
Typology of programming languages
e Prototype based object system E

Typology of programming languages Prototype based object system 1 / 15

Engineering Properties, L.Caardelli 1996

Economy of execution.
How fast does a program run?

Economy of compilation.
How long does it take to go from sources to executables?

Economy of small-scale development.
How hard must an individual programmer work?

Economy of large-scale development.
How hard must a team of programmers work?

Economy of language features.
How hard is it to learn or use a programming language?

Typology of programming languages Prototype based object system 2 / 15

Table of Contents

1 Self

2 Heirs

3 CLOS

Typology of programming languages Prototype based object system 3 / 15

Problem Statement

Traditional class-based OO languages are
based on a deep-rooted duality:

Classes: defines behaviours of
objects.

Object instances: specific
manifestations of a class

Unless one can predict with certainty
what qualities a set of objects and classes
will have in the distant future, one
cannot design a class hierarchy properly

Typology of programming languages Prototype based object system 4 / 15

Self
Invented by David Ungar and Randall B.
Smith in 1986 at Xerox Park

Overview:

Neither classes nor meta-classes

Self objects are a collection of slots.
Slots are accessor methods that
return values.

Self object is a stand-alone entity

An object can delegate any message
it does not understand itself to the
parent object

Inspired from Smalltalks blocks for
flow control

Generational garbage collector

Typology of programming languages Prototype based object system 5 / 15

Example in self

Copy object lecture and set fill title
to TYLA

tyla := lecture copy title: 'TYLA'.

add slot to an object

tyla _AddSlots: (| remote <- 'true'|).

Modifies at runtime the parent

myObject parent: someOtherObject.

Typology of programming languages Prototype based object system 6 / 15

Impacts

Javascript

NewtonScript

Io

Rust

Go

Typology of programming languages Prototype based object system 7 / 15

Table of Contents

1 Self

2 Heirs

3 CLOS

Typology of programming languages Prototype based object system 8 / 15

Rust, Go, …

Gang of 4 quote
Object-oriented programs are made up of
objects. An object packages both data
and the procedures that operate on that
data. The procedures are typically called
methods or operations.

Rust’s documentation
Even though structs and enums with
methods aren’t called objects, they
provide the same functionality, according
to the Gang of Four’s definition of
objects.

Typology of programming languages Prototype based object system 9 / 15

Example in Rust

trait Foo {
fn method(&self) -> String;

}

impl Foo for u8 {
fn method(&self) -> String

{ format!("u8: {}", *self) }
}

impl Foo for String {
fn method(&self) -> String

{ format!("string: {}", *self) }
}

fn do_something<T: Foo>(x: T) {
x.method();

}

Typology of programming languages Prototype based object system 10 / 15

Duck Typing

If it walks like a duck and it quacks like a
duck,

then it must be a duck

Deffered to a later lecture (about
Genericity)

Typology of programming languages Prototype based object system 11 / 15

Table of Contents

1 Self

2 Heirs

3 CLOS

Typology of programming languages Prototype based object system 12 / 15

CLOS

Developed in mid 80’s.

Overview:

Metaobject Protocol

Meta-class

Multiple Inheritance

Multiple dispatch

Generic Functions

Method Qualifier

Introspection

Typology of programming languages Prototype based object system 13 / 15

Small Example

(defclass human () (name size birth-year))
(make-instance 'human)

(defclass Shape () ())
(defclass Rectangle (Shape) ())
(defclass Ellipse (Shape) ())
(defclass Triangle (Shape) ())

(defmethod intersect ((r Rectangle) (e Ellipse))
...)

(defmethod intersect ((r1 Rectangle) (r2 Rectangle))
...)

(defmethod intersect ((r Rectangle) (s Shape))
...)

Typology of programming languages Prototype based object system 14 / 15

Summary

Prototype
based OO Duck Typing

MOP Multiple
dispatch

Typology of programming languages Prototype based object system 15 / 15

	Self
	Heirs
	CLOS

