
Some
Programming Language

History

Akim Demaille Étienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA � École Pour l'Informatique et les Techniques Avancées

February 10, 2020

Some
Programming Language
History

1 The Very First Ones

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 2 / 88

The Tower of Babel [Pigott, 2006]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 3 / 88

The Very First Ones

1 The Very First Ones
FORTRAN
ALGOL
COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 4 / 88

FORTRAN

1 The Very First Ones
FORTRAN
ALGOL
COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 5 / 88

IBM 704 (1956)

A. Demaille, E. Renault, R. Levillain Some Programming Language History 6 / 88

IBM Mathematical Formula Translator system

Fortran I, 1954-1956, IBM 704, a team led by John Backus.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 7 / 88

IBM Mathematical Formula Translator System

The main goal is user satisfaction (economical interest) rather than
academic. Compiled language.

a single data structure : arrays

comments

arithmetics expressions

DO loops

subprograms and functions

I/O

machine independence

A. Demaille, E. Renault, R. Levillain Some Programming Language History 8 / 88

FORTRAN's success

Because:

programmers productivity

easy to learn

by IBM

the audience was mainly scienti�c

simpli�cations (e.g., I/O)

A. Demaille, E. Renault, R. Levillain Some Programming Language History 9 / 88

FORTRAN I

C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF

C VALUES GREATER THAN IT

DIMENSION A(99)

REAL MEAN

READ(1,5)N

5 FORMAT(I2)

READ(1,10)(A(I),I=1,N)

10 FORMAT(6F10.5)

SUM=0.0

DO 15 I=1,N

15 SUM=SUM+A(I)

MEAN=SUM/FLOAT(N)

NUMBER=0

DO 20 I=1,N

IF (A(I) .LE. MEAN) GOTO 20

NUMBER=NUMBER+1

20 CONTINUE

WRITE (2,25) MEAN,NUMBER

25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5)

STOP

END

A. Demaille, E. Renault, R. Levillain Some Programming Language History 10 / 88

Fortran on Cards

A. Demaille, E. Renault, R. Levillain Some Programming Language History 11 / 88

Fortrans

FORTRAN I

FORTRAN II

FORTRAN IV

GPSS BASIC PL/I

COBOL ALGOL 60

FORTRAN 77

FORTRAN 90

FORTRAN 95

A. Demaille, E. Renault, R. Levillain Some Programming Language History 12 / 88

ALGOL

1 The Very First Ones
FORTRAN
ALGOL
ALGOL 58

ALGOL 60

ALGOL W

ALGOL 68

COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 13 / 88

The Very First Ones

ALGOL, Demon Star, Beta Persei, 26 Persei

A. Demaille, E. Renault, R. Levillain Some Programming Language History 14 / 88

ALGOL 58

1 The Very First Ones
FORTRAN
ALGOL
ALGOL 58

ALGOL 60

ALGOL W

ALGOL 68

COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 15 / 88

ALGOL 58

Originally, IAL, International Algebraic Language.
Goals:

1 Usable for algorithm publications in scienti�c reviews
2 As close as possible to the usual mathematical notations
3 Readable without assistance
4 Automatically translatable into machine code

Meeting between 8 Americans and Europeans in Zurich. ALGOL 58.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 16 / 88

ALGOL 58

Originally, IAL, International Algebraic Language.
Goals:

1 Usable for algorithm publications in scienti�c reviews
2 As close as possible to the usual mathematical notations
3 Readable without assistance
4 Automatically translatable into machine code

Meeting between 8 Americans and Europeans in Zurich. ALGOL 58.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 16 / 88

ALGOL 58

Originally, IAL, International Algebraic Language.
Goals:

1 Usable for algorithm publications in scienti�c reviews
2 As close as possible to the usual mathematical notations
3 Readable without assistance
4 Automatically translatable into machine code

Meeting between 8 Americans and Europeans in Zurich. ALGOL 58.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 16 / 88

ALGOL 58

Originally, IAL, International Algebraic Language.
Goals:

1 Usable for algorithm publications in scienti�c reviews
2 As close as possible to the usual mathematical notations
3 Readable without assistance
4 Automatically translatable into machine code

Meeting between 8 Americans and Europeans in Zurich. ALGOL 58.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 16 / 88

ALGOL 58

Originally, IAL, International Algebraic Language.
Goals:

1 Usable for algorithm publications in scienti�c reviews
2 As close as possible to the usual mathematical notations
3 Readable without assistance
4 Automatically translatable into machine code

Meeting between 8 Americans and Europeans in Zurich. ALGOL 58.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 16 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

ALGOL 58 [Wikipedia, 2005]

In May 1958, IAL was rejected as an "'unspeakable' and pompous
acronym"
Introduced the fundamental notion of compound statement

restricted to control �ow only
not tied to identi�er scope

Used during 1959 to publish algorithm in CACM
use of ALGOL notation in publication many years

Primary contribution was to later languages: a basis for JOVIAL
Quick, MAD, and NELIAC.

Early compromise design soon superseded by ALGOL 60

A. Demaille, E. Renault, R. Levillain Some Programming Language History 17 / 88

JOVIAL [Wikipedia, 2005]

"Jules Own Version of the International Algorithmic Language."

Developed to write software for the electronics of military aircraft by
Jules Schwartz in 1959.

Runs the Advanced Cruise Missile, B-52, B-1, and B-2 bombers,
C-130, C-141, and C-17 transport aircraft, F-15, F-16, F-18, and
F-117 �ghter aircraft, LANTIRN, U-2 aircraft, E-3 Sentry AWACS
aircraft, Special Operations Forces, Navy AEGIS cruisers, Army
Multiple Launch Rocket System (MLRS), Army UH-60 Blackhawk
helicopters, F-100, F117, F119 jet engines, and RL-10 rocket engines.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 18 / 88

JOVIAL [Wikipedia, 2005]

"Jules Own Version of the International Algorithmic Language."

Developed to write software for the electronics of military aircraft by
Jules Schwartz in 1959.

Runs the Advanced Cruise Missile, B-52, B-1, and B-2 bombers,
C-130, C-141, and C-17 transport aircraft, F-15, F-16, F-18, and
F-117 �ghter aircraft, LANTIRN, U-2 aircraft, E-3 Sentry AWACS
aircraft, Special Operations Forces, Navy AEGIS cruisers, Army
Multiple Launch Rocket System (MLRS), Army UH-60 Blackhawk
helicopters, F-100, F117, F119 jet engines, and RL-10 rocket engines.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 18 / 88

JOVIAL [Wikipedia, 2005]

"Jules Own Version of the International Algorithmic Language."

Developed to write software for the electronics of military aircraft by
Jules Schwartz in 1959.

Runs the Advanced Cruise Missile, B-52, B-1, and B-2 bombers,
C-130, C-141, and C-17 transport aircraft, F-15, F-16, F-18, and
F-117 �ghter aircraft, LANTIRN, U-2 aircraft, E-3 Sentry AWACS
aircraft, Special Operations Forces, Navy AEGIS cruisers, Army
Multiple Launch Rocket System (MLRS), Army UH-60 Blackhawk
helicopters, F-100, F117, F119 jet engines, and RL-10 rocket engines.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 18 / 88

ALGOL 60

1 The Very First Ones
FORTRAN
ALGOL
ALGOL 58

ALGOL 60

ALGOL W

ALGOL 68

COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 19 / 88

ALGOL 60 Participants at HOPL, 1974

Figure: John Mac Carthy, Fritz Bauer, Joe Wegstein. Bottom row: John Backus,
Peter Naur, Alan Perlis [Mac Carthy, 2006]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 20 / 88

ALGOL 60: Novelties

Use of BNF to describe the syntax

Informal semantics

Block structure

Dynamic arrays

Advanced control �ow (if, for...)

Recursivity

A. Demaille, E. Renault, R. Levillain Some Programming Language History 21 / 88

ALGOL 60: Novelties

Use of BNF to describe the syntax

Informal semantics

Block structure

Dynamic arrays

Advanced control �ow (if, for...)

Recursivity

A. Demaille, E. Renault, R. Levillain Some Programming Language History 21 / 88

ALGOL 60: Novelties

Use of BNF to describe the syntax

Informal semantics

Block structure

Dynamic arrays

Advanced control �ow (if, for...)

Recursivity

A. Demaille, E. Renault, R. Levillain Some Programming Language History 21 / 88

ALGOL 60: Novelties

Use of BNF to describe the syntax

Informal semantics

Block structure

Dynamic arrays

Advanced control �ow (if, for...)

Recursivity

A. Demaille, E. Renault, R. Levillain Some Programming Language History 21 / 88

ALGOL 60: Novelties

Use of BNF to describe the syntax

Informal semantics

Block structure

Dynamic arrays

Advanced control �ow (if, for...)

Recursivity

A. Demaille, E. Renault, R. Levillain Some Programming Language History 21 / 88

ALGOL 60: Novelties

Use of BNF to describe the syntax

Informal semantics

Block structure

Dynamic arrays

Advanced control �ow (if, for...)

Recursivity

A. Demaille, E. Renault, R. Levillain Some Programming Language History 21 / 88

ALGOL 60: One syntax, three lexics [Mohr, 2004]

Reference language (used in the ALGOL-60 Report)

a[i+1] := (a[i] + pi x r�2) / 6.021023;

Publication language

ai+1 ← {ai + π × r2}/6.02× 1023;

Hardware representations � implementation dependent

a[i+1] := (a[i] + pi * r^2) / 6.02E23;

or a(/i+1/) := (a(/i/) + pi * r ** 2) / 6,02e23;

or A(.I+1.) .= (A(.I.) + PI * R 'POWER' 2) / 6.02'23.,

A. Demaille, E. Renault, R. Levillain Some Programming Language History 22 / 88

ALGOL 60: One syntax, three lexics [Mohr, 2004]

Reference language (used in the ALGOL-60 Report)

a[i+1] := (a[i] + pi x r�2) / 6.021023;

Publication language

ai+1 ← {ai + π × r2}/6.02× 1023;

Hardware representations � implementation dependent

a[i+1] := (a[i] + pi * r^2) / 6.02E23;

or a(/i+1/) := (a(/i/) + pi * r ** 2) / 6,02e23;

or A(.I+1.) .= (A(.I.) + PI * R 'POWER' 2) / 6.02'23.,

A. Demaille, E. Renault, R. Levillain Some Programming Language History 22 / 88

ALGOL 60: One syntax, three lexics [Mohr, 2004]

Reference language (used in the ALGOL-60 Report)

a[i+1] := (a[i] + pi x r�2) / 6.021023;

Publication language

ai+1 ← {ai + π × r2}/6.02× 1023;

Hardware representations � implementation dependent

a[i+1] := (a[i] + pi * r^2) / 6.02E23;

or a(/i+1/) := (a(/i/) + pi * r ** 2) / 6,02e23;

or A(.I+1.) .= (A(.I.) + PI * R 'POWER' 2) / 6.02'23.,

A. Demaille, E. Renault, R. Levillain Some Programming Language History 22 / 88

ALGOL 60: For Loops

for loop syntax

<for statement>

::= <for clause> <statement>

| <label>: <for statement>

<for clause> ::= for <variable> := <for list> do

<for list> ::= <for list element>

| <for list> , <for list element>

<for list element>

::= <arithmetic expression>

| <arithmetic expression> step <arithmetic expression>

until <arithmetic expression>

| <arithmetic expression> while <Boolean expression>

A. Demaille, E. Renault, R. Levillain Some Programming Language History 23 / 88

ALGOL 60: For Loops

for step until

for i := 1 step 2 until N do

a[i] := b[i];

for while

for newGuess := Improve (oldGuess)

while abs (newGuess - oldGuess) > 0.0001 do

oldGuess := newGuess;

for enumerations

for days := 31,

if mod(year, 4) = 0 then 29 else 28,

31, 30, 31, 30, 31, 31, 30, 31, 30, 31 do

. . .

A. Demaille, E. Renault, R. Levillain Some Programming Language History 24 / 88

ALGOL 60: For Loops

for step until

for i := 1 step 2 until N do

a[i] := b[i];

for while

for newGuess := Improve (oldGuess)

while abs (newGuess - oldGuess) > 0.0001 do

oldGuess := newGuess;

for enumerations

for days := 31,

if mod(year, 4) = 0 then 29 else 28,

31, 30, 31, 30, 31, 31, 30, 31, 30, 31 do

. . .

A. Demaille, E. Renault, R. Levillain Some Programming Language History 24 / 88

ALGOL 60: For Loops

for step until

for i := 1 step 2 until N do

a[i] := b[i];

for while

for newGuess := Improve (oldGuess)

while abs (newGuess - oldGuess) > 0.0001 do

oldGuess := newGuess;

for enumerations

for days := 31,

if mod(year, 4) = 0 then 29 else 28,

31, 30, 31, 30, 31, 31, 30, 31, 30, 31 do

. . .

A. Demaille, E. Renault, R. Levillain Some Programming Language History 24 / 88

ALGOL 60: For Loops

for complete

for i := 3, 7,

11 step 1 until 16,

i / 2 while i >= 1,

2 step i until 32 do

print (i);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 25 / 88

ALGOL 60: Loss

FORTRAN was occupying too much room

Richer than FORTRAN, so more di�cult

IBM tried to impose ALGOL, but clients refused, and even threatened
IBM

FORTRAN compilers were more e�cient and smaller

No standardized I/O

A. Demaille, E. Renault, R. Levillain Some Programming Language History 26 / 88

ALGOL 60: Loss

FORTRAN was occupying too much room

Richer than FORTRAN, so more di�cult

IBM tried to impose ALGOL, but clients refused, and even threatened
IBM

FORTRAN compilers were more e�cient and smaller

No standardized I/O

A. Demaille, E. Renault, R. Levillain Some Programming Language History 26 / 88

ALGOL 60: Loss

FORTRAN was occupying too much room

Richer than FORTRAN, so more di�cult

IBM tried to impose ALGOL, but clients refused, and even threatened
IBM

FORTRAN compilers were more e�cient and smaller

No standardized I/O

A. Demaille, E. Renault, R. Levillain Some Programming Language History 26 / 88

ALGOL 60: Loss

FORTRAN was occupying too much room

Richer than FORTRAN, so more di�cult

IBM tried to impose ALGOL, but clients refused, and even threatened
IBM

FORTRAN compilers were more e�cient and smaller

No standardized I/O

A. Demaille, E. Renault, R. Levillain Some Programming Language History 26 / 88

ALGOL 60: Loss

FORTRAN was occupying too much room

Richer than FORTRAN, so more di�cult

IBM tried to impose ALGOL, but clients refused, and even threatened
IBM

FORTRAN compilers were more e�cient and smaller

No standardized I/O

A. Demaille, E. Renault, R. Levillain Some Programming Language History 26 / 88

ALGOL 60

begin

comment The mean of numbers and the number of greater values;

integer n;

read(n);

begin

real array a[1:n];

integer i, number;

real sum, mean;

for i := 1 step 1 until n do read (a[i]);

sum := 0;

for i := 1 step 1 until n do sum := sum + a[i];

mean := sum / n;

number := 0;

for i := 1 step 1 until n do

if a[i] > mean then

number := number + 1;

write ("Mean = ", mean, "Number sups = ", number);

end

end
A. Demaille, E. Renault, R. Levillain Some Programming Language History 27 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL 60: Legacy

block,

call by value, call by name,

typed procedures,

declaration scope,

dynamic arrays,

own variables,

side e�ects,

global and local variables,

primary, term, factor,

step, until, while, if then

else,

bound pair,

display stack technique,

thunks,

activation records,

recursive descent parser.

�

Here is a language so far ahead of its time that it was not only an
improvement on its predecessors but also on nearly all its successors.

� C.A.R. Hoare

A. Demaille, E. Renault, R. Levillain Some Programming Language History 28 / 88

ALGOL W

1 The Very First Ones
FORTRAN
ALGOL
ALGOL 58

ALGOL 60

ALGOL W

ALGOL 68

COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 29 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

ALGOL W

Niklaus Wirth, 1966:

Agregates (records, structures)

References (hence lists, trees, etc.)

Split for into for and while

Introduction of case (switch)

Call by value, result, value-result

New types long real, complex, bits

Introduction of assert

String processing functions

A. Demaille, E. Renault, R. Levillain Some Programming Language History 30 / 88

Niklaus Wirth [Wirth, 1999]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 31 / 88

ALGOL 68

1 The Very First Ones
FORTRAN
ALGOL
ALGOL 58

ALGOL 60

ALGOL W

ALGOL 68

COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 32 / 88

ALGOL 68 Samples [Wikipedia, 2005]

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:

if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 33 / 88

ALGOL 68 Samples [Wikipedia, 2005]

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:

if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 33 / 88

ALGOL 68 Samples [Wikipedia, 2005]

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:

if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 33 / 88

ALGOL 68 Samples [Wikipedia, 2005]

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:

if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 33 / 88

ALGOL 68 Samples [Wikipedia, 2005]

Arrays, Functional Arguments

proc apply (ref [] real a, proc (real) real f):

for i from lwb a to upb a do a[i] := f(a[i]) od;

User De�ned Operators

prio max = 9;

op max = (int a,b) int: (a>b | a | b);

op max = (real a,b) real: (a>b | a | b);

op max = (compl a,b) compl: (abs a > abs b | a | b);

op max = ([]real a) real:

(real x := - max real;

for i from lwb a to upb a

do (a[i]>x | x:=a[i]) od;

x);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 34 / 88

ALGOL 68 Samples [Wikipedia, 2005]

Arrays, Functional Arguments

proc apply (ref [] real a, proc (real) real f):

for i from lwb a to upb a do a[i] := f(a[i]) od;

User De�ned Operators

prio max = 9;

op max = (int a,b) int: (a>b | a | b);

op max = (real a,b) real: (a>b | a | b);

op max = (compl a,b) compl: (abs a > abs b | a | b);

op max = ([]real a) real:

(real x := - max real;

for i from lwb a to upb a

do (a[i]>x | x:=a[i]) od;

x);

A. Demaille, E. Renault, R. Levillain Some Programming Language History 34 / 88

ALGOL and its heirs

ALGOL 60

ALGOL 58

Oberon Ada 95

Modula 2 Ada 83

Pascal

BCPL

B

C

C++

ALGOL W SIMULA 67

ALGOL 68

A. Demaille, E. Renault, R. Levillain Some Programming Language History 35 / 88

COBOL

1 The Very First Ones
FORTRAN
ALGOL
COBOL

2 The Second Wave

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 36 / 88

Grace Murray, December 9, 1906 � January 1, 1992

A. Demaille, E. Renault, R. Levillain Some Programming Language History 37 / 88

Captain Grace Murray-Hopper

A. Demaille, E. Renault, R. Levillain Some Programming Language History 38 / 88

Rear Admiral Grace Murray-Hopper

A. Demaille, E. Renault, R. Levillain Some Programming Language History 39 / 88

Commodore Grace Murray-Hopper

A. Demaille, E. Renault, R. Levillain Some Programming Language History 40 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

Life was simple before World War II.

After that, we had systems.

�

I seem to do a lot of retiring.

�

In pioneer days they used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger ox.
We shouldn't be trying for bigger computers, but for more systems of
computers.

�

Humans are allergic to change. They love to say, �We've always done
it this way.� I try to �ght that. That's why I have a clock on my wall that
runs counter-clockwise.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 41 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

Life was simple before World War II. After that, we had systems.

�

I seem to do a lot of retiring.

�

In pioneer days they used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger ox.
We shouldn't be trying for bigger computers, but for more systems of
computers.

�

Humans are allergic to change. They love to say, �We've always done
it this way.� I try to �ght that. That's why I have a clock on my wall that
runs counter-clockwise.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 41 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

Life was simple before World War II. After that, we had systems.

�

I seem to do a lot of retiring.

�

In pioneer days they used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger ox.
We shouldn't be trying for bigger computers, but for more systems of
computers.

�

Humans are allergic to change. They love to say, �We've always done
it this way.� I try to �ght that. That's why I have a clock on my wall that
runs counter-clockwise.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 41 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

Life was simple before World War II. After that, we had systems.

�

I seem to do a lot of retiring.

�

In pioneer days they used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger ox.
We shouldn't be trying for bigger computers, but for more systems of
computers.

�

Humans are allergic to change. They love to say, �We've always done
it this way.� I try to �ght that. That's why I have a clock on my wall that
runs counter-clockwise.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 41 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

Life was simple before World War II. After that, we had systems.

�

I seem to do a lot of retiring.

�

In pioneer days they used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger ox.
We shouldn't be trying for bigger computers, but for more systems of
computers.

�

Humans are allergic to change. They love to say, �We've always done
it this way.� I try to �ght that. That's why I have a clock on my wall that
runs counter-clockwise.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 41 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

A business' accounts receivable �le is much more important than its
accounts payable �le.

�

We're �ooding people with information. We need to feed it through a
processor. A human must turn information into intelligence or knowledge.
We've tended to forget that no computer will ever ask a new question.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 42 / 88

Quotes from Grace Murray Hopper [Huggins, 2006]

�

A business' accounts receivable �le is much more important than its
accounts payable �le.

�

We're �ooding people with information. We need to feed it through a
processor. A human must turn information into intelligence or knowledge.
We've tended to forget that no computer will ever ask a new question.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 42 / 88

COBOL

Common Business Oriented Language, end of the 50's.

The most used language worldwide for a long time.
Imposed by the DOD, thanks to Grace Hopper:

to have a contract, a COBOL compiler was required,
any material bought on governmental funding had to have a COBOL
compiler.

A program is composed of divisions.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 43 / 88

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. INOUT.

* Read a file, add information to records, and save

* as another file.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INP-FIL ASSIGN TO INFILE.

SELECT OUT-FIL ASSIGN TO OUTFILE.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 44 / 88

COBOL (CONT'D)

DATA DIVISION.

FILE SECTION.

FD INP-FIL

LABEL RECORDS STANDARD

DATA RECORD IS REC-IN.

01 REC-IN.

05 α-IN PIC A(4).

05 SP-CH-IN PIC X(4).

05 NUM-IN PIC 9(4).

FD OUT-FIL

LABEL RECORDS STANDARD

DATA RECORD IS REC-OUT.

01 REC-OUT.

05 α-OUT PIC A(4).

05 SP-CH-OUT PIC X(4).

05 NUM-OUT PIC 9(4).

05 EXTRAS PIC X(16).

A. Demaille, E. Renault, R. Levillain Some Programming Language History 45 / 88

COBOL (CONT'D)

WORKING-STORAGE SECTION.

01 EOF PIC X VALUE IS 'N'.

PROCEDURE DIVISION.

AA.

OPEN INPUT INP-FIL

OPEN OUTPUT OUT-FIL

PERFORM CC

PERFORM BB THRU CC UNTIL EOF = 'Y'

CLOSE INP-FIL, OUT-FIL

DISPLAY "End of Run"

STOP RUN

A. Demaille, E. Renault, R. Levillain Some Programming Language History 46 / 88

COBOL (CONT'D)

BB.

MOVE REC-IN TO REC-OUT

MOVE 'EXTRA CHARACTERS' TO EXTRAS

WRITE REC-OUT.

CC.

READ INP-FIL

AT END MOVE 'Y' TO EOF.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 47 / 88

COBOL

�

The use of COBOL cripples the mind;
its teaching should, therefore, be regarded as a criminal o�ense.

� Edsger Dijkstra

A. Demaille, E. Renault, R. Levillain Some Programming Language History 48 / 88

In the 24th century. . . [Goose, 2010]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 49 / 88

In the 24th century. . . [Goose, 2010]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 50 / 88

The Second Wave

1 The Very First Ones

2 The Second Wave
APL
PL/I
BASIC
Pascal & Heirs

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 51 / 88

APL

1 The Very First Ones

2 The Second Wave
APL
PL/I
BASIC
Pascal & Heirs

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 52 / 88

The Second Wave

Kenneth E. Iverson

A. Demaille, E. Renault, R. Levillain Some Programming Language History 53 / 88

APL

�

APL, in which you can write a program to simulate shu�ing a deck
of cards and then dealing them out to several players in four characters,
none of which appear on a standard keyboard.

� David Given

�

APL is a mistake, carried through to perfection. It is the language of
the future for the programming techniques of the past: it creates a new
generation of coding bums.

� Edsger Dijkstra, 1968

�

By the time the practical people found out what had happened; APL
was so important a part of how IBM ran its business that it could not
possibly be uprooted.

� Micheal S. Montalbano, 1982

A. Demaille, E. Renault, R. Levillain Some Programming Language History 54 / 88

APL

�

APL, in which you can write a program to simulate shu�ing a deck
of cards and then dealing them out to several players in four characters,
none of which appear on a standard keyboard.

� David Given

�

APL is a mistake, carried through to perfection. It is the language of
the future for the programming techniques of the past: it creates a new
generation of coding bums.

� Edsger Dijkstra, 1968

�

By the time the practical people found out what had happened; APL
was so important a part of how IBM ran its business that it could not
possibly be uprooted.

� Micheal S. Montalbano, 1982

A. Demaille, E. Renault, R. Levillain Some Programming Language History 54 / 88

APL

�

APL, in which you can write a program to simulate shu�ing a deck
of cards and then dealing them out to several players in four characters,
none of which appear on a standard keyboard.

� David Given

�

APL is a mistake, carried through to perfection. It is the language of
the future for the programming techniques of the past: it creates a new
generation of coding bums.

� Edsger Dijkstra, 1968

�

By the time the practical people found out what had happened; APL
was so important a part of how IBM ran its business that it could not
possibly be uprooted.

� Micheal S. Montalbano, 1982

A. Demaille, E. Renault, R. Levillain Some Programming Language History 54 / 88

APL Keyboard

A. Demaille, E. Renault, R. Levillain Some Programming Language History 55 / 88

APL Program

Prime Numbers up to R

(∼ R ∈ R ◦ .× R)/R → 1 ↓ ιR

A. Demaille, E. Renault, R. Levillain Some Programming Language History 56 / 88

APL IDE

A. Demaille, E. Renault, R. Levillain Some Programming Language History 57 / 88

PL/I

1 The Very First Ones

2 The Second Wave
APL
PL/I
BASIC
Pascal & Heirs

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 58 / 88

PL/I

Be able to address all the needs:

scienti�c (�oats, arrays, procedures, e�cient computation)

business (�xed points, fast asychronous I/O, string processing
functions, search and sort routines)

real time

�ltering

bit strings

lists

By IBM for IBM 360. �Includes� FORTRAN IV, ALGOL 60, COBOL 60
and JOVIAL. Introduction of ON, for exceptions.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 59 / 88

PL/I

1963 FORTRAN VI

They quickly dropped compatibility: NPL

1965, implementation in England of PL/I

A. Demaille, E. Renault, R. Levillain Some Programming Language History 60 / 88

IBM 360

A. Demaille, E. Renault, R. Levillain Some Programming Language History 61 / 88

IBM 360

1442N1 Card reader / punch

S/360 CPU, model 30(?)

2260 Display terminal

1403N1 Impact printer

2305 Drum storage

2401 Tape storage

2803 Tape control unit

2321 Data cell storage

LCS Large core storage device

1443 Impact printer

2821 Control unit

2311 Disk storage

2841 DASD control unit

1052 Console typewriter

1072 Console station

A. Demaille, E. Renault, R. Levillain Some Programming Language History 62 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

PL/I Surprises [Holt, 1972]

No reserved keywords in PL/I.
IF IF = THEN THEN THEN = ELSE ELSE ELSE = IF

Abbreviations: DCL (not DEC) for DECLARE, PROC for PROCEDURE.

25 + 1/3 yields 5.33333333333333 (�unde�ned� says [IBM,])

25 + 01/3 behaves as expected...

the loop
DO I = 1 TO 32/2 ,

Statements

END;

is executed zero times.

�Advanced� control structures
GOTO I,(1,2,3,92)

Implementation of MULTICS

A. Demaille, E. Renault, R. Levillain Some Programming Language History 63 / 88

EXAMPLE : PROCEDURE OPTIONS (MAIN);

/* Find the mean of n numbers and the number of

values greater than it */

GET LIST (N);

IF N > 0 THEN

BEGIN;

DECLARE MEAN, A(N), DECIMAL POINT

NUM DEC FLOAT INITIAL(0),

NUMBER FIXED INITIAL (0)

GET LIST (A);

DO I = 1 TO N;

SUM = SUM + A(I);

END

MEAN = SUM / N;

DO I = 1 TO N;

IF A(I) > MEAN THEN

NUMBER = NUMBER + 1;

END

PUT LIST ('MEAM = ', MEAN,

'NUMBER SUP = ', NUMBER);

END EXAMPLE;

A. Demaille, E. Renault, R. Levillain Some Programming Language History 64 / 88

PL/I by Dijkstra

�

When FORTRAN has been called an infantile disorder,
full PL/1, with its growth characteristics of a dangerous tumor,
could turn out to be a fatal disease.

� Edsger Dijkstra

A. Demaille, E. Renault, R. Levillain Some Programming Language History 65 / 88

PL/I by Dijkstra

�

Using PL/I must be like �ying a plane with 7000 buttons, switches,
and handles to manipulate in the cockpit. I absolutely fail to see how we
can keep our growing programs �rmly within our intellectual grip when by
its sheer baroqueness, the programming language�our basic tool, mind
you!�already escapes our intellectual control.
And if I have to describe the in�uence PL/I can have on its users, the
closest metaphor that comes to my mind is that of a drug.

� [Dijkstra, 1972]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 66 / 88

BASIC

1 The Very First Ones

2 The Second Wave
APL
PL/I
BASIC
Pascal & Heirs

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 67 / 88

BASIC

Beginner's All-purpose Symbolic
Instruction Code, J. Kemeny et T.
Kurtz, 1965.
Made to be simple and interpreted
(NEW, DELETE, LIST, SAVE, OLD,
RUN).

10 REM FIND THE MEAN OF N

12 REM NUMBERS AND THE

14 REM NUMBER OF VALUES

16 REM GREATER THAN IT

20 DIM A(99)

30 INPUT N

40 FOR I = 1 TO N

50 INPUT A(I)

60 LET S = S + A(I)

70 NEXT I

80 LET M = S / N

90 LET K = 0

100 FOR I = 1 TO N

110 IF A(I) < M THEN 130

120 LET K = K + 1

130 NEXT I

140 PRINT "MEAN = ", M

150 PRINT "NUMBER SUP = ", K

160 STOP

170 ENDA. Demaille, E. Renault, R. Levillain Some Programming Language History 68 / 88

Pascal & Heirs

1 The Very First Ones

2 The Second Wave
APL
PL/I
BASIC
Pascal & Heirs

3 The Finale

A. Demaille, E. Renault, R. Levillain Some Programming Language History 69 / 88

Pascal

Niklaus Wirth, end of the 60's.

Keep the ALGOL structure, but obtain FORTRAN's performances.

repeat, until.

Enumerated types.

Interval types.

Sets.

Records.

No norm/standard.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 70 / 88

Ada (83)

A command from the DOD in the 70's. Embeded systems.

Strawman, spec.

Woodenman,

Tinman, no satisfying language, hence a competition.

Ironman,

Steelman, Ada, the green language, wins. Jean Ichbiah,
Honeywell-Bull.

Package, package libraries, rich control structures, in, out, in out,
interruptions, exceptions, clock.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 71 / 88

Modula-2, Oberon

Niklaus Wirth.
Modula-2 :

Module, interface, implementation.

Uniform syntax.

Low level features (system programming).

Processes, synchronization, co-routines.

Procedure types.

Oberon : Inheritance.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 72 / 88

The Finale

1 The Very First Ones

2 The Second Wave

3 The Finale
K. N. King
Quotes
The Quiz

A. Demaille, E. Renault, R. Levillain Some Programming Language History 73 / 88

K. N. King

1 The Very First Ones

2 The Second Wave

3 The Finale
K. N. King
Quotes
The Quiz

A. Demaille, E. Renault, R. Levillain Some Programming Language History 74 / 88

K. N. King & Jean Ichbiah [King, 1993]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 75 / 88

K. N. King & Alan Kay [King, 1993]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 76 / 88

K. N. King & Dennis Ritchie [King, 1993]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 77 / 88

K. N. King & Bjarne Stroustrup [King, 1993]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 78 / 88

K. N. King & Niklaus Wirth [King, 1993]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 79 / 88

Quotes

1 The Very First Ones

2 The Second Wave

3 The Finale
K. N. King
Quotes
The Quiz

A. Demaille, E. Renault, R. Levillain Some Programming Language History 80 / 88

Programming Languages

COBOL was designed so that managers could read code

BASIC was designed for people who are not programmers

FORTRAN is for scientists

ADA comes from a committee, a government committee no less

PILOT is for teachers

PASCAL is for students

LOGO is for children

APL is for Martians

FORTH, LISP and PROLOG are specialty languages

C, however, is for programmers

A. Demaille, E. Renault, R. Levillain Some Programming Language History 81 / 88

Programming Languages

COBOL was designed so that managers could read code

BASIC was designed for people who are not programmers

FORTRAN is for scientists

ADA comes from a committee, a government committee no less

PILOT is for teachers

PASCAL is for students

LOGO is for children

APL is for Martians

FORTH, LISP and PROLOG are specialty languages

C, however, is for programmers

A. Demaille, E. Renault, R. Levillain Some Programming Language History 81 / 88

Larry Wall

So far we've managed to avoid turning

Perl

into APL. :-)

A. Demaille, E. Renault, R. Levillain Some Programming Language History 82 / 88

Larry Wall

So far we've managed to avoid turning Perl into APL. :-)

A. Demaille, E. Renault, R. Levillain Some Programming Language History 82 / 88

The Quiz

1 The Very First Ones

2 The Second Wave

3 The Finale
K. N. King
Quotes
The Quiz

A. Demaille, E. Renault, R. Levillain Some Programming Language History 83 / 88

Programming Language Inventor or Serial Killer?
[Round, 2006]

A. Demaille, E. Renault, R. Levillain Some Programming Language History 84 / 88

Bibliographic notes

[Pigott, 2006] An extensive dictionary of programming languages and their
relations.

[Pixel, 2007] Syntactic comparison between programming languages.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 85 / 88

Bibliography I

Dijkstra, E. W. (1972).
The humble programmer.
Commun. ACM, 15(10):859�866.
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF.

Goose, A. (2010).
in the 24th century. . .� Abstruse Goose.
2010-12-03.

Holt, R. C. (1972).
Teaching the fatal disease (or) introductory computer programming
using PL/I.
http://plg.uwaterloo.ca/~holt/papers/fatal_disease.html.

Huggins, J. (2006).
Grace Murray Hopper.
http://www.jamesshuggins.com/h/tek1/grace_hopper.htm.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 86 / 88

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF
http://plg.uwaterloo.ca/~holt/papers/fatal_disease.html
http://www.jamesshuggins.com/h/tek1/grace_hopper.htm

Bibliography II

IBM.
Enterprise PL/I for z/OS, version 3.6, language reference, arithmetic
operations.

King, K. N. (1993).
Photos from history of programming languages ii.
http://www2.gsu.edu/~matknk/hopl.html.

Mac Carthy, J. (2006).
jmc's web page.
http://www-formal.stanford.edu/jmc/index.html.

Mohr, J. (2004).
Computing science 370 programming languages.
http://www.augustana.ca/~mohrj/courses/2004.fall/csc370/

index.html.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 87 / 88

http://www2.gsu.edu/~matknk/hopl.html
http://www-formal.stanford.edu/jmc/index.html
http://www.augustana.ca/~mohrj/courses/2004.fall/csc370/index.html
http://www.augustana.ca/~mohrj/courses/2004.fall/csc370/index.html

Bibliography III

Pigott, D. (2006).
HOPL: an interactive roster of programming languages.

Pixel (2007).
Syntax across languages.

Round, M. (2006).
Programming language inventor or serial killer quiz.
http://www.malevole.com/mv/misc/killerquiz/.

Wikipedia (2005).
Wikipedia, free encyclopedia.
http://en.wikipedia.org/wiki/Main_Page.

Wirth, N. (1999).
Miklaus Wirth Home Page.
http://www.cs.inf.ethz.ch/~wirth/.

A. Demaille, E. Renault, R. Levillain Some Programming Language History 88 / 88

http://www.malevole.com/mv/misc/killerquiz/
http://en.wikipedia.org/wiki/Main_Page
http://www.cs.inf.ethz.ch/~wirth/

	The Very First Ones
	FORTRAN
	ALGOL
	COBOL

	The Second Wave
	APL
	PL/I
	BASIC
	Pascal & Heirs

	The Finale
	K. N. King
	Quotes
	The Quiz

