
Typology of programming languages
e Concepts behind generics E

Typology of programming languages Concepts behind generics 1 / 29

Problem Statement

How to implement Generics?

Typology of programming languages Concepts behind generics 2 / 29

Table of Contents

1 Monomorphization

2 Boxing

Typology of programming languages Concepts behind generics 3 / 29

Monomorphization

The monomorphization approach
outputs multiple versions of the code for
each type we want to use it with

C++ template

Rust procedural macros

D, Ada

Typology of programming languages Concepts behind generics 4 / 29

Various Monomorphization
What representation do I monomorphize

copies with?

source
code Compiler IR

Code Generation with types?

templates Traits bounds

No YesC macro, Go/genny

C++, D Rust

Typology of programming languages Concepts behind generics 5 / 29

C monomorphization
#define VECTOR(T) vector_ ## T

#define GEN_VECTOR(T) \
class VECTOR(T) { \
public: \
typedef T value_type; \
VECTOR(T)() { /* ... */ } \
VECTOR(T)(int i) { /* ... */ } \
value_type& operator[](int i) { /* ... */ } \
/* ... */ \

}

// Explicit instantiations.
GEN_VECTOR(int);
GEN_VECTOR(long);

int main() {
VECTOR(int) vi;
VECTOR(long) vl;

}
Typology of programming languages Concepts behind generics 6 / 29

C++ Templates

template <typename T>
class vector {
public:
typedef T value_type;
vector() { /* ... */ }
vector(int i) { /* ... */ }
value_type& operator[](int i) { /* ... */ }
/* ... */

};

// No need for explicit template instantiations.

int main() {
vector<int> vi;
vector<long> vl;

}

Typology of programming languages Concepts behind generics 7 / 29

Rust monomorphization

fn printer<T: Display>(t: T) {
println!("{}", t);

}

// Bounding restricts the generic
// to types that conform to
// the bounds.
struct S<T: Display>(T);

// Error! `Vec<T>` does not
// implement `Display`. This
// specialization will fail.
let s = S(vec![1]);

Typology of programming languages Concepts behind generics 8 / 29

Rust polyomorphization
An optimisation which determines when
functions, closures and generators could
remain polymorphic during code
generation.

Polymorphization will identify A as being
unused

fn foo<A, B>() {
let x: Option = None;

}

fn main() {
foo::<u16, u32>();
foo::<u64, u32>();

}
Typology of programming languages Concepts behind generics 9 / 29

Table of Contents

1 Monomorphization

2 Boxing

Typology of programming languages Concepts behind generics 10 / 29

Boxing: main idea
Put everything in uniform ”boxes” so that
they all act the same way

The data structure only handles
pointers

Pointers to different types act the
same way

… so the same code can deal with all
data types!

Wideley used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id

Typology of programming languages Concepts behind generics 11 / 29

Boxing: main idea
Put everything in uniform ”boxes” so that
they all act the same way

The data structure only handles
pointers

Pointers to different types act the
same way

… so the same code can deal with all
data types!

Wideley used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id
Typology of programming languages Concepts behind generics 11 / 29

Various boxing

Boxing a thing

But I want to
remember types of

things
But I need to call
functions on thing

vtables Type Erasure

Uniform
representation

Java

Ocaml

 Embedded vtables

Dictionnary
passing

Witness tables

SwiftHaskell
Ocaml

Java C++Go interfaces
Rust dyn

traits

Typology of programming languages Concepts behind generics 12 / 29

Pro/cons with the boxing approach

Pros:

Easy to implement in (any) language

Cons:

Casts for every read/write in the
structure

=⇒ runtime overhead!

Error-prone: type-checking
=⇒ No mechanism to prevent

us putting elements of different
types into the structure

Typology of programming languages Concepts behind generics 13 / 29

Type-erased boxed generics

Idea
add generics functionality to the
type system

BUT use the basic boxing method
exactly as before at runtime.

⇒ This approach is often called
type erasure, because the types in
the generics system are ”erased” and
all become the same type

Java and Objective-C both started
out with basic boxing

… but add features for generics with
type erasure

Typology of programming languages Concepts behind generics 14 / 29

Type-erased boxed generics

Idea
add generics functionality to the
type system

BUT use the basic boxing method
exactly as before at runtime.

⇒ This approach is often called
type erasure, because the types in
the generics system are ”erased” and
all become the same type

Java and Objective-C both started
out with basic boxing

… but add features for generics with
type erasure

Typology of programming languages Concepts behind generics 14 / 29

Java Example

Without Generics (pre Java 4.0)
Throws java.lang.ClassCastException
L i s t v = new A r r a y L i s t () ;
v . add (” t e s t ”) ;
// A String that cannot be cast to an
// Integer => Run time error
I n t e g e r i = (I n t e g e r) v . ge t (0) ;

With Generics
Fails at compile time
L i s t < S t r i ng > v = new Ar r ayL i s t < S t r i ng > () ;
v . add (” t e s t ”) ;
// (type error) compilation-time error
I n t e g e r i = v . ge t (0) ;

Typology of programming languages Concepts behind generics 15 / 29

Java Example

Without Generics (pre Java 4.0)
Throws java.lang.ClassCastException
L i s t v = new A r r a y L i s t () ;
v . add (” t e s t ”) ;
// A String that cannot be cast to an
// Integer => Run time error
I n t e g e r i = (I n t e g e r) v . ge t (0) ;

With Generics
Fails at compile time
L i s t < S t r i ng > v = new Ar r ayL i s t < S t r i ng > () ;
v . add (” t e s t ”) ;
// (type error) compilation-time error
I n t e g e r i = v . ge t (0) ;

Typology of programming languages Concepts behind generics 15 / 29

Inferred boxed generics with a uniform representation

Problem with simple boxing
In the previous approach, generic data

structures cannot
hold primitive types!

Ocaml’s Solution
Uniform representation where there are

no primitive types that
requires an additional boxing allocation !

Typology of programming languages Concepts behind generics 16 / 29

Inferred boxed generics with a uniform representation
(cont’d)
Ocaml’s apporach:

no additional boxing allocation (like
int needing to be turned into an
Integer)

everything is either already boxed or
represented by a pointer-sized
integer
=⇒ everything is one machine
word

Problem :garbage collector needs to
distinguish pointers from integers
⇒ there is a reserved bit in machine
word

Typology of programming languages Concepts behind generics 17 / 29

Introducing Interfaces

Limitation with boxing
The boxed types are completely opaque!

(generic sorting function need some extra
functionality, like a type-specific

comparison function.)

⇒ Dictionnary passing
⇒ Interface vtables

Typology of programming languages Concepts behind generics 18 / 29

Dictionnary passing

Dictionary passing
Haskell (type class), Ocaml (modules)

Pass a table of the required function
pointers along to generic functions
that need them

similar to constructing Go-style
interface objects at the call site

Typology of programming languages Concepts behind generics 19 / 29

A note on Dictionnary passing

Swift Witness Tables

Use dictionary passing and put the
size of types and how to move, copy
and free them into the tables,

Provide all the information required
to work with any type in a uniform
way

…without boxing them
(monomorphization).

Going further
Have a look to Intensional Type
Analysis.

Typology of programming languages Concepts behind generics 20 / 29

Interface vtables

Interface vtables
Rust (dyn traits) & Golang (interface)

When casting to interface type it
creates a wrapper

The wrapper contains (1) a pointer
to the original object and (2) a
pointer to a vtable of the
type-specific functions for that
interface

Typology of programming languages Concepts behind generics 21 / 29

Go example

type S tack struct {
v a l u e s [] i n t e r f a c e { }

}

func (t h i s ∗ S tack) Push (va l u e i n t e r f a c e { }) {
t h i s . v a l u e s = append (t h i s . va lue s , v a l u e)

}

Typology of programming languages Concepts behind generics 22 / 29

Metaprogramming

Metaprogramming
Writing programs that write programs.

Some language a clean way of doing code
generation

Syntax tree macros: the ability to
produce AST types in macros
written in the language

Template: reason about types and
type substitution

Compile time functions

Typology of programming languages Concepts behind generics 23 / 29

Rust metaprogramming
Function-like procedural macros
define public function

Derive macros append functions to
structs

Attributes macro add fields to
structs

#[proc_macro]
pub fn make_answer(_item: TokenStream)
-> TokenStream {

"fn answer() -> u32 { 42 }"
.parse().unwrap()

}

make_answer!();
fn main() {

println!("{}", answer());
}

Typology of programming languages Concepts behind generics 24 / 29

C++ metaprogramming

template <unsigned int n>
struct factorial {
enum { value = n *
factorial<n - 1>::value };

};

template <>
struct factorial<0> {

enum { value = 1 };
};

Typology of programming languages Concepts behind generics 25 / 29

From interface vtables to Reflection (1/3)

In Object-oriented programming (like
Java)

No need to have separate interface
objects

the vtable pointer is embedded at
the start of every object

Reflection
With vtables, it’s not difficult to have
reflection since the compiler can
generates tables of other type
information like field names, types and
locations

Typology of programming languages Concepts behind generics 26 / 29

From interface vtables to Reflection (2/3)

Reflection is the ability of a program to
examine, introspect, and modify its own
structure and behavior at runtime.

Reflection is not limited to OOP!
and most functionnal languages can

create new types!
Python and Ruby have super-powered
reflection systems that are used for

everything.

Typology of programming languages Concepts behind generics 27 / 29

From interface vtables to Reflection (3/3)
Introspection: ability to observe
and therefore reason about its own
state.
public boolean c l a s s e q u a l (Ob jec t o1 ,

Ob jec t o2) {
C l a s s c1 = o1 . g e tC l a s s () ;
C l a s s c2 = o2 . g e tC l a s s () ;
return (c1 == c2) ;

}

Intercession: ability to modify its
execution state or alter its own
interpretation
Cla s s c = ob j . g e tC l a s s () ;
Ob jec t o = c . newIns tance () ;

S t r i n g s = ” FooBar ” .
C l a s s c = C la s s . forName (s) ;
Ob jec t o = c . newIns tance () ;

Typology of programming languages Concepts behind generics 28 / 29

Summary

type erasure

monomorphization

vtables
Dictionnary

Metaprogramming

Reflexivity

Typology of programming languages Concepts behind generics 29 / 29

	Monomorphization
	Boxing

