Let's Go!

Akim Demaille, Etienne Renault, Roland Levillain

April 2, 2020

TYLA Let's Go! April 2, 2020 1/58

Table of contents

© Overview

@ Language Syntax

© Closure

@ Typed functional programming and Polymorphism
© Co-routines

@ Even More Features

TYLA Let's Go! April 2, 2020 2 /58

Go (also referred as Golang)

o First appeared in November 2009

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

o First appeared in November 2009
@ Some Unix/C-stars:

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

o First appeared in November 2009
@ Some Unix/C-stars:

» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8, etc. — Turing
Award)

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

o First appeared in November 2009
@ Some Unix/C-stars:

» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8, etc. — Turing
Award)
» Rob Pike (Plan 9, Inferno, Limbo, UTF-8, Squeak, etc.)

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

o First appeared in November 2009
@ Some Unix/C-stars:
» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8, etc. — Turing
Award)
» Rob Pike (Plan 9, Inferno, Limbo, UTF-8, Squeak, etc.)
» Russ Cox (Plan 9, R2E etc.)

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

o First appeared in November 2009
@ Some Unix/C-stars:

» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8, etc. — Turing
Award)

» Rob Pike (Plan 9, Inferno, Limbo, UTF-8, Squeak, etc.)

» Russ Cox (Plan 9, R2E etc.)

@ Derived from C and Pascal

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

First appeared in November 2009
Some Unix/C-stars:
» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8, etc. — Turing
Award)
» Rob Pike (Plan 9, Inferno, Limbo, UTF-8, Squeak, etc.)
» Russ Cox (Plan 9, R2E etc.)

Derived from C and Pascal

Open-source

TYLA Let's Go! April 2, 2020 3 /58

Go (also referred as Golang)

First appeared in November 2009
Some Unix/C-stars:
» Ken Thompson (Multics, Unix, B, Plan 9, ed, UTF-8, etc. — Turing
Award)
» Rob Pike (Plan 9, Inferno, Limbo, UTF-8, Squeak, etc.)
» Russ Cox (Plan 9, R2E etc.)

Derived from C and Pascal

Open-source

Garbage Collected, compiled, CSP-style concurrent programming

Go is an attempt to combine the safety and performance of statically
typed languages with the convenience and fun of dynamically typed
interpretative languages. [Rob Pike]

TYLA Let's Go! April 2, 2020 3 /58

Some compagnies using Go

Google
CoreOS
Dropbox
Netflix
MongoDB
SoundMusic
Uber
Twitter
Dell
Docker
Github
Intel

Lyft

TYLA Let's Go! April 2, 2020 4 /58

Table of contents

@ Language Syntax

TYLA Let's Go! April 2, 2020 5 /58

Hello World

package main

import (
n fmt n
n os n
)

func main() {

fmt.Println("Hello,", os.Args([1])

@ Compile and run with:
go run hello.go yournamehere

TYLA Let's Go! April 2, 2020 6 /58

Hello World

package main

import (
n fmt n
n os n
)

func main() {
fmt.Println("Hello,", os.Args([1])

@ Compile and run with:
go run hello.go yournamehere
@ Documentation:
godoc -http=":6060"
http://localhost:6060/pkg/

TYLA Let's Go! April 2, 2020 6 /58

Packages

@ Every Go program is made up of packages.

@ Programs start running in package main

package main

import "fmt"
import "math/rand"

func main() {
fmt.Println("My_ favorite number is",
rand.Intn (10))

TYLA Let's Go! April 2, 2020 7 /58

Exported Names

o Every name that begins with a capital letter is exported

@ "unexported”’ names are not accessible from outside the package

package main

import "fmt"
import "math"

func main() {
fmt.Println(math.Pi)

TYLA Let's Go! April 2, 2020 8 /58

Declaring variables

@ Types come after the name

@ Variables are introduced via var

@ A var declaration can include initializers =

@ Implicit type declaration can be done using :=

package main
import "fmt"

func main() {

var i = b1
j = 42
var k int = 51
1, m := 12, 18
var n, o int = 12, 18
fmt.Println(i, j, k, 1, m, n, o)
}
Let's Go! April 2, 2020 9 /58

Functions

A function can take zero or more arguments
The return type comes after the declaration, and before the body

Shared types can be omitted from all but the last parameter

A function can return any number of results

func addi1(x int, y int) int {
return x + y

}

func add2(x, y int) int {
return x + y

}

func swap(x, y string) (string, string) {
return y, X

}

TYLA Let's Go! April 2, 2020

10 / 58

Named return values

@ return values may be named
@ names should be used to document the meaning of the return value

@ A return statement without arguments returns the named return
values. This is called naked returns.
@ Naked return statements should be used only in short functions.

package main

import "fmt"

func split(input int) (x, y int) {
X = input * 4 / 9
y = input - x
return

}

func main() {
fmt.Println(split (42))

}

TYLA Let's Go! April 2, 2020 11 / 58

Types
bool string int int8 intl6 int32 int64
uint uint8 uintl6 uint32 uint64 uintptr byte
rune float32 float64 complex64 complex128

o Variables declared without an explicit initial value are given their zero
value (for string ", for bool false, ...)

@ The expression T(v) converts the value v to the type T

func main() {
var i int = 42
var f float64 = float64 (i)
var b bool
var s string
fmt.Printf ("%vy %vo%vo%q\n", i, £, b, s)

TYLA Let's Go! April 2, 2020 12 / 58

Constants

@ Numeric constants are high-precision values.

@ An untyped constant takes the type needed by its context.
@ Constants, like imports, can be grouped.

package main
import "fmt"

const (
Big = 1 << 100
Small = Big >> 99

func main() {
fmt.Println(Small)

fmt.Println(Small*2.01)
}

TYLA Let's Go! April 2, 2020 13 / 58

For init;condition; loop { body }

@ No parentheses surrounding the three components of the for
statement

@ The braces are always required.

@ The loop will stop iterating once the boolean condition evaluates to
false.

@ The init and post statement are optional (while loop)

@ Omit the loop condition to get a forever loop

package main
import "fmt"
func main() {
sum := 6
for i := 0; i < 9; i++ {
sum += i
}
fmt.Println (sum)

TYLA Let's Go! April 2, 2020 14 / 58

Conditional testing

@ Variables declared by the statement are only in scope until the end of
the if

@ No parentheses surrounding the declaration plus the condition

package main
import "fmt"
func main() {
if v := 42; v < 51 {
fmt.Println(v)
}
else {
fmt.Println ("Ohoh")

TYLA Let's Go! April 2, 2020 15 / 58

Switch

@ A case body breaks automatically, unless it ends with a fallthrough

statement

@ Switch cases evaluate cases from top to bottom, stopping when a

case succeeds.

@ Switch without a condition is the same as switch true

func main() {

case "darwin":
case test():
case "linux":
default:

package main; import (
func test() string {return "my0S"}

switch os := runtime

fmt
fmt
fmt
fmt

"fmt"; "runtime")

fmt.Print ("Go,runs_ on,")

.G00S; os {
.Println("Mac0S.")
.Println("My_,0S")
.Println("GNU/Linux.")
.Printf("%s.", os)

TYLA

Let's Go! April 2, 2020

16 / 58

Pointers

@ * allows dereferences
@ & generates a pointer to its operand

@ No pointer arithmetic

package main
import "fmt"

func main() {
var i int = 21
var p* int = &i
fmt.Println (*xp)
*p = *p + 2
fmt.Println (i)

TYLA Let's Go! April 2, 2020 17 / 58

Structures

@ Struct fields are accessed using a dot

@ Struct fields can be accessed through a struct pointer (*p).X or p.X

package main

import "fmt"

type FooBar struct {
X int

Y int

}

func main() {
v := FooBar{1l, 2}
v.X = 4
fmt.Println(v.X)
p := &v
p.-X = 18
fmt.Println(v.X)

}

Let's Go!

April 2, 2020

18 / 58

Anonymous Structures

@ Structs can be anonymous

@ Structs can be 'raw’ compared

package main
import "fmt"
func main() {
a := struct {
i int
b bool
}{51, false}
b := struct {
i int
b bool
}{51, false}
fmt.Println(a == b)

}

TYLA Let's Go!

April 2, 2020

19 /58

Arrays

An array has a fixed size

A slice, on the other hand, is a dynamically-sized, flexible view into
the elements of an array

Slices are like references to arrays

Lower and/or upper bounds can be omitted for slices

Slices can be increased/decrease. Use len or cap to know length or
capacity of a slice.

package main
import "fmt"
func main() {
primes := [/*sizex/]int{2, 3, 5, 7, 11, 13}
var s [lint = primes[1:4]
fmt.Println(s)
var s2 [lint = primes[:4]
fmt.Println(s2)
}

TYLA Let's Go! April 2, 2020 20 / 58

Dynamic Arrays

@ Dynamic arrays are built over slices

@ May ise the built-in make function to specify length and capacity
@ Use append to add new elements

package main
import "fmt"
func main() {

d := make([]Jint, O/*lengthx*/, 0 /*capacity*/)
// Previous equivalent to d := [lint {}
d = append(d, 42, 51)
fmt.Printf ("%sylen=%d cap=%d, %v\n",
"d", len(d), cap(d), d)

TYLA Let's Go! April 2, 2020 21 /58

Range

@ lteration over arrays can be done using Range
@ Range provides two values at each iteration:

> the index

> a reference toward the element at that index.

@ Skip the index or value by assigning it to _

package main

import "fmt"

var array = []lint{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range array {
fmt.Printf ("%d =, %d\n", i, v)
}
}
Let's Go! April 2, 2020 22 /58

Map

@ make function returns a map of the given type, initialized and ready
for use.

@ The zero value of a map is nil

@ A nil map has no keys, nor can keys be added

@ Test that a key is present with a two-value assignment

package main; import "fmt"
var m map[string] int
func main() {

}

m = make (map[stringlint)
m["EPITA"] = 42
fmt.Print (m["EPITA"])
delete(m, "EPITA")
elem, ok := m["EPITA"]
fmt.Print(elem, ok)

// 42 0 false

TYLA Let's Go! April 2, 2020 23 /58

Package Debug

Package debug contains facilities for programs to debug themselves while
they are running.

e func FreeOSMemory(): force Garbage Collection

e func PrintStack(): print stack
func ReadGCStats(stats *GCStats): grab stats on Garbage collection

func SetMaxStack(bytes int) int: set maximum stack size

func SetMaxThreads(threads int) int: fix maximum number of threads

TYLA Let's Go! April 2, 2020 24 / 58

Table of contents

© Closure

TYLA Let's Go! April 2, 2020 25 / 58

A word on fonctionnal programming

Functional programming (FP) has two related characteristics:

@ First-class functions. Functions/methods are first-class citizens, i.e.
they can be:

TYLA Let's Go! April 2, 2020 26 / 58

A word on fonctionnal programming

Functional programming (FP) has two related characteristics:
@ First-class functions. Functions/methods are first-class citizens, i.e.

they can be:
@ named by a variable

TYLA Let's Go! April 2, 2020 26 / 58

A word on fonctionnal programming

Functional programming (FP) has two related characteristics:

@ First-class functions. Functions/methods are first-class citizens, i.e.
they can be:

@ named by a variable
@ passed to a function as an argument

TYLA Let's Go! April 2, 2020 26 / 58

A word on fonctionnal programming

Functional programming (FP) has two related characteristics:

@ First-class functions. Functions/methods are first-class citizens, i.e.
they can be:
@ named by a variable
@ passed to a function as an argument
© returned from a function as a result

TYLA Let's Go! April 2, 2020 26 / 58

A word on fonctionnal programming

Functional programming (FP) has two related characteristics:

@ First-class functions. Functions/methods are first-class citizens, i.e.
they can be:

@ named by a variable

@ passed to a function as an argument
© returned from a function as a result
© stored in any kind of data structure.

TYLA Let's Go! April 2, 2020 26 / 58

A word on fonctionnal programming

Functional programming (FP) has two related characteristics:

@ First-class functions. Functions/methods are first-class citizens, i.e.
they can be:

@ named by a variable

@ passed to a function as an argument
© returned from a function as a result
© stored in any kind of data structure.

@ Closure. Function/method definitions are associated to some/all of
the environment when they are defined.

TYLA Let's Go! April 2, 2020 26 / 58

Go Functions are 1st Class

@ Functions can be declared at any levels
e Functions can be passed as arguments/return of functions

package main; import "fmt"

func compute(fn func(int) int, value int) int {
return 42*xfn(value)

}
func main() A{
myfun := func(x int) int{
myfun2 := func(y int) int{ return y*y 2

return myfun?2 (x)
}
fmt.Print (myfun(5))
fmt.Print (",", compute(myfun, 5))
} // 25 1050

TYLA Let's Go! April 2, 2020

27 / 58

Functions closure

@ A closure is a function value that references variables from outside its
body.
@ The function is "bound” to the variables

package main; import "fmt"
func adder () func(int) int {
sum := 0
return func(x int) int {
sum += X
return sum

}
}
func main() {
cumul := adder ()
for i := 0; i < 10; i++ {
fmt.Println (cumul (i))
}
}

TYLA Let's Go! April 2, 2020 28 / 58

Closures are Weak in Go

Go closures are not as strong as required by pure Fonctionnal ProgrammingJ

package main;
func main () {

import

counter += y;
}
fmt.Printf (", %d,\n",
fmt.Printf (", %d,\n",
fmt.Printf (", %d,\n",

n fmt n

return counter

counter := 0;

f1 := func (x int) int {
counter += Xx;

}

f2 := func (y int) int{

return counter

£f1(1))
£f2(1))
f1(1))

TYLA

Let's Go! April 2, 2020

29 / 58

Table of contents

@ Typed functional programming and Polymorphism

TYLA Let's Go! April 2, 2020 30 /58

Functions associated to a type 1/3

@ No classes, but you can define functions on types

@ A function with a special receiver argument

package main; import ("fmt"; "math")
type MyType struct {
X, Y float64
}
func (v MyType) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)

}
func main() {
v := MyType{3, 4}
fmt.Println(v.Abs ())
}

TYLA Let's Go! April 2, 2020

31/ 58

Functions associated to a type 2/3

The receiver is passed by copy unless a pointer is passed as receiver J

You do not need to dereference the receiver in this case)

package main; import ("fmt")
type MyType struct {
X, Y float64
}
func (v* MyType) SetX(x float64) {
v.X = x
}
func main() {
v := MyType{3, 4}
v.SetX(18)
fmt.Println(v)
}

TYLA Let's Go! April 2, 2020 32 /58

Functions associated to a type 3/3

@ We can declare a function on non-struct types

@ Possible, only for function with a receiver whose type is defined in the

same package as the function

package main
import ("fmt";"math")
type MyFloat float64

if £ < 0 {
return float64 (-f)
}
return float64 (f)
}

func main() {

fmt.Println (f.Abs ())
}

func (f MyFloat) Abs() float64 {

f := MyFloat (-math.Sqrt2)

TYLA

Let's Go!

April 2, 2020

33 /58

Interface

@ An interface type is defined as a set of method signature
@ A value of interface type can hold any value that implements those
methods

package main; import "fmt"

type Runner interface {
Run () int

}

type MyType struct {
X int

b

func (v MyType) Run() int {
return 42

}
func main() {
var a Runner; v := MyType{3}
a = v; fmt.Println(a.Run())
}

TYLA Let's Go! April 2, 2020 34 /58

Stringer Interface

@ Useful to print types

type Person struct {
Name string
Age int

}

func (p Person) String() string {
return fmt.Sprintf ("Jv, (%v,years)",
p.Name, p.Age)

// ...
fmt.Println(Person{"John Doe", 423})

TYLA Let's Go! April 2, 2020 35 /58

Runtime Polymorphism

package main; import "fmt"

type Runner interface { Run() int }
type MyTypel struct { X int }
type MyType2 struct { X,Y int }

func (v MyTypel) Run() int {return 42 }
func (v MyType2) Run() int {return v.X + v.Y }
func run(v Runner) int { return v.Run()}

func main() {
vl := MyTypel{3}
v2 := MyType2{3, 4}
fmt.Println(vli.Run(), v2.Run())
fmt.Println(run(vl) ,run(v2))

}

TYLA Let's Go! April 2, 2020 36 / 58

Maximum Polymorphism and Reflection

e maximum polymorphism through the empty interface: "interface {}"
@ For example, the printing functions in fmt use it

@ Need for some reflection mechanisms, i.e. ways to check at runtime
that instances satisfy types, or are associated to functions.

@ For instance, to check that x0 satisfies the interface |

x1, ok := x0.(I);

(ok is a boolean, and if true, x1 is x0 with type I)

TYLA Let's Go! April 2, 2020 37 /58

Type Dispatch

@ Dynamic Dispatch can easily be done

func dispatch(i interface{}) {
switch v := i.(type) {
case int:
// ...
case string:
/] ...
default:
/] ...
}
}

TYLA Let's Go! April 2, 2020 38 /58

Duck Typing

@ Go functional polymorphism is a type-safe realization of duck typing.

o Implicit Rule: If something can do this, then it can be used here.

» Opportunistic behavior of the type instances.
» Dynamic OO languages like CLOS or Groovy include duck typing in a
natural way

In static languages: duck typing is realized as a structural typing
mechanism (instead of nominal in which all type compatibilities should be
made explicit — see e.g., implements, extends in Java).

Duck typing uses mechanisms similar to the one we have with C++
Generic Programming.

TYLA Let's Go! April 2, 2020 39 /58

Go Interfaces and Structuration Levels

@ Go interfaces: A type-safe overloading mechanism where sets of
overloaded functions make type instances compatible or not to the
available types (interfaces).

TYLA Let's Go! April 2, 2020 40 / 58

Go Interfaces and Structuration Levels

@ Go interfaces: A type-safe overloading mechanism where sets of
overloaded functions make type instances compatible or not to the
available types (interfaces).

@ The effect of an expression like: x.F(..) depends on all the available

definitions of F, on the type of x, and on the set of available
interfaces where F occurs

TYLA Let's Go! April 2, 2020 40 / 58

Go Interfaces and Structuration Levels

@ Go interfaces: A type-safe overloading mechanism where sets of
overloaded functions make type instances compatible or not to the
available types (interfaces).

@ The effect of an expression like: x.F(..) depends on all the available
definitions of F, on the type of x, and on the set of available
interfaces where F occurs

@ About the grain of structuration dilemma between the functional and
modular levels: Go votes for the functional level, but less than CLOS,
a little more than Haskell, and definitely more than Java/C# (where
almost every type is implemented as an encapsulating class)...

TYLA Let's Go! April 2, 2020 40 / 58

Summary about polymorphism & interface

@ Go interface-based mechanism is not new, neither very powerful..

TYLA Let's Go! April 2, 2020 41 / 58

Summary about polymorphism & interface

@ Go interface-based mechanism is not new, neither very powerful..

@ Haskell offers type inference with constrained genericity, and
inheritance

TYLA Let's Go! April 2, 2020 41 / 58

Summary about polymorphism & interface

@ Go interface-based mechanism is not new, neither very powerful..

@ Haskell offers type inference with constrained genericity, and
inheritance

@ Go structural-oriented type system is not new, neither very powerful...

TYLA Let's Go! April 2, 2020 41 / 58

Summary about polymorphism & interface

Go interface-based mechanism is not new, neither very powerful..

Haskell offers type inference with constrained genericity, and
inheritance

Go structural-oriented type system is not new, neither very powerful...

OCaml offers type and interface inference with constrained genericity,
and inheritance

TYLA Let's Go! April 2, 2020 41 / 58

Summary about polymorphism & interface

@ In Go, no explicit inheritance mechanism. The closest mechanism:
some implicit behavior inheritance through interface unions (called
embedding):

type Foo interface {
F1() int;

type Bar interface {
F2() int;

}

type FooBar interface {
Foo // inclusion
Bar // inclusion

Rule
If type T is compatible with FooBar, it is compatible with Foo and Bar too

TYLA Let's Go! April 2, 2020 42 / 58

Table of contents

© Co-routines

TYLA Let's Go! April 2, 2020 43 / 58

Concurrency

The idea

Impose a sharing model where processes do not share anything implictly
(see Hoares Communicating Sequential Processes 1978)

Motto

Do not communicate by sharing memory; instead, share memory by
communicating.

Objectives

Reduce the synchronization problems (sometimes at the expense of
performance)

TYLA Let's Go! April 2, 2020 44 / 58

Three basic constructs

e Goroutines are similar to threads, coroutines, processes, (Googlers
claimed they are sufficiently different to give them a new name)

TYLA Let's Go! April 2, 2020 45 / 58

Three basic constructs

e Goroutines are similar to threads, coroutines, processes, (Googlers
claimed they are sufficiently different to give them a new name)

» Goroutines are then automatically mapped to the OS host concurrency
primitives (e.g. POSIX threads)

TYLA Let's Go! April 2, 2020 45 / 58

Three basic constructs

e Goroutines are similar to threads, coroutines, processes, (Googlers
claimed they are sufficiently different to give them a new name)

» Goroutines are then automatically mapped to the OS host concurrency
primitives (e.g. POSIX threads)
» A goroutine does not return anything (side-effects are needed)

TYLA Let's Go! April 2, 2020 45 / 58

Three basic constructs

e Goroutines are similar to threads, coroutines, processes, (Googlers
claimed they are sufficiently different to give them a new name)

» Goroutines are then automatically mapped to the OS host concurrency
primitives (e.g. POSIX threads)
» A goroutine does not return anything (side-effects are needed)

@ Channels: a typed FIFO-based mechanism to make goroutines
communicate and synchronize

TYLA Let's Go! April 2, 2020 45 / 58

Three basic constructs

e Goroutines are similar to threads, coroutines, processes, (Googlers
claimed they are sufficiently different to give them a new name)

» Goroutines are then automatically mapped to the OS host concurrency
primitives (e.g. POSIX threads)
» A goroutine does not return anything (side-effects are needed)

@ Channels: a typed FIFO-based mechanism to make goroutines
communicate and synchronize

@ Segmented stacks make co-routines usables

TYLA Let's Go! April 2, 2020 45 / 58

Go Routine

@ A goroutine is a lightweight thread managed by the Go runtime
@ starts a new goroutine running go

@ Goroutines run in the same address space

°

access to shared memory must be synchronized (see sync package)

package main; import ("fmt";"time")
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep (100 * time.Millisecond)
fmt.Println(s)

}

func main() A{
go say("world")
say("hello")

}

TYLA Let's Go! April 2, 2020 46 / 58

Channels 1/3

@ Channels are a typed conduits

@ Send to channel using ch < —42

@ Receive from channel using v :=< —ch

@ Channels can be buffered: blocking when the buffer is full or empty

package main; import "fmt"
func main() {

ch := make(chan int, 2)
ch <- 1
ch <- 2

fmt.Println (<-ch)
fmt.Println (<-ch)

TYLA Let's Go!

April 2, 2020

47 / 58

Channels 2/3

@ A sender can close a channel to indicate that no more values will be

sent.

@ Receivers can test whether a channel has been closed v, ok :==< —ch

@ Sending on a closed channel will cause a panic.

@ Channels aren't like files; you don't usually need to close them

package main; import "fmt"

func compute(n int, ¢ chan int) {
for i := 0; i < n; i++ { ¢ <- 1 %}
close(c)

}

func main() A{
¢ := make(chan int, 10)
go compute (cap(c), c)

for i := range ¢ { fmt.Println(i) 1}
}

TYLA Let's Go! April 2, 2020

48 / 58

Channels 3/3

@ Select lets a goroutine wait on multiple communication operations

func main() A{
cl := make(chan string); c2 := make(chan string)
go func() { time.Sleep(time.Second * 5)
cl <- "one"
O
go func() { time.Sleep(time.Second * 5);
c2 <- "two"
O
for i := 0; i < 2; i++ {
select {
case msgl := <-cl:
fmt.Println("received", msgl)
case msg2 := <-c2:
fmt.Println("received", msg2)
}

TYLA Let's Go! April 2, 2020 49 / 58

PingPong Time

Demo.

TYLA Let's Go! April 2, 2020 50 / 58

Table of contents

@ Even More Features

TYLA Let's Go! April 2, 2020 51 /58

Reflection & Tags 1/2

Reflection is the ability of program to introspect, and modify its own
structure and behavior at runtime

package main

import (
llfmt n
"reflect"
)

type Foo struct {
FirstName string ‘tag_name:"tag 1"°
LastName string ‘tag_name:"tag 2"°
Age int ‘tag_name:"tag ,3"°
}

TYLA Let's Go! April 2, 2020 52 / 58

Reflection & Tags 2/2

func (f *Foo) reflect() {
val := reflect.ValueOf (f).Elem()
for i := 0; i < val.NumField(); i++ {
valueField := val.Field (i)
typeField := val.Type().Field (i)
tag := typeField.Tag
fmt.Printf ("Field_ Name:_ %s,\t Field_ Value:_ %v,\
typeField.Name,
valueField.Interface (),
tag.Get ("tag_name"))

}
}
func main() {
f := &Foo{FirstName: "John", LastName: "Doe",
Age: 30}
f.reflect ()
}

TYLA Let's Go! April 2, 2020 53 / 58

Defer

@ Defers the execution of a function until the surrounding function
returns

@ The deferred call’s arguments are evaluated immediately but the

function call is not executed until the surrounding function returns.

@ Defer is commonly used to simplify functions that perform various
clean-up actions (closing file for instance)

package main
import "fmt"
func main() A{

defer fmt.Println("world")
fmt.Println("hello")

TYLA Let's Go! April 2, 2020

54 / 58

Stacking Defer

@ Deferred function calls are pushed onto a stack

@ When a function returns, its deferred calls are executed in
last-in-first-out order

package main

import "fmt"
func main() {
fmt.Println("counting")
for i := 0; i < 10; i++ {
defer fmt.Println (i)
}
fmt.Println("done")
} // counting done 9 8 7 6 54 3 2 10

TYLA Let's Go! April 2, 2020 55 / 58

Panic and Recover 1/2

@ Panic is a built-in function that stops the ordinary flow of control and
begins panicking.

@ Recover is a built-in function that regains control of a panicking
goroutine. Recover is only useful inside deferred functions.

package main
import "fmt"

func g(i int) {
fmt.Println("Enter g.")
panic (i)
fmt.Println("Exityg.")

}

TYLA Let's Go! April 2, 2020 56 / 58

Panic and Recover 2/2

func f() {

defer func() {

if r := recover(); r != nil {
fmt.Println("Recovered in f", r)

}

+O

fmt.Println("Calling,g.")

g (42)

fmt.Println("Returned normally from,g.")

func main() {

£

fmt.Println("Returned normally from f.")

}

TYLA Let's Go! April 2, 2020

57 / 58

Pros & Cons

Simple and scalable multithreaded and concurrent programming
All is type
Tooling and API

Performance is on the order of C

Includes a lot of paradigms

Weak type system

@ GC (tricolor concurrent mark-and-sweep algorithm) causes runtime
overhead

@ Not thread-safe
o No generics

@ No shared libraries: can’t load Go code at runtime

TYLA Let's Go! April 2, 2020 58 / 58

	Overview
	Language Syntax
	Closure
	Typed functional programming and Polymorphism
	Co-routines
	Even More Features

