Typology of programming languages

~~ Return Statement



Return Statement

What is the purpose of the return
statement?

Is there a best way to return something?J

Is there a best way to return something? )




Table of Contents

@ Return via dedicated keyword



Return via a dedicated keyword 1/2

int compute(int a, int b) {
int res = a+b;
// Some computation
return res;

}

C’s return statement uses the return
keyword

int compute(int a, int b) {
int r val = a+b;
// Some computation
return r_val;

}

Java’s return statement also uses the re-
turn keyword

4/20



Return via a dedicated keyword 2/2

The return statement breaks the current
fonction (also for C++, Java, Ada,
Modula2).
o Clarity
@ Complexify the code
No naming convention
No homogeneous return inside a
given fonction
Blur the comprehension via
initialisation, intermediate

computation, ...




Table of Contents

© Return via function’s name



Return via function’s name (1/2)

function sum (a, b: integer)
integers;
begin
sum := a + b;
end;

Pascal’s return statement uses the
name of the function



Return via function’s name (2/2)

The name of the function is treated as a
variable name (also for Fortran, ALGOL,
ALGOL68, Simula)

@ The “return” may not be the latest
statement
@ Ambiguous

For recursion sum denotes a
variable AND a function

Is somevar := sum legal? (Yes for
Pascal, No for Fortan)




Table of Contents

@ Return via specific variable



Return via a specific variable (1/2)

always_true : BOOLEAN
do

Result := true

end

always_one : INTEGER
do

Result := 1

end

always_bar : STRING
do

Result := "bar"
end

Effeil’s return statement uses the key-
word Result



Return via a specific variable (2/2)

@ The value returned by a function is
whatever value is in Result when
the function ends.

@ The return value of a feature is set
by assigning it to the Result
variable (initialised automatically to
a default value).

@ Unlike other languages, the return
statement does not exist.

Only in Effeil (to my knowledge)
o Clarity

@ Ambiguous if the langage support
nested fonctions

v




Table of Contents

@ Return the last computed value



Return the last computed value 1 /2

(defun double (x) (* x 2))

Lisp’s return value is the last computed

fn is_divisible_by(lhs: u32,
rhs: u32)
-> bool {
if rhs == 0 {
return false;
}
// The “return® keyword
// isn't necessary
lhs % rhs ==

Same for Rust’s return value



Return the last computed value 2 /2

In expression-oriented programming

language (also Lisp, Perl, Javascript and

Ruby) the return statement can omitted.
@ Instead that the last evaluated
expression is the return value.

@ A ’last expression” is mandatory in
Rust

@ If no “return” Python returns None
and Javascript undefined




Table of Contents

© Named return values



Named return values and Naked return

func

}

make(r int, i int)

re = v
im = 1
return

(re int, im int) {

Go combines Named returns values and

naked return

Typology of programming languages

Return Statement

16/20



Named return values and Naked return

@ No declaration/initialisation in the
body of the function

@ It serves as documentation.

@ Functions that return multiple
values are hard to name clearly
GetUsernameAndPassword

@ The signature of the function is
slightly more difficult to read




Table of Contents

@ Return from a block



return-from

return-from in lisp

(block alpha
(return-from alpha 1) 2)

@ Provide a structured lexical
non-local exit facility

@ Faster than a try-catch (also
developped by Lisp with errorset or
PL/I)




Summary

dedicated Function
keyword name

Last
computed

Specific
variable

Named
return val.

From a
block



	Return via dedicated keyword
	Return via function's name
	Return via specific variable
	Return the last computed value
	Named return values
	Return from a block

