
C++ Workshop — Day 2 out of 5
Object-Orientation

Thierry Géraud, Roland Levillain, Akim Demaille
{theo,roland,akim}@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées
LRDE — Laboratoire de Recherche et Développement de l’EPITA

2015–2016
(v2015-7-g3c99c09, 2015-12-02 11:02:33 +0100)

C++ Workshop — Day 2 out of 5

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 2 / 72

Rationale for inheritance

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 3 / 72

After day 1

We have

a circle class

nice features

encapsulation
information hiding
class / object

a toy-like piece of software

We want rectangles!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 4 / 72

After day 1

We want to extend our program (to add some new feature).

We would like to ensure that

extending does not lead to modify code
→ adding = a non-intrusive process

we do not break the “type-safe” property
→ a new type is not really an unknown type!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 5 / 72

Program features

Expected features:

both circles and rectangles can be translated (moved)

both circles and rectangles can be printed

So we want to handle shapes.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 6 / 72

Shapes?

We can say:

that a shape is either a circle or a rectangle

that both circles and rectangles are shapes

so every shapes can be processed

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 7 / 72

Please remember that!

Once again:

a circle is a shape

a rectangle is a shape

if you hold/know/have a shape, it is either a circle or a rectangle

actually a set of circles and rectangles is a set of shapes

OK?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 8 / 72

Conclusion

There is a shape module in our program:

sub-modules are particular kinds of shapes

this module can be extended with new sub-modules
(what about triangles?)

extension should be non-intrusive

There is a type (“shape”) to represent shapes:

our context is a language with some kind of typing

“good” typing leads to “good” programs

compiler is our best friend
Be honest to your friends. . . When you lie, they get revenge

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 9 / 72

Inheritance in C++

1 Rationale for inheritance

2 Inheritance in C++

Abstract Class and Abstract Method
Definitions + playing with words
Subclassing

3 Playing with types

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 10 / 72

Abstract Class and Abstract Method

1 Rationale for inheritance

2 Inheritance in C++

Abstract Class and Abstract Method
Definitions + playing with words
Subclassing

3 Playing with types

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 11 / 72

Definitions

An abstract class. . .

is a class that represents an abstraction

cannot be instantiated

has at least one abstract method

An abstract method is

a method whose code cannot be given

a method that is just declared

a method that will be defined in other classes (some sub-classes)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 12 / 72

Anti-definition

A concrete class is

a class that does not represent an abstraction
thus not an abstract class!

a class that can be instantiated

a class with no abstract method

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 13 / 72

Abstractions

shape is an abstraction for both circle and rectangle

—an abstract type that represents several concrete types.

The code invoked by shape::print depends on which actual object we
have to print; a circle? a rectangle? at that point we do not know.

However:

an abstract class can have attributes
a shape have a center located at (x, y)

an abstract class can provide methods with their definitions
attributes ⇒ a constructor
shape::translate can be written

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 14 / 72

Shape as a C++ abstract class (1/3)

class shape

{

public: // 1

shape(float x, float y); // 2

virtual ~shape() {} // 3

void translate(float dx, float dy); // 4

virtual void print() const = 0; // 5

protected: // 6

float x_, y_; // 7

};

1 shape has an interface
a public accessibility area

2 a constructor
initializing attributes is a safe behavior

3 a destructor
just write it (no explanations here sorry...)

4 a translation method
it will be defined in shape.cc

5 a printing method
just to say that we want to print shapes

6 a “protected” accessibility area
details are given later...

7 a couple of hidden attributes
so they are suffixed by _

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 15 / 72

Shape as a C++ abstract class (2/3)

To make a method abstract in C++, its declaration

starts with “virtual”

ends with “= 0”

Calling print on a shape is then valid:

#include "shape.hh"

shape* s = // ...

s->print(); // OK

// conforms to the declaration of ’shape::print’

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 16 / 72

Shape as a C++ abstract class (3/3)

In shape.cc nothing to be surprised about:

#include "shape.hh"

shape::shape(float x, float y)

: x_{x}, y_{y}

{}

void shape::translate(float dx, float dy)

{

x_ += dx; // i.e., this->x_ += dx;

y_ += dy;

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 17 / 72

Definitions + playing with words

1 Rationale for inheritance

2 Inheritance in C++

Abstract Class and Abstract Method
Definitions + playing with words
Subclassing

3 Playing with types

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 18 / 72

“is-a”

The “is-a” relationship between classes is known as inheritance or
sub-classing.

A circle “is-a” shape so:

circle inherits from shape

circle is a sub-class of shape
shape is a super-class of circle

We also say that:

circle derives from shape

circle is a derived class of shape

shape is a base class for circle

circle extends shape

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 19 / 72

Class Hierarchy

A set of classes related by the “is-a” relationship is called
a class hierarchy.

usually a tree

depicted upside-down
(superclasses at the top, subclasses at the bottom)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 20 / 72

Practicing (not just for fun)

OK:

a rabbit is-an animal

a wine is-a drink

a tulip is-a flower

(as an exercise find more
examples)

OK as anti-examples:

a guinea pig is-not-a pig

a piece of cake is-not-a cake

a program is-not-a language

(find more)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 21 / 72

Subclassing

1 Rationale for inheritance

2 Inheritance in C++

Abstract Class and Abstract Method
Definitions + playing with words
Subclassing

3 Playing with types

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 22 / 72

Circle as a C++ subclass

#include "shape.hh" // 8

class circle : public shape // 9

{

public: // 10

circle(float x, float y, float r); // 11

void print() const override; // 12

private:

float r_; // 13

};

8 knowing the class from which circle inherits is required

9 the inheritance relationship is translated by“: public”

10 “public:” starts the class interface

11 a constructor

12 a print definition, tagged with the “override” keyword.

13 a single attribute in a private area

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 23 / 72

When “inheritance” makes sense (1/4)

Actually the class circle has really inherited from shape:

the translate method

the couple of attributes x_ and y_

except that it is implicit

so

a circle can be translated

circle has three attributes
indeed: sizeof(circle) == 3 * sizeof(float) + sizeof(void*)

(the ’void*’ is related to type identification...)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 24 / 72

When “inheritance” makes sense (2/4)

If inheritance were explicit in the class body, we would have:

class circle : public shape

{

public:

circle(float x, float y, float r);

virtual void print() const;

void translate(float dx, float dy); // inherited!

private:

float r_;

protected:

float x_, y_; // inherited!

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 25 / 72

Circle as a C++ subclass (3/4)

In circle.cc:

#include "circle.hh"

#include <cassert>

circle::circle(float x, float y, float r)

: shape{x, y}

{

assert(0.f < r); // precondition

r_ = r;

}

void circle::print() const // kw ’override’ in .hh only

{

assert(0.f < r_); // invariant

std::cout << ’(’ << x_ << ", " << y_ << ", " << r_ << ’)’;

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 26 / 72

Circle as a C++ subclass (4/4)

A few remarks:

the constructor of circle first calls the one of shape
having a new circle first means having a new shape...

the attributes x_ and y_ can be accessed
as if they were defined in the circle class

the “virtual” keyword must not appear in source file
only in the declaration of the method

likewise with “override”
but override is not a keyword!
Yet, don’t use it as a variable name, please!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 27 / 72

Playing with types

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types
Transtyping
Accessibility
Conclusion

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 28 / 72

Transtyping

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types
Transtyping
Accessibility
Conclusion

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 29 / 72

An object has two types!

Let us take a variable that contains an object.

The static type of the object
is the type of the variable that contains the object.
Always known at compile-time.

The dynamic type of the object, or exact type
is its type at instantiation.
Usually unknown at compile-time (but known at run-time).

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 30 / 72

Take a guess... (1/2)

In the following piece of code:

#include "shape.hh"

void foo(const shape& s)

{

s.print();

}

what is the static type of the object in s?

and what is its dynamic type?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 31 / 72

Take a guess... (2/2)

and with:

void foo(const shape& s)

{

s.print();

}

int main()

{

foo(circle{...});

}

can you answer?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 32 / 72

Valid transtyping (1/2)

Since a circle is a shape, you can write:

circle* c = new circle{1, 6, 64};

shape* s = c;

A pointer to a shape is expected (s), you have a pointer to a circle (c);
the assignment is valid.

The same goes for references (see the previous slide).

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 33 / 72

Valid transtyping (2/2)

What you can do:

promote constness:

circle* c = // init

const circle* cc = c;

circle& c = // init

const circle& cc = c;

changing static type from a derived class to a base class:

circle* c = // init

shape* s = c;

circle& c = // init

shape& s = c;

both at the same time:

circle* c = // init

const shape* s = c;

circle& c = // init

const shape& s = c;

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 34 / 72

Resolving a method call

In this program:

void foo(const shape& s) { s.print(); }

int main()

{

foo(circle{1, 6, 64});

}

which method is called by foo?

which method is actually performed at run-time?

why? (a “vtable” equips this hierarchy...)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 35 / 72

Accessibility

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types
Transtyping
Accessibility
Conclusion

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 36 / 72

Three Kinds of Accessibility

public

accessible from everybody everywhere
example: circle::r_get() const

private

only accessible from the current class
example: circle::r_

protected

accessible from the current class and from its sub-classes
example: shape::x_

These are called “access specifiers”. It’s about accessibility.
Please, don’t use the word “visibility”, it’s something else.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 37 / 72

final

Sometimes you do not want to be derived from

Even though you are a derived class

final allows to flag such cases

Sometimes, you’d like to help the compiler optimize your code

Help it know a method will not be overriden

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 38 / 72

Final (1/2)

class A {

// ...

virtual void foo() = 0;

};

class B : public A {

// ...

void foo() override final; // <- final impl

};

class C : public B {

// ...

// B::foo cannot be overridden here

};

Like for virtual and override, use only in declarations.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 39 / 72

Final (2/2)

class A final { // <- now the class is final

// ...

};

class B : public A {

// ...

// does NOT compile because A cannot be derived

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 40 / 72

Conclusion

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types
Transtyping
Accessibility
Conclusion

4 Smart Pointers: Part I

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 41 / 72

Dynamic Allocation & Deallocation

From C to C++:

C circle* c = (circle*)malloc(sizeof(circle));

init_circle(c, 1, 6, 64);

C++ circle* c = new circle{1, 6, 64};

C free(c);

C++ delete c;

C int* buf = (int*)malloc(n * sizeof(int));

C++ int* buf = new int[n];

C free(buf);

C++ delete[] buf;

Memory management is not easy.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 42 / 72

An exercise from the real world

Printing a page means printing every shapes of this page:

void print(const page& p)

{

for (const shape& s: p) // each shape s of p

print(s);

}

How to make “print(s)” work properly?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 43 / 72

Hint for beginners

You can avoid many problems by following this advice:

an abstract class can derive from an abstract class

a concrete class should not derive from a concrete class

sorry that’s not argued in this material...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 44 / 72

Much further readings

Modularité, Objets et Types by Didier Rémy. Lecture Material;
available from
http://cristal.inria.fr/~remy/poly/mot/

Object-Oriented Software Construction, second edition by Bertrand
Meyer, Prentice Hall, 1997.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 45 / 72

http://cristal.inria.fr/~remy/poly/mot/

Smart Pointers: Part I

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types

4 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 46 / 72

(Raw) Pointers

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types

4 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 47 / 72

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer
Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references
These are “non-owning pointers”

Pointers are 0/1 containers

nullptr for empty
Unclear ownership
C++ 17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer
Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 48 / 72

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer
Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references
These are “non-owning pointers”

Pointers are 0/1 containers

nullptr for empty
Unclear ownership
C++ 17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer
Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 48 / 72

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer
Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references
These are “non-owning pointers”

Pointers are 0/1 containers

nullptr for empty
Unclear ownership
C++ 17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer
Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 48 / 72

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer
Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references
These are “non-owning pointers”

Pointers are 0/1 containers

nullptr for empty
Unclear ownership
C++ 17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer
Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 48 / 72

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer
Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references
These are “non-owning pointers”

Pointers are 0/1 containers

nullptr for empty
Unclear ownership
C++ 17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer
Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 48 / 72

Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

point to (or “reference to”)

do not delete it!

holds some new’d object

do delete it!

Note that many OO languages offer only reference semantics

So everything is actually a pointer

Java, C#, etc.

And the GC deals with the details

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 49 / 72

Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

point to (or “reference to”) do not delete it!
holds some new’d object

do delete it!

Note that many OO languages offer only reference semantics

So everything is actually a pointer

Java, C#, etc.

And the GC deals with the details

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 49 / 72

Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

point to (or “reference to”) do not delete it!
holds some new’d object do delete it!

Note that many OO languages offer only reference semantics

So everything is actually a pointer

Java, C#, etc.

And the GC deals with the details

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 49 / 72

The Problem with Pointers

The only question is:

delete, or not delete

owner, or not owner

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 50 / 72

The Problem with Pointers

The only question is:

delete, or not delete

owner, or not owner

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 50 / 72

Smart Pointers

look like pointers

behave like pointers

manage ownership

they make your programs more robust!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 51 / 72

Shared Pointers

1 Rationale for inheritance

2 Inheritance in C++

3 Playing with types

4 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 52 / 72

Pointers and Containers

#include <iostream>

#include <vector>

#define PING() std::cerr << __PRETTY_FUNCTION__ << ’\n’

struct shape

{

virtual ~shape() { PING(); };

virtual void print() const = 0;

};

struct circle: shape

{

void print() const override { PING(); }

};

struct square: shape

{

void print() const override { PING(); }

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 53 / 72

Pointers and Containers

int main()

{

using shape_ptr

= const shape*;

auto ss

= std::vector<shape_ptr>{};

ss.emplace_back(new circle{});

ss.emplace_back(new square{});

for (auto s: ss)

s->print();

}

don’t worry about std::vector

we’ll see that tomorrow

a dynamic (resizable) array of
shape_ptr

emplace_back means “build and
append”

virtual void circle::print() const

virtual void square::print() const

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 54 / 72

Pointers and Containers

int main()

{

using shape_ptr

= const shape*;

auto ss

= std::vector<shape_ptr>{};

ss.emplace_back(new circle{});

ss.emplace_back(new square{});

for (auto s: ss)

s->print();

}

don’t worry about std::vector

we’ll see that tomorrow

a dynamic (resizable) array of
shape_ptr

emplace_back means “build and
append”

virtual void circle::print() const

virtual void square::print() const

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 54 / 72

Pointers and Containers

int main()

{

using shape_ptr

= std::shared_ptr<const shape>;

auto ss

= std::vector<shape_ptr>{};

ss.emplace_back(new circle{});

ss.emplace_back(new square{});

for (auto s: ss)

s->print();

}

virtual void circle::print() const

virtual void square::print() const

virtual shape::~shape()

virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 55 / 72

Pointers and Containers

int main()

{

using shape_ptr

= std::shared_ptr<const shape>;

auto ss

= std::vector<shape_ptr>{};

ss.emplace_back(new circle{});

ss.emplace_back(new square{});

for (auto s: ss)

s->print();

}

virtual void circle::print() const

virtual void square::print() const

virtual shape::~shape()

virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 55 / 72

Pointers and Containers

int main()

{

using shape_ptr

= const shape*;

auto ss

= std::vector<shape_ptr>{};

ss.emplace_back(new circle{});

ss.emplace_back(new square{});

for (auto s: ss)

s->print();

}

virtual void circle::print() const

virtual void square::print() const

int main()

{

using shape_ptr

= std::shared_ptr<const shape>;

auto ss

= std::vector<shape_ptr>{};

ss.emplace_back(new circle{});

ss.emplace_back(new square{});

for (auto s: ss)

s->print();

}

virtual void circle::print() const

virtual void square::print() const

virtual shape::~shape()

virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 56 / 72

Shared Ownership

for (unsigned i = 0; i < 10; ++i)

{

unsigned n = rand() % 10; // bad quality random, but quick to write

if (n < ss.size())

ss.emplace_back(ss[n]);

else if (n % 2)

ss.emplace_back(new circle{});

else

ss.emplace_back(new square{});

}

for (auto s: ss)

s->print();

Good luck with memory management...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 57 / 72

Shared Ownership

for (unsigned i = 0; i < 10; ++i)

{

unsigned n = rand() % 10; // bad quality random, but quick to write

if (n < ss.size())

ss.emplace_back(ss[n]);

else if (n % 2)

ss.emplace_back(new circle{});

else

ss.emplace_back(new square{});

}

for (auto s: ss)

s->print();

Good luck with memory management...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 57 / 72

Shared Ownership

virtual void circle::print() const

virtual void circle::print() const

virtual void circle::print() const

virtual void square::print() const

virtual void circle::print() const

virtual void circle::print() const

virtual void circle::print() const

virtual void square::print() const

virtual void square::print() const

virtual void circle::print() const

virtual shape::~shape()

virtual shape::~shape()

virtual shape::~shape()

virtual shape::~shape()

virtual shape::~shape()

virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 58 / 72

Avoid new, prefer make shared

shared_ptr<Foo>{new Foo{arg}} don’t

exception unsafe
two allocations
redundancy (twice Foo)
contains a new without its delete

std::make_shared<Foo>(arg) do

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 59 / 72

C++ Workshop — Day 2 out of 5

1 Rationale for inheritance

2 Inheritance in C++

Abstract Class and Abstract Method
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion

4 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 60 / 72

Part I

Appendix

5 A Hierarchy in C

Some Sugar

Introducing auto and decltype:

auto p = std::make_shared<test>();

p->noop();

decltype(p) p2 = p;

std::cout << p.get() << ’ ’ << p2.get() << ’\n’; // same addr

std::cout << p.use_count() << ’\n’; // 2

auto is often for
you_dont_want_the_write_a_type_because_it_is_too_long_and_or_obvious

auto and decltype are also great to rely on the compiler.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 62 / 72

A Hierarchy in C

5 A Hierarchy in C

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 63 / 72

A first big problem

Think about the couple of sentences:

a shape is either a circle or a rectangle
and

an entity has exactly one type

In C that sounds like:

we should use three types

we have to resort to the C “cast” feature...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 64 / 72

Shape type

First we need shapes, so:

typedef enum { circle_id = 0, rectangle_id = 1 } shape_id;

typedef struct {

shape_id id;

float x, y;

} shape;

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 65 / 72

Circle and rectangle types

With:

typedef struct {

shape_id id; // == circle_id

float x, y;

float r; // radius

} circle;

typedef struct {

shape_id id; // == rectangle_id

float x, y;

float w, h; // width and height

} rectangle;

we can write something like:

circle* c = // malloc + init

shape* s = (shape*)c;

(void)printf("my shape: id=%d x=%f y=%f\n",

s->id, s->x, s-> y);

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 66 / 72

Shape procedures (1/2)

We do not need circle_translate(..)-like routines since you have this
one:

void shape_translate(shape* s, float dx, float dy)

{

s->x += dx; s->y += dy;

}

and a sample use is: shape_translate(s, 16, 64);

or: shape_translate((shape*)c, 16, 64);

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 67 / 72

Shape procedures (2/2)

Printing a shape depends on what the shape to be printed is:

void shape_print(const shape* s)

{

assert(s != NULL);

switch (s->id) {

case circle_id:

circle_print((const circle*)s);

break;

case rectangle_id:

rectangle_print((const rectangle*)s);

break;

default:

assert(0);

}

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 68 / 72

What have we done? (1/3)

Given a circle s (the same goes for a rectangle):

you can call shape_print(s) instead of circle_print(s)

so you can use a single routine per feature

From a client (user of the shape module) point of view:

she does not know that circles and rectangles exist

she does not care about new types (triangle, etc.)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 69 / 72

What have we done? (2/3)

You can write this sexy piece of code:

typedef struct

{

shape** s;

unsigned ns;

/* ... */

} page;

void page_print(const page* p)

{

assert(p != NULL);

unsigned i;

for (i = 0; i < p->ns; ++i)

shape_print(p->s[i]);

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 70 / 72

What have we done? (3/3)

we have introduced a new kind of type: shape
is it a “concrete” type?

we can extend the shape module, yet in an intrusive way
just look at shape_print...

we have factored some code
shape_translate is valid for any shape

we have also factored some data
x and y are common to every shapes

and

our program relies on casts such as: circle* → shape*

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 71 / 72

Think different

Actually we have formed:

typedef struct

{

shape s;

float r;

} circle;

typedef struct

{

shape s;

float w, h;

} rectangle;

So that any shape (e.g., a circle) is:

first a shape

an extension of a shape with its own features (r)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2016 72 / 72

	Rationale for inheritance
	Inheritance in C++
	Abstract Class and Abstract Method
	Definitions + playing with words
	Subclassing

	Playing with types
	Transtyping
	Accessibility
	Conclusion

	Smart Pointers: Part I
	(Raw) Pointers
	Shared Pointers

	Appendix
	A Hierarchy in C

