
Typology of programming languages
e History of Genericity E

Typology of programming languages History of Genericity 1 / 33

Table of Contents

1 CLU

2 Ada

3 C++

Typology of programming languages History of Genericity 2 / 33

Barbara Liskov

Typology of programming languages History of Genericity 3 / 33

Barbara Liskov

Nov. 7, 1939

Stanford

PhD supervised by J. McCarthy

Teaches at MIT

CLU (pronounce “clue”)

John von Neumann Medal (2004)

A. M. Turing Award (2008)

Typology of programming languages History of Genericity 4 / 33

CLU syntax and semantic

CLU looks like an Algol-like language,
but its semantics is like that of Lisp

History of CLU:
ftp://ftp.lcs.mit.edu/pub/pclu/CLU/3.Documents/clu-history.PS

Typology of programming languages History of Genericity 5 / 33

ftp://ftp.lcs.mit.edu/pub/pclu/CLU/3.Documents/clu-history.PS

Problem Statement

How to write a data structure or
algorithm that can work with elements of

many different types?

Typology of programming languages History of Genericity 6 / 33

Quote on CLU by B. Liskov

“ An abstract data type is a concept
whose meaning is captured in a set
of specifications […] An implemen-
tation is correct if it ”satisfies” the
abstraction’s specification.

–
B. Liskov

Typology of programming languages History of Genericity 7 / 33

Genericity in CLU

First ideas of generic programming
date back from CLU (in 1974, before
it was named like this [HOPL’93]).

Some programming concepts
present in CLU:

I data abstraction (encapsulation)
I iterators (well, generators actually)
I type safe variants (oneof)
I multiple assignment (x, y, z

= f(t))
I parameterized modules

Typology of programming languages History of Genericity 8 / 33

Genericity in CLU

In CLU, modules are implemented
as clusters
programming units grouping a data
type and its operations.

Notion of parametric polymorphism.

Typology of programming languages History of Genericity 9 / 33

Parameterized modules in CLU

Initially: parameters checked at run
time.

Then: introduction of
where-clauses
(requirements on parameter(s)).

Only operations of the type
parameter(s) listed in the
where-clause may be used.

→ Complete compile-time check of
parameterized modules.

→ Generation of a single code.

Typology of programming languages History of Genericity 10 / 33

An example of parameterized module in CLU

set = cluster [t: type] is
create, member, size,
insert, delete,
elements

where
t has equal:

proctype (t, t)
returns (bool)

Note, inside set, the only valid operation
on t values is equal.

Typology of programming languages History of Genericity 11 / 33

Implementation of parameterized modules in CLU

Notion of instantiation:
binding a module and its
parameter(s)

Syntax: module[parameter]

Dynamic instantiation of
parameterized modules.

Typology of programming languages History of Genericity 12 / 33

Implementation of parameterized modules in CLU

Instantiated modules derived from a
non-instantiated object module.
Common code is shared.

Pros and cons of run- or load-time
binding:
Pros No combinatorial explosion

due to systematic code
generation (as with C++
templates).

Cons Lack of static instantiation
context means less
opportunities to optimize.

Typology of programming languages History of Genericity 13 / 33

Table of Contents

1 CLU

2 Ada

3 C++

Typology of programming languages History of Genericity 14 / 33

Genericity in Ada 83

Introduced with the generic keyword
generic

type T is private ;
procedure swap (x , y : in out T) is

t : T
begin

t : = x ; x : = y ; y : = t ;
end swap ;

-- Explicit instantiations.
procedure in t_swap is new swap (INTEGER) ;
procedure s t r_swap is new swap (STRING) ;

Example of unconstrained
genericity.

Instantiation of generic clauses is
explicit (no implicit instantiation as
in C++).

Typology of programming languages History of Genericity 15 / 33

Generic packages in Ada 83
generic

type T is private ;

package STACKS is

type STACK (s i z e : POSITIVE) is
record

space : array (1 . . s i z e) of T ;
index : NATURAL

end record ;

function empty (s : in STACK)
return BOOLEAN ;

procedure push (t : in T ;
s : in out STACK) ;

procedure pop (s : in out STACK) ;

function top (s : in STACK) return T ;
end STACKS ;

package INT_STACKS is new STACKS (INTEGER) ;
package STR_STACKS is new STACKS (STRING) ;

Typology of programming languages History of Genericity 16 / 33

Constrained Genericity in Ada 83

Constrained genericity imposes
restrictions on generic types:
generic

type T is private ;
with function ” <= ” (a , b : T)

return BOOLEAN is < >;
function minimum (x , y : T) return T is

begin
if x <= y then

return x ;
else

return y ;
end if ;

end minimum ;

Constraints are only of syntactic
nature (no formal constraints
expressing semantic assertions)

Typology of programming languages History of Genericity 17 / 33

Constrained Genericity in Ada 83: Instantiation

Instantiation can be fully qualified
function T1_minimum

is new minimum (T1 , T1_ l e) ;

or take advantage of implicit names:
function int_minimum

is new minimum (INTEGER) ;

Here, the comparison function is
already known as <=.

Typology of programming languages History of Genericity 18 / 33

More Genericity Examples in Ada 83

Interface (“specification”):
-- matrices.ada
generic

type T is private ;
z e r o : T ;
un i t y : T ;
with function ” + ” (a , b : T)

return T is < >;
with function ” ∗ ” (a , b : T)

return T is < >;
package MATRICES is

type MATRIX (l i n e s , columns : POSITIVE) is
array (1 . . l i n e s , 1 . . columns) of T ;

function ” + ” (m1 , m2 : MATRIX)
return MATRIX ;

function ” ∗ ” (m1 , m2 : MATRIX)
return MATRIX ;

end MATRICES ;

Typology of programming languages History of Genericity 19 / 33

More Genericity Examples in Ada 83

Instantiations:
package FLOAT_MATRICES

is new MATRICES (FLOAT , 0 . 0 , 1 . 0) ;

package BOOL_MATRICES is
new MATRICES (BOOLEAN, f a l s e ,

t rue , ” or ” , ” and ”) ;

Typology of programming languages History of Genericity 20 / 33

More Genericity Examples in Ada 83

Implementation (“body”):
-- matrices.adb
package body MATRICES is

function ” ∗ ” (m1 , m2 : MATRIX) is
r e s u l t : MATRIX (m1 ’ l i n e s , m2 ’ columns)

begin
if m1’ columns /= m2 ’ l i n e s then

raise INCOMPATIBLE_SIZES ;
end if ;
for i in m1’RANGE (1) loop

for j in m2’RANGE (2) loop
r e s u l t (i , j) : = z e r o ;
for k in m1’RANGE (2) loop

r e s u l t (i , j) : = r e s u l t (i , j) + m1 (i , k) ∗ m2 (k , j) ;
end loop ;

end loop ;
end loop ;

end ” ∗ ” ;
-- Other declarations...

end MATRICES ;

Typology of programming languages History of Genericity 21 / 33

Table of Contents

1 CLU

2 Ada

3 C++

Typology of programming languages History of Genericity 22 / 33

A History of C++ Templates

Initial motivation: provide
parameterized containers.

Previously, macros were used to
provide such containers
(in C and C with classes).

Many limitations, inherent to the
nature of macros:

I Poor error messages
referring to the code written by
cpp, not by the programmer.

I Need to instantiate templates
once per compile unit, manually.

I No support for recurrence.

Typology of programming languages History of Genericity 23 / 33

Simulating parameterized types with macros
#define VECTOR(T) vector_ ## T

#define GEN_VECTOR(T) \
class VECTOR(T) { \
public: \

typedef T value_type; \
VECTOR(T)() { /* ... */ } \
VECTOR(T)(int i) { /* ... */ } \
value_type& operator[](int i) { /* ... */ } \
/* ... */ \

}

// Explicit instantiations.
GEN_VECTOR(int);
GEN_VECTOR(long);

int main() {
VECTOR(int) vi;
VECTOR(long) vl;

}
Typology of programming languages History of Genericity 24 / 33

A History of C++ Templates (cont.)

Introduction of a template
mechanism around 1990,
later refined (1993) before the
standardization of C++ in 1998.

Class templates.

Function templates (and member
function templates).

Automatic deduction of parameters
of template functions.

Type and non-type template
parameters.

Typology of programming languages History of Genericity 25 / 33

A History of C++ Templates (cont.)

No explicit constraints on
parameters.

Implicit (automatic) template
instantiation
(though explicit instantiation is still
possible).

Full (classes, functions) and partial
(classes) specializations of templates
definitions.

A powerful system allowing
metaprogramming techniques
(though not designed for that in the
first place!)

Typology of programming languages History of Genericity 26 / 33

Class Templates

template <typename T>
class vector {
public:

typedef T value_type;
vector() { /* ... */ }
vector(int i) { /* ... */ }
value_type& operator[](int i) { /* ... */ }
/* ... */

};

// No need for explicit template instantiations.

int main() {
vector<int> vi;
vector<long> vl;

}

Typology of programming languages History of Genericity 27 / 33

Function Templates
Natural in a language with non-member
functions (such as C++).
template <typename T>
void swap (T& a , T& b)
{

T tmp = a ;
a = b ;
b = tmp ;

}

Class templates can make up for the
lack of generic functions in most
uses cases (through fonctor).
Eiffel does not feature generic
function at all.

Java and C-sharp provide only
generic member functions.

Typology of programming languages History of Genericity 28 / 33

Specialization of Template Definitions

Idea: provide another definition for
a subset of the parameters.

Motivation: provide (harder,) better,
faster, stronger implementations for
a given template class or function.

Example: boolean vector has its own
definition, different from type T
vector

Mechanism close to function
overloading in spirit, but distinct.

Typology of programming languages History of Genericity 29 / 33

Alexander Alexandrovich Stepanov (Nov. 16, 1950)

Алексан́др Алексан́дрович Степан́ов

Typology of programming languages History of Genericity 30 / 33

The Standard Template Library (STL)
A library of containers, iterators,
fundamental algorithms and tools,
using C++ templates.

Designed by Alexander Stepanov at
HP.

The STL is not the Standard
C++Library
(nor is one a subset of the other)
although most of it is part of the
standard

Introduces the notion of concept: a
set of syntactic and semantic
requirements over one (or several)
types.

But the language does not enforce
them.

Initially planned as a language
extension in the C++11/14/17
standard…

…but abandonned shortly before the
standardization. :-(

Typology of programming languages History of Genericity 31 / 33

Example

template<typename T>
concept Hashable =
requires(T a) {

{ std::hash<T>{}(a) } ->
std::convertible_to

<std::size_t>;
};

// constrained C++20
// function template
template<Hashable T>
void f(T);

Typology of programming languages History of Genericity 32 / 33

Summary

templates generics

partial
specialization Constraints

Typology of programming languages History of Genericity 33 / 33

	CLU
	Ada
	C++

