C++ Workshop — Day 2 out of 5

Object-Orientation

Thierry Géraud, Roland Levillain, Akim Demaille
{theo,roland,akim}@lrde.epita.fr

EPITA — Ecole Pour I"'Informatique et les Techniques Avancées
LRDE — Laboratoire de Recherche et Développement de I'EPITA

2015-2016
(v2015-7-g3c99c09, 2015-12-02 11:02:33 +0100)



C++ Workshop — Day 2 out of 5

@ Rationale for inheritance
© Inheritance in C++
e Playing with types

@ Smart Pointers: Part |

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 2/72



Rationale for inheritance

@ Rationale for inheritance

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 3/72



After day 1

We have

@ a circle class
@ nice features

e encapsulation
e information hiding
o class / object

@ a toy-like piece of software

We want rectangles!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 4/72



After day 1

We want to extend our program (to add some new feature).

We would like to ensure that

@ extending does not lead to modify code
— adding = a non-intrusive process

@ we do not break the “type-safe” property
— a new type is not really an unknown type!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 5/72



Program features

Expected features:
@ both circles and rectangles can be translated (moved)

@ both circles and rectangles can be printed

So we want to handle shapes.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 6 /72



We can say:

@ that a shape is either a circle or a rectangle
@ that both circles and rectangles are shapes

@ so every shapes can be processed

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5

2015-2016 7/72



Please remember that!

Once again:

a circle is a shape

a rectangle is a shape

if you hold/know/have a shape, it is either a circle or a rectangle
actually a set of circles and rectangles is a set of shapes

OK?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 8 /72



Conclusion

There is a shape module in our program:
@ sub-modules are particular kinds of shapes

@ this module can be extended with new sub-modules
(what about triangles?)

@ extension should be non-intrusive

There is a type (“shape”) to represent shapes:
@ our context is a language with some kind of typing
@ “good” typing leads to “good” programs

@ compiler is our best friend
Be honest to your friends. .. When you lie, they get revenge

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 9 /72



Inheritance in C++

© Inheritance in C++
@ Abstract Class and Abstract Method
@ Definitions + playing with words
@ Subclassing

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 10 / 72



Abstract Class and Abstract Method

© Inheritance in C++
@ Abstract Class and Abstract Method

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 11 /72



An abstract class. . .
@ is a class that represents an abstraction
@ cannot be instantiated

@ has at least one abstract method

An abstract method is
@ a method whose code cannot be given
@ a method that is just declared

@ a method that will be defined in other classes (some sub-classes)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 12 /72



A concrete class is

@ a class that does not represent an abstraction
thus not an abstract class!

@ a class that can be instantiated

@ a class with no abstract method

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 13 /72



Abstractions

shape is an abstraction for both circle and rectangle
—an abstract type that represents several concrete types.

The code invoked by shape: :print depends on which actual object we
have to print; a circle? a rectangle? at that point we do not know.
However:

@ an abstract class can have attributes
a shape have a center located at (x, y)

@ an abstract class can provide methods with their definitions
attributes = a constructor
shape: :translate can be written

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 14 /72



Shape as a C++ abstract class (1/3)

class shape
{
public:
shape (float x, float y);
virtual “shape() {}
void translate(float dx, float dy);
virtual void print() const = 0;
protected:
float x_, y_;
15
1 shape has an interface 5 a printing method
a public accessibility area just to say that we want to print shapes
2 a constructor 6 a “protected” accessibility area
initializing attributes is a safe behavior details are given later...
3 a destructor 7 a couple of hidden attributes
just write it (no explanations here sorry...) so they are suffixed by _

4 a translation method
it will be defined in shape.cc

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 15 / 72



Shape as a C++ abstract class (2/3)

To make a method abstract in C++, its declaration
@ starts with “virtual”

@ ends with “= 0"

Calling print on a shape is then valid:

#include "shape.hh"

shape* s =
s=>print();

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 16 / 72



Shape as a C++ abstract class (3/3)

In shape.cc nothing to be surprised about:

#include "shape.hh"

shape: :shape(float x, float y)

o x_{x}, y_{y}
{3
void shape::translate(float dx, float dy)
{
x_ += dx;
y- *=dy;
}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 17 /72



Definitions + playing with words

© Inheritance in C++

@ Definitions + playing with words

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 18 / 72



The “is-a" relationship between classes is known as inheritance or
sub-classing.

A circle “is-a" shape so:
@ circle inherits from shape
@ circle is a sub-class of shape
shape is a super-class of circle
We also say that:

@ circle derives from shape
circle is a derived class of shape

shape is a base class for circle

@ circle extends shape

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016

19 /72



Class Hierarchy

A set of classes related by the “is-a” relationship is called
a class hierarchy.

@ usually a tree

@ depicted upside-down
(superclasses at the top, subclasses at the bottom)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 20 /72



Practicing (not just for fun)

OK: OK as anti-examples:
@ a rabbit is-an animal @ a guinea pig is-not-a pig
@ a wine is-a drink @ a piece of cake is-not-a cake
@ a tulip is-a flower @ a program is-not-a language
@ (as an exercise find more e (find more)
examples)

Th. Géraud et al (EPITA/LRDE)

C++ Workshop — Day 2 out of 5 2015-2016

21 /72



Subclassing

© Inheritance in C++

@ Subclassing

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 22 /72



Circle as a C++ subclass

#include "shape.hh"
class circle : public shape
{
public:
circle(float x, float y, float r);
void print() const override;
private:
float r_;
};

8 knowing the class from which circle inherits is required
9 the inheritance relationship is translated by“: public”
10 “public:"” starts the class interface
11 a constructor
12 a print definition, tagged with the “override” keyword.

13 a single attribute in a private area

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 23 /72



When “inheritance” makes sense (1/4)

Actually the class circle has really inherited from shape:
@ the translate method
@ the couple of attributes x_ and y_

except that it is implicit

o)
@ a circle can be translated

@ circle has three attributes
indeed: sizeof(circle) == 3 * sizeof(float) + sizeof (void*)
(the 'void*' is related to type identification...)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 24 /72



n “inheritance” makes sense (2/4)

If inheritance were explicit in the class body, we would have:

class circle : public shape
{
public:
circle(float x, float y, float r);
virtual void print() const;
void translate(float dx, float dy);
private:
float r_;
protected:
float x_, y_;
iE

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 25 /72



Circle as a C++ subclass (

In circle.cc:

#include "circle.hh"
#include <cassert>

circle::circle(float x, float y, float r)

shape{x, y}

{

assert(0.f < r);

r_ =r;
¥
void circle::print() const
{

assert(0.f < r_);

std::cout << (7 << x_ <K< ", " <K<Ky <K<K " "KL KL )0
iy

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5

2015-2016

26 / 72



Circle as a C++ subclass (4/

A few remarks:

@ the constructor of circle first calls the one of shape
having a new circle first means having a new shape...
@ the attributes x_ and y_ can be accessed
as if they were defined in the circle class
@ the “virtual” keyword must not appear in source file
only in the declaration of the method
o likewise with “override”
but override is not a keyword!
Yet, don't use it as a variable name, please!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5

2015-2016

27 / 72



Playing with types

© Playing with types
@ Transtyping
@ Accessibility
@ Conclusion

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 28 /72



Transtyping

© Playing with types
@ Transtyping

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 29 /72



An object has two types!

Let us take a variable that contains an object.

The static type of the object
is the type of the variable that contains the object.
Always known at compile-time.

The dynamic type of the object, or exact type
is its type at instantiation.
Usually unknown at compile-time (but known at run-time).

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 30 /72



Take a guess... (1/2)

In the following piece of code:

#include "shape.hh"

void foo(const shape& s)
{

s.print();
}

what is the static type of the object in s?

and what is its dynamic type?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 31/ 72



Take a guess... (2/2)

and with:

void foo(const shape& s)
{

s.print();
}

int main()

{
foo(circle{...});

}

can you answer?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 32/ 72



Valid transtyping (1/2)

Since a circle is a shape, you can write:

circle* c¢c = new circle{1, 6, 64};
shape*x s = c;

A pointer to a shape is expected (s), you have a pointer to a circle (c);
the assignment is valid.

The same goes for references (see the previous slide).

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 33 /72



Valid transtyping (2/2)

What you can do:

@ promote constness:

circlex c = circle& c =
const circlex cc = c; const circle& cc = c;

@ changing static type from a derived class to a base class:

circle* c = circle& c =
shape* s = c; shape& s = c;

@ both at the same time:

circle* c = circle& c =
const shape* s = c; const shape& s = c;

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 34 /72



Resolving a method call

In this program:

void foo(const shape& s) { s.print(); }

int main()
{

foo(circle{1l, 6, 64});
}

@ which method is called by foo?
@ which method is actually performed at run-time?

@ why? (a “vtable” equips this hierarchy...)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 35 /72



Accessibility

© Playing with types

@ Accessibility

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 36 /72



Three Kinds of Accessibility

@ public
accessible from everybody everywhere
example: circle::r_get() const
@ private
only accessible from the current class
example: circle::r_
@ protected
accessible from the current class and from its sub-classes
example: shape: :x_

These are called “access specifiers”. It's about accessibility.
Please, don't use the word “visibility”, it's something else.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 37 /72



Sometimes you do not want to be derived from
Even though you are a derived class
final allows to flag such cases

Sometimes, you'd like to help the compiler optimize your code

Help it know a method will not be overriden

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 38 /72



class A {

virtual void foo() = 0;

};
class B : public A {

void foo() override final;

};

class C : public B {

¥s

Like for virtual and override, use only in declarations.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 39 /72



class A final {
73

class B : public A {

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 40 / 72



Conclusion

© Playing with types

@ Conclusion

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 41 / 72



Dynamic Allocation & Deallocation

From C to C++:

C circlex ¢ = (circlex)malloc(sizeof (circle));
init_circle(c, 1, 6, 64);

C++ circlex c = new circle{l, 6, 64};

C free(c);

C++ delete c;

C int* buf
C++ dint* buf
C free(buf) ;

C++ deletel] buf;

(int*)malloc(n * sizeof (int));
new int[n];

Memory management is not easy.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 42 / 72



An exercise from the real world

Printing a page means printing every shapes of this page:

void print(const page& p)
{
for (const shape& s: p)
print(s);

How to make “print(s)” work properly?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 43 / 72



Hint for beginners

You can avoid many problems by following this advice:
@ an abstract class can derive from an abstract class

@ a concrete class should not derive from a concrete class

sorry that's not argued in this material...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 44 / 72



Much further readings

o Modularité, Objets et Types by Didier Rémy. Lecture Material;
available from
http://cristal.inria.fr/~remy/poly/mot/

o Object-Oriented Software Construction, second edition by Bertrand
Meyer, Prentice Hall, 1997.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 45 / 72


http://cristal.inria.fr/~remy/poly/mot/

Smart Pointers: Part |

@ Smart Pointers: Part |
@ (Raw) Pointers
@ Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 46 / 72



GEDREIIEE

@ Smart Pointers: Part |
@ (Raw) Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 47 / 72



Why Pointers?

@ Pointers in C are a powerful means to play tricks with memory

o Forget about forging an address from an integer
o Forget about pointer arithmetic

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 48 / 72



Why Pointers?

@ Pointers in C are a powerful means to play tricks with memory

o Forget about forging an address from an integer
e Forget about pointer arithmetic

@ Pointers are an important means to refer to another place

e They are “retargetable” references
o These are “non-owning pointers”

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 48 / 72



Why Pointers?

@ Pointers in C are a powerful means to play tricks with memory

o Forget about forging an address from an integer
e Forget about pointer arithmetic

@ Pointers are an important means to refer to another place
e They are “retargetable” references
e These are “non-owning pointers”

@ Pointers are 0/1 containers

e nullptr for empty
e Unclear ownership
o C++ 17 promotes std: :optional instead

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 48 / 72



Why Pointers?

@ Pointers in C are a powerful means to play tricks with memory
o Forget about forging an address from an integer
e Forget about pointer arithmetic
@ Pointers are an important means to refer to another place
e They are “retargetable” references
e These are “non-owning pointers”
@ Pointers are 0/1 containers

e nullptr for empty
e Unclear ownership
o C++ 17 promotes std: :optional instead
@ Pointers manage dynamically allocated memory
e new ‘returns’ a pointer
o Clearly an owning pointer
e However, in C++ we prefer value semantics
e So this should be seldom used?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 48 / 72



Why Pointers?

@ Pointers in C are a powerful means to play tricks with memory
o Forget about forging an address from an integer
e Forget about pointer arithmetic
@ Pointers are an important means to refer to another place
e They are “retargetable” references
e These are “non-owning pointers”
@ Pointers are 0/1 containers

e nullptr for empty
e Unclear ownership
o C++ 17 promotes std: :optional instead

@ Pointers manage dynamically allocated memory
e new ‘returns’ a pointer
o Clearly an owning pointer
e However, in C++ we prefer value semantics
e So this should be seldom used?

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 48 / 72



Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

e point to (or “reference to")
e holds some new'd object

Note that many OO languages offer only reference semantics
So everything is actually a pointer

Java, C#, etc.

And the GC deals with the details

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 49 / 72



Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

e point to (or “reference to") do not delete it!
e holds some new'd object

Note that many OO languages offer only reference semantics
So everything is actually a pointer

Java, C#, etc.

And the GC deals with the details

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 49 / 72



Runtime Polymorphism

We use pointers to get a “uniform handle” to objects
But then again, what about ownership?

e point to (or “reference to") do not delete it!
e holds some new'd object do delete it!

Note that many OO languages offer only reference semantics
So everything is actually a pointer

Java, C#, etc.

And the GC deals with the details

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 49 / 72



The Problem with Pointers

The only question is:

delete, or not delete

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 50 / 72



The Problem with Pointers

The only question is:

delete, or not delete

owner, or not owner

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 50 / 72



Smart Pointers

@ look like pointers
@ behave like pointers
@ manage ownership

@ they make your programs more robust!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 51 /72



Shared Pointers

@ Smart Pointers: Part |

@ Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 52 / 72



Pointers and Containers

#include <iostream>
#include <vector>

#define PING() std::cerr << __PRETTY_FUNCTION__ << ’\n’

struct shape

{
virtual “shape() { PING(); };
virtual void print() const = 0;

};

struct circle: shape

{

void print() const override { PING(); }
};

struct square: shape

{
void print() const override { PING(); }

},

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 53 / 72




Pointers and Containers

int main()
{
using shape_ptr
= const shapex;
auto ss
= std::vector<shape_ptr>{};
ss.emplace_back(new circle{});
ss.emplace_back(new square{});
for (auto s: ss)
s=>print () ;

@ don’t worry about std: :vector
o we'll see that tomorrow

@ a dynamic (resizable) array of
shape_ptr

@ emplace_back means “build and
append”

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 54 / 72



Pointers and Containers

int main()
{
using shape_ptr
= const shapex*;
auto ss
= std::vector<shape_ptr>{};
ss.emplace_back(new circle{});
ss.emplace_back(new square{});
for (auto s: ss)
s=>print () ;

@ don’t worry about std: :vector
o we'll see that tomorrow

@ a dynamic (resizable) array of
shape_ptr

@ emplace_back means “build and
append”

virtual void circle::print() const
virtual void square::print() const

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 54 / 72



Pointers and Containers

int main()
{

using shape_ptr

= std::shared_ptr<const shape>;
auto ss

= std::vector<shape_ptr>{};
ss.emplace_back(new circle{});
ss.emplace_back(new square{});
for (auto s: ss)

s=>print();

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 55 / 72



Pointers and Containers

int main()
{
using shape_ptr
= std::shared_ptr<const shape>;
auto ss
= std::vector<shape_ptr>{};
ss.emplace_back(new circle{});
ss.emplace_back(new square{});
for (auto s: ss)
s=>print();

virtual void circle::print() const
virtual void square::print() const
virtual shape::~shape()
virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 55 / 72



Pointers and Containers

int main()
{
using shape_ptr
= const shapex;
auto ss
= std::vector<shape_ptr>{};
ss.emplace_back(new circle{});
ss.emplace_back(new square{});
for (auto s: ss)
s=>print();

int main()
{
using shape_ptr
= std: :shared_ptr<const shape>;
auto ss
= std::vector<shape_ptr>{};
ss.emplace_back(new circle{});
ss.emplace_back(new square{});
for (auto s: ss)
s=>print();

virtual void circle::print() const
virtual void square::print() const

virtual void circle::print() const
virtual void square::print() const
virtual shape::~shape()
virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 56 / 72



Shared Ownership

for (unsigned i = 0; i < 10; ++i)
{

unsigned n = rand() % 10;

if (n < ss.size())
ss.emplace_back(ss[n]);

else if (n % 2)
ss.emplace_back(new circle{});

else
ss.emplace_back(new square{});

}
for (auto s: ss)
s=>print();

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 57 / 72



Shared Ownership

for (unsigned i = 0; i < 10; ++i)
{

unsigned n = rand() % 10;

if (n < ss.size())
ss.emplace_back(ss[n]);

else if (n % 2)
ss.emplace_back(new circle{});

else
ss.emplace_back(new square{});

}
for (auto s: ss)
s=>print();

Good luck with memory management...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 57 / 72



Shared Ownership

virtual void circle::print() const
virtual void circle::print() const
virtual void circle::print() const
virtual void square::print() const
virtual void circle::print() const
virtual void circle::print() const
virtual void circle::print() const
virtual void square::print() const
virtual void square::print() const
virtual void circle::print() const
virtual shape::~shape()
virtual shape::~shape()
virtual shape::~shape()
virtual shape::~shape()
virtual shape::~shape()
virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 58 / 72



Avoid new, prefer make_shared

@ shared_ptr<Foo>{new Foo{argl}} don't
exception unsafe

two allocations

redundancy (twice Foo)

contains a new without its delete

@ std::make_shared<Foo>(arg) do

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 59 / 72



C++ Workshop — Day 2 out of 5

@ Rationale for inheritance

© Inheritance in C++
@ Abstract Class and Abstract Method
@ Definitions + playing with words
@ Subclassing

© Playing with types
@ Transtyping
@ Accessibility
@ Conclusion

@ Smart Pointers: Part |
o (Raw) Pointers
@ Shared Pointers

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 60 / 72



Part |

© A Hierarchy in C



Introducing auto and decltype:

auto p = std::make_shared<test>();
p—>noop() ;

decltype(p) p2 = p;
std::cout << p.get() << ’ ’ << p2.get() << ’\n’;
std::cout << p.use_count() << ’\n’;

auto is often for

you_dont_want_the_write_a_type_because_it_is_too_long_and_or_obvious

auto and decltype are also great to rely on the compiler.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 62 / 72



A Hierarchy in C

O A Hierarchy in C

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 63 / 72



A first big problem

Think about the couple of sentences:

a shape is either a circle or a rectangle
and
an entity has exactly one type

In C that sounds like:
@ we should use three types

@ we have to resort to the C “cast” feature...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 64 / 72



Shape type

First we need shapes, so:

typedef enum { circle_id = 0, rectangle_id = 1 } shape_id;

typedef struct {

shape_id id;
float x, y;
} shape;

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 65 / 72



Circle and rectangle types

With:

typedef struct { typedef struct {
shape_id id; shape_id id;
float x, y; float x, y;
float r; float w, h;

} circle; } rectangle;

we can write something like:

circle*x c =

shapex s = (shape*)c;

(void)printf ("my shape: id=%d x=%f y=/f\n",
s->id, s->x, s> y);

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 66 / 72



Shape procedures (1/2)

We do not need circle_translate(. .)-like routines since you have this
one:

void shape_translate(shape* s, float dx, float dy)
{
s->x += dx; s->y += dy;

}

and a sample use is: shape_translate(s, 16, 64);
or: shape_translate((shapex)c, 16, 64);

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 67 / 72



Shape procedures (2/2)

Printing a shape depends on what the shape to be printed is:

void shape_print(const shape* s)
{
assert(s != NULL);
switch (s—->id) {
case circle_id:
circle_print((const circlex*)s);
break;
case rectangle_id:
rectangle_print((const rectanglex*)s);
break;
default:
assert(0);

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5

2015-2016

68 / 72



What have we done? (1/3)

Given a circle s (the same goes for a rectangle):
@ you can call shape_print(s) instead of circle_print(s)

@ so you can use a single routine per feature

From a client (user of the shape module) point of view:
@ she does not know that circles and rectangles exist

@ she does not care about new types (triangle, etc.)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 69 / 72



What have we done? (2/3)

You can write this sexy piece of code:

typedef struct void page_print(const page* p)

1 assert(p != NULL);

unsigned ij;
for (i = 0; i < p—>ns; ++i)
shape_print (p->s[il);

shapex* s;
unsigned ns;

} page; }

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 70 / 72



What have we done? (3/3)

@ we have introduced a new kind of type: shape

is it a “concrete” type?

@ we can extend the shape module, yet in an intrusive way

just look at shape_print...

@ we have factored some code

shape_translate is valid for any shape

@ we have also factored some data

x and y are common to every shapes

and

@ our program relies on casts such as: circle*x — shapex*

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 71 /72



Think different

Actually we have formed:

typedef struct typedef struct
{ {
shape s; shape s;
float r; float w, h;
} circle; } rectangle;

So that any shape (e.g., a circle) is:
@ first a shape

@ an extension of a shape with its own features (r)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015-2016 72 /72



	Rationale for inheritance
	Inheritance in C++
	Abstract Class and Abstract Method
	Definitions + playing with words
	Subclassing

	Playing with types
	Transtyping
	Accessibility
	Conclusion

	Smart Pointers: Part I
	(Raw) Pointers
	Shared Pointers

	Appendix
	A Hierarchy in C


