
Generics

Akim Demaille, Etienne Renault, Roland Levillain

March 29, 2020

TYLA Generics March 29, 2020 1 / 54

Table of Contents

1 Some definitions

2 Some history

3 Some Paradigms

TYLA Generics March 29, 2020 2 / 54

Problem Statement

How to write a data structure or algorithm that can work with
elements of many di�erent types?

TYLA Generics March 29, 2020 3 / 54

A Definition of Generic Programming

“ Generic programming is a sub-discipline of computer
science that deals with finding abstract representations of
e�icient algorithms, data structures, and other so�ware
concepts, and with their systematic organization.
The goal of generic programming is to express algorithms and
data structures in a broadly adaptable, interoperable form
that allows their direct use in so�ware construction.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 4 / 54

A Definition of Generic Programming (cont’d)

“ Key ideas include:

Expressing algorithms with minimal assumptions about
data abstractions, and vice versa, thus making them as
interoperable as possible.
Li�ing of a concrete algorithm to as general a level as
possible without losing e�iciency; i.e., the most abstract
form such that when specialized back to the concrete case
the result is just as e�icient as the original algorithm.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 5 / 54

A Definition of Generic Programming (cont’d)

“ Key ideas include:
Expressing algorithms with minimal assumptions about
data abstractions, and vice versa, thus making them as
interoperable as possible.

Li�ing of a concrete algorithm to as general a level as
possible without losing e�iciency; i.e., the most abstract
form such that when specialized back to the concrete case
the result is just as e�icient as the original algorithm.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 5 / 54

A Definition of Generic Programming (cont’d)

“ Key ideas include:
Expressing algorithms with minimal assumptions about
data abstractions, and vice versa, thus making them as
interoperable as possible.
Li�ing of a concrete algorithm to as general a level as
possible without losing e�iciency; i.e., the most abstract
form such that when specialized back to the concrete case
the result is just as e�icient as the original algorithm.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 5 / 54

A Definition of Generic Programming (cont’d)

“

When the result of li�ing is not general enough to cover
all uses of an algorithm, additionally providing a more
general form, but ensuring that the most e�icient
specialized form is automatically chosen when
applicable.
Providing more than one generic algorithm for the same
purpose and at the same level of abstraction, when none
dominates the others in e�iciency for all inputs.
This introduces the necessity to provide su�iciently
precise characterizations of the domain for which each
algorithm is the most e�icient.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 6 / 54

A Definition of Generic Programming (cont’d)

“ When the result of li�ing is not general enough to cover
all uses of an algorithm, additionally providing a more
general form, but ensuring that the most e�icient
specialized form is automatically chosen when
applicable.

Providing more than one generic algorithm for the same
purpose and at the same level of abstraction, when none
dominates the others in e�iciency for all inputs.
This introduces the necessity to provide su�iciently
precise characterizations of the domain for which each
algorithm is the most e�icient.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 6 / 54

A Definition of Generic Programming (cont’d)

“ When the result of li�ing is not general enough to cover
all uses of an algorithm, additionally providing a more
general form, but ensuring that the most e�icient
specialized form is automatically chosen when
applicable.
Providing more than one generic algorithm for the same
purpose and at the same level of abstraction, when none
dominates the others in e�iciency for all inputs.
This introduces the necessity to provide su�iciently
precise characterizations of the domain for which each
algorithm is the most e�icient.

—
Jazayeri et al., 2000, Garcia et al., 2003

TYLA Generics March 29, 2020 6 / 54

Table of Contents

1 Some definitions

2 Some history

3 Some Paradigms

TYLA Generics March 29, 2020 7 / 54

Table of Contents

1 Some definitions

2 Some history
CLU
Ada 83
C++

3 Some Paradigms

TYLA Generics March 29, 2020 8 / 54

Barbara Liskov

TYLA Generics March 29, 2020 9 / 54

Barbara Liskov

Nov. 7, 1939

Stanford

PhD supervised by J.
McCarthy

Teaches at MIT

CLU (pronounce “clue”)

John von Neumann Medal
(2004)

A. M. Turing Award (2008)

TYLA Generics March 29, 2020 10 / 54

Genericity in CLU

First ideas of generic programming date back from CLU
[HOPL’93] (in 1974, before it was named like this).

Some programming concepts present in CLU:
I data abstraction (encapsulation)
I iterators (well, generators actually)
I type safe variants (oneof)
I multiple assignment (x, y, z = f(t))
I parameterized modules

In CLU, modules are implemented as clusters
programming units grouping a data type and its operations.

Notion of parametric polymorphism.

TYLA Generics March 29, 2020 11 / 54

Genericity in CLU

First ideas of generic programming date back from CLU
[HOPL’93] (in 1974, before it was named like this).
Some programming concepts present in CLU:

I data abstraction (encapsulation)
I iterators (well, generators actually)
I type safe variants (oneof)
I multiple assignment (x, y, z = f(t))
I parameterized modules

In CLU, modules are implemented as clusters
programming units grouping a data type and its operations.

Notion of parametric polymorphism.

TYLA Generics March 29, 2020 11 / 54

Genericity in CLU

First ideas of generic programming date back from CLU
[HOPL’93] (in 1974, before it was named like this).
Some programming concepts present in CLU:

I data abstraction (encapsulation)
I iterators (well, generators actually)
I type safe variants (oneof)
I multiple assignment (x, y, z = f(t))
I parameterized modules

In CLU, modules are implemented as clusters
programming units grouping a data type and its operations.

Notion of parametric polymorphism.

TYLA Generics March 29, 2020 11 / 54

Genericity in CLU

First ideas of generic programming date back from CLU
[HOPL’93] (in 1974, before it was named like this).
Some programming concepts present in CLU:

I data abstraction (encapsulation)
I iterators (well, generators actually)
I type safe variants (oneof)
I multiple assignment (x, y, z = f(t))
I parameterized modules

In CLU, modules are implemented as clusters
programming units grouping a data type and its operations.

Notion of parametric polymorphism.

TYLA Generics March 29, 2020 11 / 54

Parameterized modules in CLU

Initially: parameters checked at run time.

Then: introduction of where-clauses
(requirements on parameter(s)).

Only operations of the type parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of parameterized modules.

→ Generation of a single code.

TYLA Generics March 29, 2020 12 / 54

Parameterized modules in CLU

Initially: parameters checked at run time.

Then: introduction of where-clauses
(requirements on parameter(s)).

Only operations of the type parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of parameterized modules.

→ Generation of a single code.

TYLA Generics March 29, 2020 12 / 54

Parameterized modules in CLU

Initially: parameters checked at run time.

Then: introduction of where-clauses
(requirements on parameter(s)).

Only operations of the type parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of parameterized modules.

→ Generation of a single code.

TYLA Generics March 29, 2020 12 / 54

Parameterized modules in CLU

Initially: parameters checked at run time.

Then: introduction of where-clauses
(requirements on parameter(s)).

Only operations of the type parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of parameterized modules.

→ Generation of a single code.

TYLA Generics March 29, 2020 12 / 54

Parameterized modules in CLU

Initially: parameters checked at run time.

Then: introduction of where-clauses
(requirements on parameter(s)).

Only operations of the type parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of parameterized modules.

→ Generation of a single code.

TYLA Generics March 29, 2020 12 / 54

An example of parameterized module in CLU

s e t = c l u s t e r [t : type] i s
c r e a t e , member , s i z e , i n s e r t , d e l e t e , e l ements

where t has equa l : p ro c type (t , t) r e t u r n s (boo l)

Note:
Inside set, the only valid operation on t values is equal.

TYLA Generics March 29, 2020 13 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)

Syntax: module[parameter]
Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code
generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]

Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code
generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]
Dynamic instantiation of parameterized modules.

For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code
generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]
Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.

Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code
generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]
Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.

Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code
generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]
Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code
generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]
Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:
Pros No combinatorial explosion due to systematic code

generation (as with C++ templates).

Cons Lack of static instantiation context means less
opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

Implementation of parameterized modules in
CLU

Notion of instantiation:
binding a module and its parameter(s)
Syntax: module[parameter]
Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is
represented by a (run-time) object.
Instantiated modules derived from a non-instantiated object
module. Common code is shared.
Pros and cons of run- or load-time binding:
Pros No combinatorial explosion due to systematic code

generation (as with C++ templates).
Cons Lack of static instantiation context means less

opportunities to optimize.

TYLA Generics March 29, 2020 14 / 54

TYLA Generics March 29, 2020 15 / 54

Table of Contents

1 Some definitions

2 Some history
CLU
Ada 83
C++

3 Some Paradigms

TYLA Generics March 29, 2020 16 / 54

Genericity in Ada 83

Introduced with the generic keyword
generic

type T is private ;
procedure swap (x , y : in out T) is

t : T
begin

t : = x ; x : = y ; y : = t ;
end swap ;

-- Explicit instantiations.
procedure i n t swap is new swap (INTEGER) ;
procedure s t r swap is new swap (STRING) ;

Example of unconstrained genericity.

Instantiation of generic clauses is explicit
(no implicit instantiation as in C++).

TYLA Generics March 29, 2020 17 / 54

Generic packages in Ada 83

generic
type T is private ;

package STACKS is
type STACK (s i z e : POSITIVE) is

record
space : array (1 . . s i z e) of T ;
index : NATURAL

end record ;
function empty (s : in STACK) return BOOLEAN ;
procedure push (t : in T ; s : in out STACK) ;
procedure pop (s : in out STACK) ;
function top (s : in STACK) return T ;

end STACKS ;

package INT STACKS is new STACKS (INTEGER) ;
package STR STACKS is new STACKS (STRING) ;

TYLA Generics March 29, 2020 18 / 54

Constrained Genericity in Ada 83

Constrained genericity imposes restrictions on generic types:
generic

type T is private ;
with function ”<=” (a , b : T) return BOOLEAN is <>;

function minimum (x , y : T) return T is
begin

if x <= y then
return x ;

else
return y ;

end if ;
end minimum ;

Constraints are only of syntactic nature
(no formal constraints expressing semantic assertions)

TYLA Generics March 29, 2020 19 / 54

Constrained Genericity in Ada 83

Constrained genericity imposes restrictions on generic types:
generic

type T is private ;
with function ”<=” (a , b : T) return BOOLEAN is <>;

function minimum (x , y : T) return T is
begin

if x <= y then
return x ;

else
return y ;

end if ;
end minimum ;

Constraints are only of syntactic nature
(no formal constraints expressing semantic assertions)

TYLA Generics March 29, 2020 19 / 54

Constrained Genericity in Ada 83: Instantiation

Instantiation can be fully qualified
function T1 minimum is new minimum (T1 , T 1 l e) ;

or take advantage of implicit names:
function int minimum is new minimum (INTEGER) ;

Here, the comparison function is already known as <=.

TYLA Generics March 29, 2020 20 / 54

Constrained Genericity in Ada 83: Instantiation

Instantiation can be fully qualified
function T1 minimum is new minimum (T1 , T 1 l e) ;

or take advantage of implicit names:
function int minimum is new minimum (INTEGER) ;

Here, the comparison function is already known as <=.

TYLA Generics March 29, 2020 20 / 54

More Genericity Examples in Ada 83

Interface (“specification”):
-- matrices.ada
generic

type T is private ;
z e r o : T ;
un i t y : T ;
with function ” + ” (a , b : T) return T is <>;
with function ” ∗ ” (a , b : T) return T is <>;

package MATRICES is
type MATRIX (l i n e s , columns : POSITIVE) is

array (1 . . l i n e s , 1 . . columns) of T ;
function ” + ” (m1 , m2 : MATRIX) return MATRIX ;
function ” ∗ ” (m1 , m2 : MATRIX) return MATRIX ;

end MATRICES ;

TYLA Generics March 29, 2020 21 / 54

More Genericity Examples in Ada 83

Instantiations:
package FLOAT MATRICES is new MATRICES (FLOAT , 0 . 0 , 1 . 0) ;

package BOOL MATRICES is
new MATRICES (BOOLEAN, f a l s e , t rue , ” or ” , ” and ”) ;

TYLA Generics March 29, 2020 22 / 54

More Genericity Examples in Ada 83

Instantiations:
package FLOAT MATRICES is new MATRICES (FLOAT , 0 . 0 , 1 . 0) ;

package BOOL MATRICES is
new MATRICES (BOOLEAN, f a l s e , t rue , ” or ” , ” and ”) ;

TYLA Generics March 29, 2020 22 / 54

More Genericity Examples in Ada 83
Implementation (“body”):
-- matrices.adb
package body MATRICES is

function ” ∗ ” (m1 , m2 : MATRIX) is
r e s u l t : MATRIX (m1 ’ l i n e s , m2 ’ columns)

begin
if m1’ columns /= m2 ’ l i n e s then

raise INCOMPATIBLE SIZES ;
end if ;
for i in m1’RANGE (1) loop

for j in m2’RANGE (2) loop
r e s u l t (i , j) : = z e r o ;
for k in m1’RANGE (2) loop

r e s u l t (i , j) : = r e s u l t (i , j) + m1 (i , k) ∗ m2 (k , j) ;
end loop ;

end loop ;
end loop ;

end ” ∗ ” ;
-- Other declarations...

end MATRICES ;

TYLA Generics March 29, 2020 23 / 54

Table of Contents

1 Some definitions

2 Some history
CLU
Ada 83
C++

3 Some Paradigms

TYLA Generics March 29, 2020 24 / 54

A History of C++ Templates

Initial motivation: provide parameterized containers.

Previously, macros were used to provide such containers
(in C and C with classes).
Many limitations, inherent to the nature of macros:

I Poor error messages
referring to the code wri�en by cpp, not by the programmer.

I Need to instantiate templates once per compile unit, manually.
I No support for recurrence.

TYLA Generics March 29, 2020 25 / 54

A History of C++ Templates

Initial motivation: provide parameterized containers.

Previously, macros were used to provide such containers
(in C and C with classes).

Many limitations, inherent to the nature of macros:

I Poor error messages
referring to the code wri�en by cpp, not by the programmer.

I Need to instantiate templates once per compile unit, manually.
I No support for recurrence.

TYLA Generics March 29, 2020 25 / 54

A History of C++ Templates

Initial motivation: provide parameterized containers.

Previously, macros were used to provide such containers
(in C and C with classes).
Many limitations, inherent to the nature of macros:

I Poor error messages
referring to the code wri�en by cpp, not by the programmer.

I Need to instantiate templates once per compile unit, manually.
I No support for recurrence.

TYLA Generics March 29, 2020 25 / 54

A History of C++ Templates

Initial motivation: provide parameterized containers.

Previously, macros were used to provide such containers
(in C and C with classes).
Many limitations, inherent to the nature of macros:

I Poor error messages
referring to the code wri�en by cpp, not by the programmer.

I Need to instantiate templates once per compile unit, manually.
I No support for recurrence.

TYLA Generics March 29, 2020 25 / 54

A History of C++ Templates

Initial motivation: provide parameterized containers.

Previously, macros were used to provide such containers
(in C and C with classes).
Many limitations, inherent to the nature of macros:

I Poor error messages
referring to the code wri�en by cpp, not by the programmer.

I Need to instantiate templates once per compile unit, manually.

I No support for recurrence.

TYLA Generics March 29, 2020 25 / 54

A History of C++ Templates

Initial motivation: provide parameterized containers.

Previously, macros were used to provide such containers
(in C and C with classes).
Many limitations, inherent to the nature of macros:

I Poor error messages
referring to the code wri�en by cpp, not by the programmer.

I Need to instantiate templates once per compile unit, manually.
I No support for recurrence.

TYLA Generics March 29, 2020 25 / 54

Simulating parameterized types with macros

#define VECTOR(T) v e c t o r ## T

#define GEN VECTOR (T) \
class VECTOR(T) { \
public : \

typedef T v a l u e t y p e ; \
VECTOR(T) () { /* ... */ } \
VECTOR(T) (int i) { /* ... */ } \
v a l u e t y p e& operator [] (int i) { /* ... */ } \
/* ... */ \

}

// Explicit instantiations.
GEN VECTOR (int) ;
GEN VECTOR (long) ;

int main () {
VECTOR(int) v i ;
VECTOR(long) v l ;

}

TYLA Generics March 29, 2020 26 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.

Class templates.

Function templates (and member function templates).

Automatic deduction of parameters of template functions.

Type and non-type template parameters.

No explicit constraints on parameters.

Implicit (automatic) template instantiation
(though explicit instantiation is still possible).

Full (classes, functions) and partial (classes) specializations of
templates definitions.

A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)

TYLA Generics March 29, 2020 27 / 54

Class Templates

template <typename T>
class v e c t o r {
public :

typedef T v a l u e t y p e ;
v e c t o r () { /* ... */ }
v e c t o r (int i) { /* ... */ }
v a l u e t y p e& operator [] (int i) { /* ... */ }
/* ... */
} ;

// No need for explicit template instantiations.

int main () {
vec to r<int> v i ;
v e c t o r<long> v l ;

}

TYLA Generics March 29, 2020 28 / 54

Function Templates

Natural in a language with non-member functions (such as C++).
template <typename T>
void swap (T& a , T& b)
{

T tmp = a ;
a = b ;
b = tmp ;

}

Class templates can make up for the lack of generic functions in
most uses cases (through fonctor).
Ei�el does not feature generic function at all.

Java and C-sharp provide only generic member functions.

TYLA Generics March 29, 2020 29 / 54

Function Templates

Natural in a language with non-member functions (such as C++).
template <typename T>
void swap (T& a , T& b)
{

T tmp = a ;
a = b ;
b = tmp ;

}

Class templates can make up for the lack of generic functions in
most uses cases (through fonctor).

Ei�el does not feature generic function at all.

Java and C-sharp provide only generic member functions.

TYLA Generics March 29, 2020 29 / 54

Function Templates

Natural in a language with non-member functions (such as C++).
template <typename T>
void swap (T& a , T& b)
{

T tmp = a ;
a = b ;
b = tmp ;

}

Class templates can make up for the lack of generic functions in
most uses cases (through fonctor).
Ei�el does not feature generic function at all.

Java and C-sharp provide only generic member functions.

TYLA Generics March 29, 2020 29 / 54

Function Templates

Natural in a language with non-member functions (such as C++).
template <typename T>
void swap (T& a , T& b)
{

T tmp = a ;
a = b ;
b = tmp ;

}

Class templates can make up for the lack of generic functions in
most uses cases (through fonctor).
Ei�el does not feature generic function at all.

Java and C-sharp provide only generic member functions.

TYLA Generics March 29, 2020 29 / 54

Specialization of Template Definitions

Idea: provide another definition for a subset of the parameters.

Motivation: provide (harder,) be�er, faster, stronger
implementations for a given template class or function.

Example: boolean vector has its own definition, di�erent from
type T vector

Mechanism close to function overloading in spirit, but distinct.

TYLA Generics March 29, 2020 30 / 54

Specialization of Template Definitions

Idea: provide another definition for a subset of the parameters.

Motivation: provide (harder,) be�er, faster, stronger
implementations for a given template class or function.

Example: boolean vector has its own definition, di�erent from
type T vector

Mechanism close to function overloading in spirit, but distinct.

TYLA Generics March 29, 2020 30 / 54

Specialization of Template Definitions

Idea: provide another definition for a subset of the parameters.

Motivation: provide (harder,) be�er, faster, stronger
implementations for a given template class or function.

Example: boolean vector has its own definition, di�erent from
type T vector

Mechanism close to function overloading in spirit, but distinct.

TYLA Generics March 29, 2020 30 / 54

Specialization of Template Definitions

Idea: provide another definition for a subset of the parameters.

Motivation: provide (harder,) be�er, faster, stronger
implementations for a given template class or function.

Example: boolean vector has its own definition, di�erent from
type T vector

Mechanism close to function overloading in spirit, but distinct.

TYLA Generics March 29, 2020 30 / 54

Alexander Alexandrovich Stepanov (Nov. 16,
1950)

TYLA Generics March 29, 2020 31 / 54

Alexander Alexandrovich Stepanov (Nov. 16,
1950)

Алексан́др Алексан́дрович Степан́ов

TYLA Generics March 29, 2020 32 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and
tools, using C++ templates.

Designed by Alexander Stepanov at HP.

The STL is not the Standard C++Library
(nor is one a subset of the other)
although most of it is part of the standard

Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.

But the language does not enforce them.

Initially planned as a language extension in the C++11/14/17
standard. . .

. . . but abandonned shortly before the standardization. :-(

TYLA Generics March 29, 2020 33 / 54

Example

template<typename T>
concept Hashable = r e q u i r e s (T a) {

{ s td : : hash<T>{}(a) } −> s td : : c o n v e r t i b l e t o<s td : : s i z e t >;
} ;

struct meow {} ;

template<Hashable T>
void f (T) ; // constrained C++20 function template

TYLA Generics March 29, 2020 34 / 54

Table of Contents

1 Some definitions

2 Some history

3 Some Paradigms

TYLA Generics March 29, 2020 35 / 54

Problem Statement

How to implement Generics?

TYLA Generics March 29, 2020 36 / 54

Table of Contents

1 Some definitions

2 Some history

3 Some Paradigms
Boxing
Monomorphization

TYLA Generics March 29, 2020 37 / 54

Boxing: main idea

Put everything in uniform ”boxes” so that they all act the same way

The data structure only handles pointers

Pointers to di�erent types act the same way

… so the same code can deal with all data types!

Wideley used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id

TYLA Generics March 29, 2020 38 / 54

Boxing: main idea

Put everything in uniform ”boxes” so that they all act the same way

The data structure only handles pointers

Pointers to di�erent types act the same way

… so the same code can deal with all data types!

Wideley used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id

TYLA Generics March 29, 2020 38 / 54

Boxing: main idea

Put everything in uniform ”boxes” so that they all act the same way

The data structure only handles pointers

Pointers to di�erent types act the same way

… so the same code can deal with all data types!

Wideley used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id

TYLA Generics March 29, 2020 38 / 54

Boxing: main idea

Put everything in uniform ”boxes” so that they all act the same way

The data structure only handles pointers

Pointers to di�erent types act the same way

… so the same code can deal with all data types!

Wideley used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id

TYLA Generics March 29, 2020 38 / 54

Go example

type Stack struct {
v a l u e s [] i n t e r f a c e {}

}

func (t h i s ∗ S tack) Push (va l u e i n t e r f a c e {}) {
t h i s . v a l u e s = append (t h i s . va lue s , v a l u e)

}

TYLA Generics March 29, 2020 39 / 54

Pro/cons with the boxing approach

Pros:

Easy to implement in (any) language

Cons:

Casts for every read/write in the structure
=⇒ runtime overhead!

Error-prone: type-checking
=⇒ No mechanism to prevent us pu�ing elements of

di�erent types into the structure

TYLA Generics March 29, 2020 40 / 54

Type-erased boxed generics

Idea
add generics functionality to the type system

BUT use the basic boxing method exactly as before at runtime.

→ This approach is o�en called type erasure, because the
types in the generics system are ”erased” and all become the
same type

Java and Objective-C both started out with basic boxing

… but add features for generics with type erasure

TYLA Generics March 29, 2020 41 / 54

Type-erased boxed generics

Idea
add generics functionality to the type system

BUT use the basic boxing method exactly as before at runtime.

→ This approach is o�en called type erasure, because the
types in the generics system are ”erased” and all become the
same type

Java and Objective-C both started out with basic boxing

… but add features for generics with type erasure

TYLA Generics March 29, 2020 41 / 54

Type-erased boxed generics

Idea
add generics functionality to the type system

BUT use the basic boxing method exactly as before at runtime.

→ This approach is o�en called type erasure, because the
types in the generics system are ”erased” and all become the
same type

Java and Objective-C both started out with basic boxing

… but add features for generics with type erasure

TYLA Generics March 29, 2020 41 / 54

Java Example

Without Generics (pre Java 4.0)
Throws java.lang.ClassCastException
L i s t v = new A r r a y L i s t () ;
v . add (” t e s t ”) ; // A String that cannot be cast to an Integer
I n t e g e r i = (I n t e g e r) v . ge t (0) ; // Run time error

With Generics
Fails at compile time
L i s t<S t r i ng> v = new Ar r ayL i s t<S t r i ng > () ;
v . add (” t e s t ”) ;
I n t e g e r i = v . ge t (0) ; // (type error) compilation-time error

TYLA Generics March 29, 2020 42 / 54

Java Example

Without Generics (pre Java 4.0)
Throws java.lang.ClassCastException
L i s t v = new A r r a y L i s t () ;
v . add (” t e s t ”) ; // A String that cannot be cast to an Integer
I n t e g e r i = (I n t e g e r) v . ge t (0) ; // Run time error

With Generics
Fails at compile time
L i s t<S t r i ng> v = new Ar r ayL i s t<S t r i ng > () ;
v . add (” t e s t ”) ;
I n t e g e r i = v . ge t (0) ; // (type error) compilation-time error

TYLA Generics March 29, 2020 42 / 54

Todo Wildcard?

TYLA Generics March 29, 2020 43 / 54

Inferred boxed generics with a uniform
representation

Problem with simple boxing
In the previous approach, generic data structures cannot

hold primitive types!

Ocaml’s Solution
Uniform representation where there are no primitive types that

requires an additional boxing allocation !

TYLA Generics March 29, 2020 44 / 54

Inferred boxed generics with a uniform
representation

Problem with simple boxing
In the previous approach, generic data structures cannot

hold primitive types!

Ocaml’s Solution
Uniform representation where there are no primitive types that

requires an additional boxing allocation !

TYLA Generics March 29, 2020 44 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers
… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits
I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers
… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits
I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers
… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits
I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers

… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits
I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers
… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits
I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers
… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits

I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Inferred boxed generics with a uniform
representation (cont’d)
Ocaml’s apporach:

no additional boxing allocation (like int needing to be turned
into an Integer

everything is either already boxed or represented by a
pointer-sized integer
=⇒ everything is one machine word

Problem :garbage collector needs to distinguish pointers from
integers
… there is a reserved bit in machine word

I integer size is only 31/63 bits
I pointer size is only 31/63 bits
I the 32/64 bit for integer is 1
I the 32/64 bit for valid aligned pointers is 0

TYLA Generics March 29, 2020 45 / 54

Introducing Interfaces
Limitation with boxing

The boxed types are completely opaque!
(generic sorting function need some extra functionality,

like a type-specific comparison function.)

Two families of solutions
Dictionary passing: Haskell (type class) and Ocaml (modules)

I Pass a table of the required function pointers along to generic
functions that need them

I similar to constructing Go-style interface objects at the call site

Interface vtables: Rust (dyn traits) & Golang (interface)
I When casting to interface type it creates a wrapper
I The wrapper contains (1) a pointer to the original object and (2) a

pointer to a vtable of the type-specific functions for that interface

TYLA Generics March 29, 2020 46 / 54

Introducing Interfaces
Limitation with boxing

The boxed types are completely opaque!
(generic sorting function need some extra functionality,

like a type-specific comparison function.)

Two families of solutions
Dictionary passing: Haskell (type class) and Ocaml (modules)

I Pass a table of the required function pointers along to generic
functions that need them

I similar to constructing Go-style interface objects at the call site

Interface vtables: Rust (dyn traits) & Golang (interface)
I When casting to interface type it creates a wrapper
I The wrapper contains (1) a pointer to the original object and (2) a

pointer to a vtable of the type-specific functions for that interface

TYLA Generics March 29, 2020 46 / 54

A note on Dictionnary passing
Swi� Witness Tables

Use dictionary passing and put the size of types and how to
move, copy and free them into the tables,

Provide all the information required to work with any type in a
uniform way

…without boxing them.

→ swi� uses monomorphization (later in lecture)

Going further
Have a look to Intensional Type Analysis.

boxed types is augmented to add a type ID

generate functions for each interface method

Dispatch using big switch statement over all the types

TYLA Generics March 29, 2020 47 / 54

A note on Dictionnary passing
Swi� Witness Tables

Use dictionary passing and put the size of types and how to
move, copy and free them into the tables,

Provide all the information required to work with any type in a
uniform way

…without boxing them.

→ swi� uses monomorphization (later in lecture)

Going further
Have a look to Intensional Type Analysis.

boxed types is augmented to add a type ID

generate functions for each interface method

Dispatch using big switch statement over all the types

TYLA Generics March 29, 2020 47 / 54

From interface vtables to Reflection (1/3)

In Object-oriented programming (like Java)

No need to have separate interface objects

the vtable pointer is embedded at the start of every object

inheritance and interfaces that can be implemented entirely
with these object vtables

→ construct new interface types with indirection is no longer
required.

Reflection
With vtables, it�s not di�icult to have reflection since the compiler
can generates tables of other type information like field names, types
and locations

TYLA Generics March 29, 2020 48 / 54

From interface vtables to Reflection (2/3)

Reflection is the ability of a program to examine, introspect, and
modify its own structure and behavior at runtime.

Reflection is not limited to OOP!
and most functionnal languages can create new types!

Python and Ruby have super-powered reflection systems that are
used for everything.

TYLA Generics March 29, 2020 49 / 54

From interface vtables to Reflection (2/3)

Reflection is the ability of a program to examine, introspect, and
modify its own structure and behavior at runtime.

Reflection is not limited to OOP!
and most functionnal languages can create new types!

Python and Ruby have super-powered reflection systems that are
used for everything.

TYLA Generics March 29, 2020 49 / 54

From interface vtables to Reflection (3/3)

Introspection: ability to observe and therefore reason about its
own state.
public boolean c l a s s e q u a l (Ob jec t o1 , Ob jec t o2){

Cla s s c1 , c2 ; c1 = o1 . g e tC l a s s () ;
c2 = o2 . g e tC l a s s () ; return (c1 == c2) ;

}

Intercession: ability to modify its execution state or alter its own
interpretation
Cla s s c = ob j . g e tC l a s s () ;
Ob jec t o = c . newIns tance () ;

S t r i n g s = ” FooBar ” .
C l a s s c = C la s s . forName (s) ;
Ob jec t o = c . newIns tance () ;

TYLA Generics March 29, 2020 50 / 54

Table of Contents

1 Some definitions

2 Some history

3 Some Paradigms
Boxing
Monomorphization

TYLA Generics March 29, 2020 51 / 54

Monomorphization

The monomorphization approach outputs multiple versions of the
code for each type we want to use it with

C++ template

Rust procedural macros

D

TYLA Generics March 29, 2020 52 / 54

Metaprogramming
Writing programs that write programs.

Some language a clean way of doing code generation

Syntax tree macros: the ability to produce AST types in macros
wri�en in the language

Template: reason about types and type substitution

Compile time functions

TYLA Generics March 29, 2020 53 / 54

TYLA Generics March 29, 2020 54 / 54

	Some definitions
	Some history
	CLU
	Ada 83
	C++

	Some Paradigms
	Boxing
	Monomorphization

