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About these lecture notes

Many of these slides are largely inspired from Andrew D. Ker's lecture notes
[Ker, 2005a, Ker, 2005b]. Some slides are even straightforward copies.
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Lambda Calculus

© )\ calculus
© Reduction

© )-calculus as a Programming Language

@ Combinatory Logic
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A-calculus

© )\-calculus
@ The Syntax of A-calculus
@ Substitution, Conversions
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Why the A-calculus?

Church, Curry
A theory of functions (1930s).
Turing
A definition of effective computability (1930s).
Brouwer, Heyting, Kolmogorov
A representation of formal proofs (1920-).
McCarthy, Scott, ...
A basis for functional programming languages (1960s-).

Montague, ...
Semantics for natural language (1960s-).

A. Demaille Lambda Calculus 5/75



M-calculus

Alonzo Church (1903-1995)
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http://en.wikipedia.com/wiki/Alonzo_Church

M-calculus

Haskell Brooks Curry (1900-1982)
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http://en.wikipedia.com/wiki/Haskell_Curry

M-calculus

=

. e, ol
Alan Mathison Turing (1912-1954)
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http://en.wikipedia.com/wiki/Alan_Turing

A-calculus

Richard Merritt Montague (1930-1971)
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http://en.wikipedia.com/wiki/Richard_Montague

What is the \-calculus?

A mathematical theory of functions
A (functional) programming language

It allows reasoning on operational semantics

Mathematicians are more inclined to denotational semantics
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The Syntax of A-calculus

© )\-calculus
@ The Syntax of A-calculus
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The Pure Untyped A-calculus

The simplest A-calculus:
Variables x, y, z...
Functions Ax - M

Application MN
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The Pure Untyped A-calculus

No
The simplest A-calculus:

: o Booleans
Variables x, y, z... Nurh
Functions A\x - M ° Tum ers

Application MN e
o ...
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The A-calculus Language

The \-terms:
M = x | (Ax-M) | (MM)
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The A-calculus Language

The A-terms:
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The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)
Conventions:
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The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)
Conventions:
@ Omit outer parentheses MN = (MN)
@ Application associates to the left MNL = (MN)L
@ Abstraction associates to the right Ax - MN = Ax - (MN)
@ Multiple arguments as syntactic sugar Axy - M= Xx-Ay-M

(Currying EN — Currification FR)
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Usual x> 2x+1
A-calculus Ax-2x+1
Originally "x-2x +1
Inpiration X-x =y
Transition Ax-2x + 1
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Fully qualified form for Anfx - f(nfx)

(An - (AF - (Ax - (F((nf)x)))))
(Ax - (AF - (An - (£((nf)x)))))
(An-)(Af-)Ax - (£((nf)x))
(

Ax - (A - (An - £)))((nf)x))




Fully qualified form for Anfx - f(nfx)

(An - (AF - (Ax - (F((nf)x)))))
X (Ax- (AF - (An - (F((nf)x)))))
X (An-)(AF-)Ax - (F((nf)x))
X (

Ax - (A - (An - £)))((nf)x))




The A-calculus Language: Alternative Presentation

The set A of \-terms:

MeN NecA Me A
xey

x eV
xeAl (MN) € A (Ax-M) e A
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The A-calculus Language: Alternative Presentation

The set A of \-terms:

MeN NecA Me A
xey

x eV
xeAl (MN) € A (Ax-M) e A

For instance

x €N
(M-x)eN yel
((Ax-x)y) € A zeA
(Ox-x)9)2) € A
(Az-((Ax-x)y)z)) e N xeN
(Az - (((Ax - x)y)z))x € A
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The set of subterms of M, sub(M):

sub(x) = {x}
sub(Ax - M) := {Ax - M} Usub(M)
sub(MN) := {MN} U sub(M) U sub(N)
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@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)
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@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

o A variable is free or bound.
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@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

A variable is free or bound.
A variable may have bound and free occurrences: xAx - x.

A term with no free variable is closed.

A combinator is a closed term.
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Substitution, Conversions

© )\-calculus

@ Substitution, Conversions
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a-Conversion

Qa-conversion

M and N are a-convertible, M = N, iff they differ only by renaming bound
variables without introducing captures.
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a-Conversion

Qa-conversion

M and N are a-convertible, M = N, iff they differ only by renaming bound
variables without introducing captures.

AX-X=Ay-y
XAX X =X\y -y
XAX X Z YAy -y

AX =AY - XY Z AX - AX - XX
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a-Conversion

Qa-conversion

M and N are a-convertible, M = N, iff they differ only by renaming bound
variables without introducing captures.

AX-X=Ay-y
XAX X =X\y -y

XAX X Z YAy -y
AX =AY - XY Z AX - AX - XX

From now on a-convertible terms are considered equal.
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The Variable Convention

To avoid nasty capture issues, we will always silently a-convert terms so
that no bound variable of a term is a variable (bound or free) of another.
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Substitution

@ The substitution of x by M in N is denoted [M/x]N.
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Substitution

@ The substitution of x by M in N is denoted [M/x]N.
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o Intuitively, all the free occurrences of x are replaced by M.
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Substitution

The substitution of x by M in N is denoted [M/x]N.
It is a notation, not an operation

Intuitively, all the free occurrences of x are replaced by M.

For instance [A\z - zz/x]\y - xy = Ay - (Az - zz)y.
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Substitution

The substitution of x by M in N is denoted [M/x]N.

It is a notation, not an operation

Intuitively, all the free occurrences of x are replaced by M.
For instance [A\z - zz/x|A\y - xy = Ay - (Az - zz)y.

There are many notations for substitution:
[M/x]N N[M /x] N[x := M] N[x < M]

and even
N[x/M]
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Formal Definition of the Substitution

[M/x]x =M
[M/x]y =y with x # y
[M/X](NL) = ([M/x]N)([M/x]L)
[M/x]\y - N = Ay - [M/x]N with x # y and y € FV(M)




Formal Definition of the Substitution

Substitution

[M/x]x =M
[M/x]y =y with x # y
[M/X](NL) = ([M/x]N)([M/x]L)
[M/x]\y - N = Ay - [M/x]N with x # y and y € FV(M) ]

The variable convention allows us to “require” that y ¢ FV(M).
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Formal Definition of the Substitution

Substitution
[M/x]x =M
[M/x]y =y with x # y
[M/x](NL) = (IM/x]N)([M/x]L)
[M/x]\y - N = Ay - [M/x]N with x # y and y € FV(M) ]

The variable convention allows us to “require” that y ¢ FV(M).
Without it:

[M/x]\y - N == Ay - [M/x]N if x # y and y ¢ FV(M)
[M/x]\y - N == Xz - [M/x][z/y]N if x# y or y € FV(M)
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Substitution

vy /z)(Axy - zy) = Axu - (yy)u
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[B-Conversion

[-conversion

The SB-convertibility between two terms is the relation 3 defined as:
(Ax-M)N g [N/x]M

for any M, N € A.

A. Demaille Lambda Calculus 26 / 75



The A3 Formal System

It is the “standard” theory of A-calculus.

The A\ Formal System

=M N=wm M =
M=M N=N M= N
MN = M'N' Ax-M=Xx-N
(Ax - M)N = [N/x]M
A. Demaille Lambda Calculus 27 /75



© Reduction
@ (3-Reduction
@ Church-Rosser
@ Reduction Strategies
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© Reduction
@ (3-Reduction
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One step R-Reduction from a relation R

The relation ;) is the smallest relation such that:

(M,N)eR M?N M?N M?N
M— N ML — NL [M— LN Xx-M—= Ax-N
R R R R
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Reduction

One step R-Reduction from a relation R

The relation ;) is the smallest relation such that:

(M,N)eR M?N M?N M?N
M— N ML — NL [M— LN Xx-M—= Ax-N
R R R R

R-Reduction: transitive, reflexive closure

The relation % is the smallest relation such that:

M— N M= N N—;>L
M%N M;)M I\/I%L
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[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.
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[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.
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(Ax - M)N E) [N/x]M
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[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.

One step 3-Reduction

(Ax - M)N E) [N/x]M

(B-Reduction

The relation = is the transitive, reflexive closure of E)
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[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.

One step 3-Reduction

(Ax - M)N ? [N/x]M

(B-Reduction

The relation %) is the transitive, reflexive closure of E)

4

B-Conversion

The relation % is the transitive, reflexive, symmetric closure of E)
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(Ax-x)y —
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(M- x)y =y
(M- xx)y —
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(M -x)y — vy

(Axx)y = yy
(Ax - xx)(Ax - xx) —
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(Ax-x)y — y
(Ax-xx)y = yy
(Ax - xx)(Ax - xx) —  (Ax - xx)(Ax - xx)
(Ax - x(xx))(Ax - x(xx)) —




(Ax - x)y
(Ax - xx)y

y
Yy

—
—

(Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx)
%

(Ax - X(XX))(()\X - x(xx))(Ax - x(xx)))

(Ax - x(xx))(Ax - x(xx))




(M -x)y =y
(M xx)y = yy
(Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx)
(Ax - x(0))(Ax - x(xx)) = (Ax - x(5x)) ((Ax - x(50) ) (Ax - x(xx)))

Omega Combinators

w = AX-Xxx
Q = ww
Q = Ax-x(xx)

Lambda Calculus



More [-Reductions

(A - xyx)Az-z —
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More (-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(- )((Ay - y)x) =
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More (-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(M- x)((Ay - y)x) = (Ax-x)(x)
(A x)((y - y)x) =




More [-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(M- x)((Ay - y)x) = (Ax-x)(x)
(M) -y)x) = (O -y)x)
(o) (O - y)x)




More (-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(Ax-x)((Ay - y)x) = (Ax-x)(x)
(M) ((Ay - y)x) = (A - y)x)
M- X))y -y)x) 5 x

(x-x)((Ax - xx)y) =
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Other rules

Ax - Mx — M
n
n-expansion
M — Ax - Mx
Texp J
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Church-Rosser

© Reduction

@ Church-Rosser

A. Demaille Lambda Calculus 35 /75



Normal Forms

Given R, a relation on terms.

R-Normal Form (R-NF)

A term M is in R-Normal Form if there is no N such that M ;) N.
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Normal Forms

Given R, a relation on terms.

R-Normal Form (R-NF)

A term M is in R-Normal Form if there is no N such that M ;) N.

R-Normalizable Term

A term M is R-Normalizable (or has an R-Normal Form) if there exists a
term N in R-NF such that M %) N.

R-Strongly Normalization Term

A term M is R-Strongly Normalizable there is no infinite one-step
reduction sequence starting from M. l.e., any one-step reduction sequence
starting from M ends (on a R-NF term).
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B-Normal Terms

@ [ = Xx-xisin B-NF
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B-Normal Terms
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B-Normal Terms

@ [ = Xx-xisin B-NF
o /I has a B-NF
B-reduces to /
@ [l is B-strongly normalizing
o Q is not (weakly) normalizable
Q = (Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx) = Q
o KIQ is weakly normalizable (K = Ax - (Ay - x))
KIQ — |
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B-Normal Terms

@ [ = Xx-xisin B-NF
o /I has a B-NF
B-reduces to /

Il is B-strongly normalizing

Q is not (weakly) normalizable
Q = (Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx) = Q

o KIQ is weakly normalizable (K = Ax - (Ay - x))
KIQ — |

@ KIS is not strongly normalizable
KIQ — KIQ
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Normalizing Relation

Normalizing Relation

R is weakly normalizing if every term is R-normalizable.
R is strongly normalizing if every term is R-strongly normalizable.
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Q is not weakly normalizable

[-reduction is not weakly normalizing! )
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Reduction Strategy

With a weakly normalizing relation that is not strongly normalizing:

@ some terms are not weakly normalizable but not strongly
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Reduction Strategy

With a weakly normalizing relation that is not strongly normalizing:
@ some terms are not weakly normalizable but not strongly

@ i.e., some terms can be reduced if you reduce them “properly”
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Reduction Strategy

With a weakly normalizing relation that is not strongly normalizing:
@ some terms are not weakly normalizable but not strongly

@ i.e., some terms can be reduced if you reduce them “properly”

Reduction Strategy

A reduction strategy is a function specifying what is the next one-step
reduction to perform.
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Confluence

Given R, a relation on terms.

Diamond property
? satisfies the diamond property if M ? Ny, M ? N5 implies the
existence of L such that N ? L, N> ? L.
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Confluence

Given R, a relation on terms.

Diamond property

? satisfies the diamond property if M ? Ny, M ? N5 implies the
existence of L such that N ? L, N> ;> L.

Church-Rosser

? is Church-Rosser if % satisfies the diamond property.

;> is Church-Rosser if M % Ny, M % N, implies the existence of L such

that Ny = L, Np = L.
R R
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Confluence

Given R, a relation on terms.

Unique Normal Form Property

;> has the unique normal form property if M % Ny, M %) N> with Ny, No

in normal form, implies Ny = Nb.
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@ The diamond property implies Church-Rosser.
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@ The diamond property implies Church-Rosser.

o If R is Church-Rosser
then M = N iff there exists L such that M % Land N %) L.
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@ The diamond property implies Church-Rosser.

o If R is Church-Rosser
then M = N iff there exists L such that M % Land N %) L.

@ If R is Church-Rosser then it has the unique normal form property.
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A-calculus has the Church-Rosser Property

[-reduction is Church-Rosser. J
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A-calculus has the Church-Rosser Property

B-reduction is Church-Rosser. J

Any term has (at most) a unique NF.
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Reduction Strategies

© Reduction

@ Reduction Strategies
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Reduction Strategy

Reduction Strategy

A reduction strategy is a (partial) function from term to term.
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Reduction Strategy

Reduction Strategy
A reduction strategy is a (partial) function from term to term.

If — is a reduction strategy, then any term has a unique maximal reduction

sequence.
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Head Reduction

Head Reduction

The head reduction % on terms is defined by:

A% Ay - M)NL B Az [N/y|ML
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Head Reduction

Head Reduction

The head reduction % on terms is defined by:

A% Ay - M)NL B Az [N/y|ML

AX1 - X Ay - M)NLy . Ly B At oxo - [N/y]MLy .. Ly n,m >0

Note that any term has one of the following forms:

—

AR-(\y-ML  AR-yL
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Head Reduction

KIQ D |
KQl & qi
Ao
Ly

xIx 7Z> XX

Normal terms have the form:

Ayl
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Leftmost Reduction

Leftmost Reduction

o , .
The leftmost reduction — performs a single step of 3-conversion on the
leftmost Ax - M.
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Leftmost Reduction

Leftmost Reduction

. , .
The leftmost reduction — performs a single step of 3-conversion on the
leftmost Ax - M.

Any head reduction is a leftmost reduction (but not conversly). )
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Leftmost Reduction

Leftmost Reduction

. , .
The leftmost reduction — performs a single step of 3-conversion on the
leftmost Ax - M.

Any head reduction is a leftmost reduction (but not conversly). )

Leftmost reduction is normalizing. J

A. Demaille Lambda Calculus 49 / 75



A-calculus as a Programming Language

© )-calculus as a Programming Language
@ Booleans
o Natural Numbers
o Pairs
@ Recursion
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Booleans

© )-calculus as a Programming Language
@ Booleans
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Booleans

@ How would you code Booleans in A-calculus?
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o How would you translate if M then N else L7
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Booleans

How would you code Booleans in A-calculus?
How would you translate if M then N else L?
if MNL

Do we need if?
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Boolean Combinators

Boolean Combinators (Church Booleans)

T = Axy - x
F=Xxy y
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Natural Numbers

© )-calculus as a Programming Language

@ Natural Numbers
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Church’s Integers

Integers

n=A -Ax-f"x=X dx-(f---(fx)--+)
—_——

n times n times

2=\ Ax-f(fx)
3=\ Xx-f(f(fx))
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Church’s Integers

Operations

succ = An - Af - Ax - f(nfx) l

plus := Am - An- Af - Ax - mf (nfx)

plus := Am- An- n succ m

plus := An - n succ
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© )-calculus as a Programming Language

@ Pairs
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Church’s pairs

pair i= Axy - Xf - fxy
first = Ap-pT
second ‘= Ap - pF
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Recursion

© )-calculus as a Programming Language

@ Recursion
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Fixed point Combinators

Curry's Y Combinator

Y = M - (Ax - f(xx))(Ax - f(xx))

There are infinitely many fixed-point combinators.
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Fixed point Combinators

Curry's Y Combinator

Y = M- (Ax - f(xx))(Ax - f(xx))

= (M- (Ax - f(xx))(Ax - f(xx))) g
—p (Ax - g(xx))(Ax - g(xx))

=5 8((Ax - g(xx))(Ax - g(xx)))
g(Y g) =5 g(Af - (Ax - F(xx))(Ax - f(xx)))g)
=5 8(AF - ((Ax - FOx))(Ax - F(xx)))g)
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Reduction strategies in Programming Languages

Full beta reductions
Reduce any redex.

Applicative order
The leftmost, innermost redex is always reduced first. Intuitively
reduce function “arguments”’ before the function itself. Applicative
order always attempts to apply functions to normal forms, even when
this is not possible.

Normal order
The leftmost, outermost redex is reduced first.
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Reduction strategies in Programming Languages

Call by name
As normal order, but no reductions are performed inside abstractions.
Ax - (Ax - x)x is in NF.

Call by value
Only the outermost redexes are reduced: a redex is reduced only when
its right hand side has reduced to a value (variable or lambda
abstraction).

Call by need
As normal order, but function applications that would duplicate terms
instead name the argument, which is then reduced only “when it is
needed”’. Called in practical contexts “lazy evaluation”.
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A-calculus as a Programming Language

— ——

AT ONCE, JUST LIKE THEY SAID, I FELT A

LAST NIGHT I DRIFTED OFF |
WHILE READING A LIsP BOOK.

TRULY, THIS WiS
GREAT ENLIGHTENMENT. I SAW THE NAKED J|  THE LANGURGE
STRUCTURE OF LisP CooE: UNFLD BeroRe ME-{|  FROM WHIH THE AN
= i e T e GoDS WRoUGHT

THE INIVERSE. Jﬂ Y.
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—% 4 T MEAY, OSTENSIBLY, YES.

HONESTLY, WE HACKED MOsT
OF IT TOGETHER WITH PERL.

METAPATTERNS DANCED.
SYNTAX FADED, AND I SWAM INTHE PURITY OF
QUANTIFIED (ONCEPTION. OF IDEAS MANIFEST.

' SUDDENLY, I WAS BATHED
IN A SUFFIJSIO BLUE.

Lisp (xked 224)
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Combinatory Logic

@ Combinatory Logic
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Moses llyich Schénfinkel (1889-1942)

Russian logician and mathematician.
Member of David Hilbert's group at
the University of Gottingen.
Mentally ill and in a sanatorium in
1927.

His papers were burned by his
neighbors for heating.
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Combinatory Logic

@ is complex

o its implementation is full of subtle pitfalls

Combinatory Logic

@ a simpler alternative
@ invented by Moses Schonfinkel in 1920's
o developed by Haskell Curry in 1925
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Combinatory Logic

@ is complex

o its implementation is full of subtle pitfalls
@ invented in 1936 by Alonzo Church

Combinatory Logic
@ a simpler alternative
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Classic Combinators

S =(Mx-(Ay-(Az- ((x2)(y2)))))
K= (Ax-(\y-x))
I :=(A\x-x)

We no longer need A!

SXYZ = XZ(Y2Z)
KXY — X
IX = X
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The Combinator |

I = (Ax-x)
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The Combinator |

I = (Ax-x)

X =X

SKKX — KX(KX) = X
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Combinatory Logic

S SXYZ —» XZ(YZ)

(- (y - (Az - ((x2)(¥2)))))
K KXY — X

(Ax - (Ay - x))
I X =X

(Ax - x)
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Combinatory Logic

o Combination is left-associative:
SKKX = (((SK)K)X) = KX(KX) — X

@ le., I = SKK: two symbols and two rules suffice.

@ Same expressive power as A-calculus.
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Boolean Combinators

Boolean Combinators

F=KI

XY — X
XY =Y

KIXY = (KNX)Y) = IY > Y

A. Demaille Lambda Calculus 72 /75



The Y Combinator in SKI

Y = S(K(SIN))(S(S(KS)K)(K(SII)))




The Y Combinator in SKI

Y = S(K(SIN))(S(S(KS)K)(K(SII)))

@ The simplest fixed point combinator in SK

Y = SSK(S(K(SS(S(SSK))))K




The Y Combinator in SKI

Y = S(K(SIN))(S(S(KS)K)(K(SII)))

@ The simplest fixed point combinator in SK
Y = SSK(S(K(SS(5(5SK))))K
@ by Jan Willem Klop:
Yk = (LLLLLLLLLLLL L LLLLLLLLLLLL)
where:

L = Xabcdefghijklmnopqgstuvwxyzr(r(thisisafixedpointcombinator))
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Bibliography Notes

[Ker, 2005a] Complete and readable lecture notes on A-calculus. Uses
conventions different from ours.

[Ker, 2005b] Additional information, including slides.

[Barendregt and Barendsen, 2000] A classical introduction to A-calculus.
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