
Typology of programming languages
e Contract Programming E

Typology of programming languages Contract Programming 1 / 15



What is that?

”It is absurd to make elaborate security
checks on debugging runs, when no trust is
put in the results, and then remove them in
production runs, when an erroneous result
could be expensive or disastrous. What
would we think of a sailing enthusiast who
wears his life-jacket when training on dry
land but takes it off as soon as he goes to
sea?”
–
Charles Antony Richard Hoare

Typology of programming languages Contract Programming 2 / 15



Goals
In everyday life a service or a product
typically comes with a contract or
warranty: an agreement in which one
party promises to supply the service
or product for the benefit of some
other party.

An effective contract for a service
specifies requirements:

Conditions that the consumer must
meet in order for the service to be
performed
⇒ Preconditions

Condition that the provider must
meet in order for the service to be
acceptable
⇒ Postconditions

Typology of programming languages Contract Programming 3 / 15



Some History

Has roots in work on formal
verification, formal specification and
Hoare logic

First introducted by Eiffel

Supported natively by Ada (2012), D,
C#

Librairies to emulate it in Java
(cofoja), Javascript (contract.js),
Python (pycontracts), C++ (Boost) …

Typology of programming languages Contract Programming 4 / 15



Contracts
A lot of ontracts:

Pre-conditions and postconditions
of a method

Class invariants

Assertions

Loop invariants

Contracts are part of the language:

a dedicated syntaxe

compiled (or not) according to the
given options

used by the compiler

used by the environnemnt

used by the documentation

Typology of programming languages Contract Programming 5 / 15



Contracts
A lot of ontracts:

Pre-conditions and postconditions
of a method

Class invariants

Assertions

Loop invariants

Contracts are part of the language:

a dedicated syntaxe

compiled (or not) according to the
given options

used by the compiler

used by the environnemnt

used by the documentation

Typology of programming languages Contract Programming 5 / 15



Pre-conditions
Pre-conditions must be fulfill by the

client, i.e. based on arguments

class SHAPE

feature
xc, yc : INTEGER ; -- coordinates

set_x_y(x,y : INTEGER) is
require

x >= 0 and y >= 0
do

xc = x ;
yc = y ;

end ;
...

Pre-conditions in Eiffel

Typology of programming languages Contract Programming 6 / 15



Post-conditions
Post-conditions must be fulfill by the

provider, i.e. if the client fulfill
preconditions, the provider will fulfill

postcondiitons.

class SHAPE

feature
...
set_x_y(x,y : INTEGER) is

require
x >= 0 and y >= 0

do
xc := x ;
yc := y ;

ensure
xc = x and yc = y

end ;

Post-conditions in EiffelTypology of programming languages Contract Programming 7 / 15



Referencing previous version of an expression
old x reference the value of x before
the execution of the method

class RECTANGLE

feature
width, height : INTEGER ;

set_width(w : INTEGER) is
require

w > 0
do

width := w
ensure

width = w and height = old height
end ;

...

Referencing previous value in Post-
conditions (Eiffel)Typology of programming languages Contract Programming 8 / 15



Stripping Objects
In a postcondition, strip(x,y,..)
references an object where all attributes
x and y , … have been removed

class RECTANGLE
feature
width, height : INTEGER ;

set_width(w : INTEGER) is
-- change the width
require

w > 0
do

width := w
ensure

width = w and
strip (width) = old strip (width)

end ;

Stripping Object in Postconditions
(Eiffel)

Typology of programming languages Contract Programming 9 / 15



Redefinition (1/2)

routine p is require ... ensure ... end ;

routine q is do p() ; end ;

routine p is do ... end ;

class A

class B

redefine p

The redefined method p in B can be used
instead of the original method p de A.
⇒ Assertions are inherited

Typology of programming languages Contract Programming 10 / 15



Redefinition (2/2)

The redefined method must
satisfy old assertions but can be
more precise:

Release some preconditions

Add (Restrict) postconditions

class B

inherit
A redefine p end ;

feature
p is

require else
... -- other restrictions for calls

do
... -- new defintion

ensure then
... -- additionnal postconditions

end ;
end -- class

Typology of programming languages Contract Programming 11 / 15



Class Invariants

A Class Invariant is an assertion attached
to an object. The inherited class also
inherits invariants.

class RECTANGLE
...

invariant
(xc < 0 implies width > -xc)

and
(yc < 0 implies height > -yy)

and
width >= 0

and
height >= 0

end -- class RECTANGLE

Typology of programming languages Contract Programming 12 / 15



Assertions

Can be inserted anywhere in the code.

-- Code
check

x > 0 ;
y < 0 implies width > -y

end ;

Typology of programming languages Contract Programming 13 / 15



Loop (in)variants
Only one (complex) kind of loop in Eiffel

from
-- initialization
...

invariant
-- checked each iteration
...

variant
-- positive integer expression
...

until
-- exit condition
...

loop
-- loop body
...

end ;

Typology of programming languages Contract Programming 14 / 15



Summary

Pre-conditions Post-conditions

Class / Loop
(in)variants Assertions

Typology of programming languages Contract Programming 15 / 15


