
solves the factorization problems.

Typology of programming languages Handling inheritance 4 / 16

Jointure of primitives

Two corner cases deferred is an Eiffel

keyword meaning virtual in C++:

class A

class B class C

class D

p

class B class C

class D

deferred pdeferred p

Typology of programming languages Handling inheritance 5 / 16

Quick Overview of the Other Languages

Multiple inheritance is forbidden
because it raises numerous problems
and it is not necessary.
⇒ Java, Smalltalk, Ada

Chosse a lookup strategy and the
programmer must conform it:
⇒ C++

Propose tools (in the language) for
solving problems related to multiple
inheritance
⇒ Eiffel’s inheritance adaptation
clauses.

Typology of programming languages Handling inheritance 6 / 16

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited
primitives

A-definition inherited primitives
(make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

Typology of programming languages Handling inheritance 7 / 16

Renaming Clauses
class SQUARE

inherit
SHAPE

rename
make as make_shape

end ;

feature
width : INTEGER ;
make(x,y : INTEGER ;

w : INTEGER) is
do

make_shape(x,y) ;
width := w ;

end ;

end -- class SQUARE

The renamed primitive is still
accessible but with a different
name.

The original name can then be used
for another primitive even with a
different signature.

Typology of programming languages Handling inheritance 8 / 16

(French) Example

TELEPHONE_MURAL

rename

decrocher

as

decrocher_du_mur

TELEPHONE OBJET_MURAL

méthode

décrocher()

méthode

décrocher()

Typology of programming languages Handling inheritance 9 / 16

Visibility Filter
class SQUARE

inherit
SHAPE

rename make as make_shape
export {NONE} make_shape
end ;

feature

width : INTEGER ;

make(x,y : INTEGER ;
w : INTEGER) is

do
make_shape(x,y) ;
width := w ;

end ;
end -- class SQUARE

make_shape was accessible
without reasons in class SQUARE

May help to mask inherited
primitive

Typology of programming languages Handling inheritance 10 / 16

Access Restrictions

feature ou feature{ANY}
primitives with default access
value
(All objects derive from ANY)

feature{A,B,C,...}
primitives with access restricted
only to some classes A, B, C

feature{} ou feature{NONE}
unreachable primitives
(NONE : no instance from this
classe)

Typology of programming languages Handling inheritance 11 / 16

Redefinition Clauses

class SQUARE

inherit
SHAPE

rename make as make_shape
export {NONE} make_shape
redefine draw
end ;

feature

draw(g : GRAPHICS) is
do

...
end ;

...

Constraints on redefintions

Each redefinition must be declared

Redefined methods are targetted by
the dynamic lookup

Typology of programming languages Handling inheritance 12 / 16

Keep and redefine

Redefinition to support dynamic lookup

Here, we loose dynamic lookup

class B

inherit
A
rename p as pa end;

feature

p ... is ...

Here, dynamic lookup will work:

class B

inherit
A
rename p as pa end;

A
redefine p end;

feature

p ... is ...

Typology of programming languages Handling inheritance 13 / 16

Keep and redefine

Redefinition to support dynamic lookup

Here, we loose dynamic lookup

class B

inherit
A
rename p as pa end;

feature

p ... is ...

Here, dynamic lookup will work:

class B

inherit
A
rename p as pa end;

A
redefine p end;

feature

p ... is ...

Typology of programming languages Handling inheritance 13 / 16

Selection Clauses

How to resolve this problem:

primitive p

primitive q

class A

primitive p

class D

class C

primitive p

class B

redefine predefine p

rename p as pcrename p as pb

Given x : A, what does x.p means? If
x references an instance of class A, it is the
primitive p from A. Same thing happens
for an object of B ou C. What about
instances of class D ?

Example:

q() is do p() end ;

Typology of programming languages Handling inheritance 14 / 16

A-definition

The A-définition allows to undefine
methods

Useful to ”delete” methods that don’t
make sense anymore.

class TELEPHONE_MURAL
inherit

TELEPHONE ;
OBJET_MURAL

undefine decrocher
end ;
...

Typology of programming languages Handling inheritance 15 / 16

Summary

Contracts Adaptation
Clauses

Multiple
Inheritance Full OO

Typology of programming languages Handling inheritance 16 / 16

