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CLU syntax and semantic

CLU looks like an Algol-like language,
but its semantics is like that of Lisp

History of CLU:
ftp://ftp.lcs.mit.edu/pub/pclu/CLU/3.Documents/clu-history.PS
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Problem Statement

How to write a data structure or
algorithm that can work with elements of

many different types?
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Quote on CLU by B. Liskov

“ An abstract data type is a concept
whose meaning is captured in a set
of specifications […] An implemen-
tation is correct if it ”satisfies” the
abstraction’s specification.

–
B. Liskov
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Genericity in CLU

First ideas of generic programming
date back from CLU (in 1974, before
it was named like this [HOPL’93]).

Some programming concepts
present in CLU:

I data abstraction (encapsulation)
I iterators (well, generators actually)
I type safe variants (oneof)
I multiple assignment (x, y, z

= f(t))
I parameterized modules
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Genericity in CLU

In CLU, modules are implemented
as clusters
programming units grouping a data
type and its operations.

Notion of parametric polymorphism.
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Parameterized modules in CLU

Initially: parameters checked at run
time.

Then: introduction of
where-clauses
(requirements on parameter(s)).

Only operations of the type
parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of
parameterized modules.

→ Generation of a single code.
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An example of parameterized module in CLU

set = cluster [t: type] is
create, member, size,
insert, delete,
elements

where
t has equal:

proctype (t, t)
returns (bool)

Note, inside set, the only valid operation
on t values is equal.
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Implementation of parameterized modules in CLU

Notion of instantiation:
binding a module and its
parameter(s)

Syntax: module[parameter]

Dynamic instantiation of
parameterized modules.

Typology of programming languages History of Genericity 12 / 33



Implementation of parameterized modules in CLU

Instantiated modules derived from a
non-instantiated object module.
Common code is shared.

Pros and cons of run- or load-time
binding:
Pros No combinatorial explosion

due to systematic code
generation (as with C++
templates).

Cons Lack of static instantiation
context means less
opportunities to optimize.
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Genericity in Ada 83

Introduced with the generic keyword
generic

type T is private ;
procedure swap ( x , y : in out T ) is

t : T
begin

t : = x ; x : = y ; y : = t ;
end swap ;

-- Explicit instantiations.
procedure in t_swap is new swap ( INTEGER ) ;
procedure s t r_swap is new swap ( STRING ) ;

Example of unconstrained
genericity.

Instantiation of generic clauses is
explicit (no implicit instantiation as
in C++).
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Generic packages in Ada 83
generic

type T is private ;

package STACKS is

type STACK ( s i z e : POSITIVE ) is
record

space : array ( 1 . . s i z e ) of T ;
index : NATURAL

end record ;

function empty ( s : in STACK )
return BOOLEAN ;

procedure push ( t : in T ;
s : in out STACK ) ;

procedure pop ( s : in out STACK ) ;

function top ( s : in STACK ) return T ;
end STACKS ;

package INT_STACKS is new STACKS ( INTEGER ) ;
package STR_STACKS is new STACKS ( STRING ) ;
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Constrained Genericity in Ada 83

Constrained genericity imposes
restrictions on generic types:
generic

type T is private ;
with function ” <= ” ( a , b : T )

return BOOLEAN is < >;
function minimum ( x , y : T ) return T is

begin
if x <= y then

return x ;
else

return y ;
end if ;

end minimum ;

Constraints are only of syntactic
nature (no formal constraints
expressing semantic assertions)
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Constrained Genericity in Ada 83: Instantiation

Instantiation can be fully qualified
function T1_minimum

is new minimum ( T1 , T1_ l e ) ;

or take advantage of implicit names:
function int_minimum

is new minimum ( INTEGER ) ;

Here, the comparison function is
already known as <=.
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More Genericity Examples in Ada 83

Interface (“specification”):
-- matrices.ada
generic

type T is private ;
z e r o : T ;
un i t y : T ;
with function ” + ” ( a , b : T )

return T is < >;
with function ” ∗ ” ( a , b : T )

return T is < >;
package MATRICES is

type MATRIX ( l i n e s , columns : POSITIVE ) is
array ( 1 . . l i n e s , 1 . . columns ) of T ;

function ” + ” (m1 , m2 : MATRIX )
return MATRIX ;

function ” ∗ ” (m1 , m2 : MATRIX )
return MATRIX ;

end MATRICES ;
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More Genericity Examples in Ada 83

Instantiations:
package FLOAT_MATRICES

is new MATRICES ( FLOAT , 0 . 0 , 1 . 0 ) ;

package BOOL_MATRICES is
new MATRICES (BOOLEAN, f a l s e ,

t rue , ” or ” , ” and ” ) ;
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More Genericity Examples in Ada 83

Implementation (“body”):
-- matrices.adb
package body MATRICES is

function ” ∗ ” (m1 , m2 : MATRIX ) is
r e s u l t : MATRIX (m1 ’ l i n e s , m2 ’ columns )

begin
if m1’ columns /= m2 ’ l i n e s then

raise INCOMPATIBLE_SIZES ;
end if ;
for i in m1’RANGE ( 1 ) loop

for j in m2’RANGE ( 2 ) loop
r e s u l t ( i , j ) : = z e r o ;
for k in m1’RANGE ( 2 ) loop

r e s u l t ( i , j ) : = r e s u l t ( i , j ) + m1 ( i , k ) ∗ m2 ( k , j ) ;
end loop ;

end loop ;
end loop ;

end ” ∗ ” ;
-- Other declarations...

end MATRICES ;
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A History of C++ Templates

Initial motivation: provide
parameterized containers.

Previously, macros were used to
provide such containers
(in C and C with classes).

Many limitations, inherent to the
nature of macros:

I Poor error messages
referring to the code written by
cpp, not by the programmer.

I Need to instantiate templates
once per compile unit, manually.

I No support for recurrence.
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Simulating parameterized types with macros
#define VECTOR(T) vector_ ## T

#define GEN_VECTOR(T) \
class VECTOR(T) { \
public: \

typedef T value_type; \
VECTOR(T)() { /* ... */ } \
VECTOR(T)(int i) { /* ... */ } \
value_type& operator[](int i) { /* ... */ } \
/* ... */ \

}

// Explicit instantiations.
GEN_VECTOR(int);
GEN_VECTOR(long);

int main() {
VECTOR(int) vi;
VECTOR(long) vl;

}
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A History of C++ Templates (cont.)

Introduction of a template
mechanism around 1990,
later refined (1993) before the
standardization of C++ in 1998.

Class templates.

Function templates (and member
function templates).

Automatic deduction of parameters
of template functions.

Type and non-type template
parameters.
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A History of C++ Templates (cont.)

No explicit constraints on
parameters.

Implicit (automatic) template
instantiation
(though explicit instantiation is still
possible).

Full (classes, functions) and partial
(classes) specializations of templates
definitions.

A powerful system allowing
metaprogramming techniques
(though not designed for that in the
first place!)
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Class Templates

template <typename T>
class vector {
public:

typedef T value_type;
vector() { /* ... */ }
vector(int i) { /* ... */ }
value_type& operator[](int i) { /* ... */ }
/* ... */

};

// No need for explicit template instantiations.

int main() {
vector<int> vi;
vector<long> vl;

}
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Function Templates
Natural in a language with non-member
functions (such as C++).
template <typename T>
void swap ( T& a , T& b )
{

T tmp = a ;
a = b ;
b = tmp ;

}

Class templates can make up for the
lack of generic functions in most
uses cases (through fonctor).
Eiffel does not feature generic
function at all.

Java and C-sharp provide only
generic member functions.
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Specialization of Template Definitions

Idea: provide another definition for
a subset of the parameters.

Motivation: provide (harder,) better,
faster, stronger implementations for
a given template class or function.

Example: boolean vector has its own
definition, different from type T
vector

Mechanism close to function
overloading in spirit, but distinct.
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Alexander Alexandrovich Stepanov (Nov. 16, 1950)

Алексан́др Алексан́дрович Степан́ов

Typology of programming languages History of Genericity 30 / 33



The Standard Template Library (STL)
A library of containers, iterators,
fundamental algorithms and tools,
using C++ templates.

Designed by Alexander Stepanov at
HP.

The STL is not the Standard
C++Library
(nor is one a subset of the other)
although most of it is part of the
standard

Introduces the notion of concept: a
set of syntactic and semantic
requirements over one (or several)
types.

But the language does not enforce
them.

Initially planned as a language
extension in the C++11/14/17
standard…

…but abandonned shortly before the
standardization. :-(
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Example

template<typename T>
concept Hashable =
requires(T a) {

{ std::hash<T>{}(a) } ->
std::convertible_to

<std::size_t>;
};

// constrained C++20
// function template
template<Hashable T>
void f(T);
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Summary

templates generics

partial 
specialization Constraints
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