Lambda Calculus

Akim Demaille akim@lrde.epita.fr

EPITA — Ecole Pour I'Informatique et les Techniques Avancées

June 10, 2016

About these lecture notes

Many of these slides are largely inspired from Andrew D. Ker's lecture notes
[Ker, 2005a, Ker, 2005b]. Some slides are even straightforward copies.

A. Demaille Lambda Calculus 2 /75

Lambda Calculus

©)\ calculus
© Reduction

©)-calculus as a Programming Language

@ Combinatory Logic

A. Demaille Lambda Calculus 3/75

A-calculus

©)\-calculus
@ The Syntax of A-calculus
@ Substitution, Conversions

A. Demaille Lambda Calculus 4/75

Why the A-calculus?

Church, Curry
A theory of functions (1930s).
Turing
A definition of effective computability (1930s).
Brouwer, Heyting, Kolmogorov
A representation of formal proofs (1920-).
McCarthy, Scott, ...
A basis for functional programming languages (1960s-).

Montague, ...
Semantics for natural language (1960s-).

A. Demaille Lambda Calculus 5/75

M-calculus

Alonzo Church (1903-1995)

A. Demaille Lambda Calculus 6 /75

http://en.wikipedia.com/wiki/Alonzo_Church

M-calculus

Haskell Brooks Curry (1900-1982)

A. Demaille Lambda Calculus 7/75

http://en.wikipedia.com/wiki/Haskell_Curry

M-calculus

=

. e, ol
Alan Mathison Turing (1912-1954)

A. Demaille Lambda Calculus 8 /75

http://en.wikipedia.com/wiki/Alan_Turing

A-calculus

Richard Merritt Montague (1930-1971)

A. Demaille Lambda Calculus 9 /75

http://en.wikipedia.com/wiki/Richard_Montague

What is the \-calculus?

A mathematical theory of functions
A (functional) programming language

It allows reasoning on operational semantics

Mathematicians are more inclined to denotational semantics

A. Demaille Lambda Calculus 10 / 75

The Syntax of A-calculus

©)\-calculus
@ The Syntax of A-calculus

A. Demaille Lambda Calculus 11 /75

The Pure Untyped A-calculus

The simplest A-calculus:
Variables x, y, z...
Functions Ax - M

Application MN

A. Demaille Lambda Calculus 12 /75

The Pure Untyped A-calculus

No
The simplest A-calculus:

: o Booleans
Variables x, y, z... Nurh
Functions A\x - M ° Tum ers

Application MN e
o ...

A. Demaille Lambda Calculus 12 /75

The A-calculus Language

The \-terms:
M = x | (Ax-M) | (MM)

A. Demaille Lambda Calculus 13 /75

The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)

Conventions:

A. Demaille Lambda Calculus 13 /75

The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)
Conventions:
@ Omit outer parentheses MN = (MN)

A. Demaille Lambda Calculus 13 /75

The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)
Conventions:
@ Omit outer parentheses MN = (MN)
@ Application associates to the left MNL = (MN)L

A. Demaille Lambda Calculus 13 /75

The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)
Conventions:
@ Omit outer parentheses MN = (MN)
@ Application associates to the left MNL = (MN)L
@ Abstraction associates to the right Ax - MN = Ax - (MN)

A. Demaille Lambda Calculus 13 /75

The A-calculus Language

The A-terms:
M = x | (Ax-M) | (MM)
Conventions:
@ Omit outer parentheses MN = (MN)
@ Application associates to the left MNL = (MN)L
@ Abstraction associates to the right Ax - MN = Ax - (MN)
@ Multiple arguments as syntactic sugar Axy - M= Xx-Ay-M

(Currying EN — Currification FR)

A. Demaille Lambda Calculus 13 /75

Usual x> 2x+1
A-calculus Ax-2x+1
Originally "x-2x +1
Inpiration X-x =y
Transition Ax-2x + 1

A. Demaille Lambda Calculus 14 / 75

.
i)
(@]
(O]
-
_
(@]
O
(0]
—
©
0
(D]
(O]
-
)
X
©
+—
=
>
¢
o
O
(9}
-
)
%)
o]
(gv}
-~
=
=

15 / 75

Lambda Calculus

A. Demaille

.
i)
(@]
(O]
-
_
(@]
O
(0]
—
©
0
(D]
(O]
-
)
X
©
+—
=
>
¢
o
O
(9}
-
)
%)
o]
(gv}
-~
=
=

15 / 75

Lambda Calculus

A. Demaille

Fully qualified form for Anfx - f(nfx)

(An - (AF - (Ax - (F((nf)x)))))
(Ax - (AF - (An - (£((nf)x)))))
(An-)(Af-)Ax - (£((nf)x))
(

Ax - (A - (An - £)))((nf)x))

Fully qualified form for Anfx - f(nfx)

(An - (AF - (Ax - (F((nf)x)))))
X (Ax- (AF - (An - (F((nf)x)))))
X (An-)(AF-)Ax - (F((nf)x))
X (

Ax - (A - (An - £)))((nf)x))

The A-calculus Language: Alternative Presentation

The set A of \-terms:

MeN NecA Me A
xey

x eV
xeAl (MN) € A (Ax-M) e A

A. Demaille Lambda Calculus 17 / 75

The A-calculus Language: Alternative Presentation

The set A of \-terms:

MeN NecA Me A
xey

x eV
xeAl (MN) € A (Ax-M) e A

For instance

x €N
(M-x)eN yel
((Ax-x)y) € A zeA
(Ox-x)9)2) € A
(Az-((Ax-x)y)z)) e N xeN
(Az - (((Ax - x)y)z))x € A

A. Demaille Lambda Calculus 17 / 75

The set of subterms of M, sub(M):

sub(x) = {x}
sub(Ax - M) := {Ax - M} Usub(M)
sub(MN) := {MN} U sub(M) U sub(N)

A. Demaille Lambda Calculus 18 / 75

@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

A. Demaille Lambda Calculus 19 /75

@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

o A variable is free or bound.

A. Demaille Lambda Calculus 19 / 75

@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

@ A variable is free or bound.

@ A variable may have bound and free occurrences: x\x - x.

A. Demaille Lambda Calculus 19 / 75

@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

@ A variable is free or bound.
@ A variable may have bound and free occurrences: x\x - x.

o A term with no free variable is closed.

A. Demaille Lambda Calculus 19 / 75

@ The set of free variables of M, FV(M):

FV(x) = {x}
FV(Ax - M) =FV(M)\ {x}
FV(MN) = FV(M)UFV(N)

A variable is free or bound.
A variable may have bound and free occurrences: xAx - x.

A term with no free variable is closed.

A combinator is a closed term.

A. Demaille Lambda Calculus 19 /75

Substitution, Conversions

©)\-calculus

@ Substitution, Conversions

A. Demaille Lambda Calculus 20 / 75

a-Conversion

Qa-conversion

M and N are a-convertible, M = N, iff they differ only by renaming bound
variables without introducing captures.

A. Demaille Lambda Calculus 21 /75

a-Conversion

Qa-conversion

M and N are a-convertible, M = N, iff they differ only by renaming bound
variables without introducing captures.

AX-X=Ay-y
XAX X =X\y -y
XAX X Z YAy -y

AX =AY - XY Z AX - AX - XX

A. Demaille Lambda Calculus 21 /75

a-Conversion

Qa-conversion

M and N are a-convertible, M = N, iff they differ only by renaming bound
variables without introducing captures.

AX-X=Ay-y
XAX X =X\y -y

XAX X Z YAy -y
AX =AY - XY Z AX - AX - XX

From now on a-convertible terms are considered equal.

A. Demaille Lambda Calculus 21 /75

The Variable Convention

To avoid nasty capture issues, we will always silently a-convert terms so
that no bound variable of a term is a variable (bound or free) of another.

A. Demaille Lambda Calculus 22 /75

Substitution

@ The substitution of x by M in N is denoted [M/x]N.

A. Demaille Lambda Calculus 23 /75

Substitution

@ The substitution of x by M in N is denoted [M/x]N.

@ It is a notation, not an operation

A. Demaille Lambda Calculus 23 /75

Substitution

@ The substitution of x by M in N is denoted [M/x]N.
@ It is a notation, not an operation

o Intuitively, all the free occurrences of x are replaced by M.

A. Demaille Lambda Calculus 23 /75

Substitution

The substitution of x by M in N is denoted [M/x]N.
It is a notation, not an operation

Intuitively, all the free occurrences of x are replaced by M.

For instance [A\z - zz/x]\y - xy = Ay - (Az - zz)y.

A. Demaille Lambda Calculus 23 /75

Substitution

The substitution of x by M in N is denoted [M/x]N.

It is a notation, not an operation

Intuitively, all the free occurrences of x are replaced by M.
For instance [A\z - zz/x|A\y - xy = Ay - (Az - zz)y.

There are many notations for substitution:
[M/x]N N[M /x] N[x := M] N[x < M]

and even
N[x/M]

A. Demaille Lambda Calculus 23 /75

Formal Definition of the Substitution

[M/x]x =M
[M/x]y =y with x # y
[M/X](NL) = ([M/x]N)([M/x]L)
[M/x]\y - N = Ay - [M/x]N with x # y and y € FV(M)

Formal Definition of the Substitution

Substitution

[M/x]x =M
[M/x]y =y with x # y
[M/X](NL) = ([M/x]N)([M/x]L)
[M/x]\y - N = Ay - [M/x]N with x # y and y € FV(M)]

The variable convention allows us to “require” that y ¢ FV(M).

A. Demaille Lambda Calculus 24 /75

Formal Definition of the Substitution

Substitution
[M/x]x =M
[M/x]y =y with x # y
[M/x](NL) = (IM/x]N)([M/x]L)
[M/x]\y - N = Ay - [M/x]N with x # y and y € FV(M)]

The variable convention allows us to “require” that y ¢ FV(M).
Without it:

[M/x]\y - N == Ay - [M/x]N if x # y and y ¢ FV(M)
[M/x]\y - N == Xz - [M/x][z/y]N if x# y or y € FV(M)

A. Demaille Lambda Calculus 24 /75

Substitution

vy /z)(Axy - zy) = Axu - (yy)u

A. Demaille Lambda Calculus 25 /75

[B-Conversion

[-conversion

The SB-convertibility between two terms is the relation 3 defined as:
(Ax-M)N g [N/x]M

for any M, N € A.

A. Demaille Lambda Calculus 26 / 75

The A3 Formal System

It is the “standard” theory of A-calculus.

The A\ Formal System

=M N=wm M =
M=M N=N M= N
MN = M'N' Ax-M=Xx-N
(Ax - M)N = [N/x]M
A. Demaille Lambda Calculus 27 /75

© Reduction
@ (3-Reduction
@ Church-Rosser
@ Reduction Strategies

A. Demaille Lambda Calculus 28 / 75

© Reduction
@ (3-Reduction

A. Demaille Lambda Calculus 29 /75

One step R-Reduction from a relation R

The relation ;) is the smallest relation such that:

(M,N)eR M?N M?N M?N
M— N ML — NL [M— LN Xx-M—= Ax-N
R R R R

A. Demaille Lambda Calculus 30 /75

Reduction

One step R-Reduction from a relation R

The relation ;) is the smallest relation such that:

(M,N)eR M?N M?N M?N
M— N ML — NL [M— LN Xx-M—= Ax-N
R R R R

R-Reduction: transitive, reflexive closure

The relation % is the smallest relation such that:

M— N M= N N—;>L
M%N M;)M I\/I%L

A. Demaille Lambda Calculus 30 /75

[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.

A. Demaille Lambda Calculus 31/75

[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.

One step 3-Reduction

(Ax - M)N E) [N/x]M

A. Demaille Lambda Calculus 31/75

[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.

One step 3-Reduction

(Ax - M)N E) [N/x]M

(B-Reduction

The relation = is the transitive, reflexive closure of E)

A. Demaille Lambda Calculus 31/75

[-Reduction

[B-Redex
A [-redex is term under the form (Ax - M)N.

One step 3-Reduction

(Ax - M)N ? [N/x]M

(B-Reduction

The relation %) is the transitive, reflexive closure of E)

4

B-Conversion

The relation % is the transitive, reflexive, symmetric closure of E)

A. Demaille Lambda Calculus 31/75

(Ax-x)y —

A. Demaille Lambda Calculus 32 /75

(M- x)y =y
(M- xx)y —

A. Demaille Lambda Calculus 32 /75

(M -x)y — vy

(Axx)y = yy
(Ax - xx)(Ax - xx) —

A. Demaille Lambda Calculus 32 /75

(Ax-x)y — y
(Ax-xx)y = yy
(Ax - xx)(Ax - xx) — (Ax - xx)(Ax - xx)
(Ax - x(xx))(Ax - x(xx)) —

(Ax - x)y
(Ax - xx)y

y
Yy

—
—

(Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx)
%

(Ax - X(XX))(()\X - x(xx))(Ax - x(xx)))

(Ax - x(xx))(Ax - x(xx))

(M -x)y =y
(M xx)y = yy
(Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx)
(Ax - x(0))(Ax - x(xx)) = (Ax - x(5x)) ((Ax - x(50)) (Ax - x(xx)))

Omega Combinators

w = AX-Xxx
Q = ww
Q = Ax-x(xx)

Lambda Calculus

More [-Reductions

(A - xyx)Az-z —

A. Demaille Lambda Calculus 33 /75

More (-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(-)((Ay - y)x) =

A. Demaille Lambda Calculus 33 /75

More (-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(M- x)((Ay - y)x) = (Ax-x)(x)
(A x)((y - y)x) =

More [-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(M- x)((Ay - y)x) = (Ax-x)(x)
(M) -y)x) = (O -y)x)
(o) (O - y)x)

More (-Reductions

(M- xyx)Az-z — (Az-z)y(Az-z)
(Ax-x)((Ay - y)x) = (Ax-x)(x)
(M) ((Ay - y)x) = (A - y)x)
M- X))y -y)x) 5 x

(x-x)((Ax - xx)y) =

: >
NOX 2 =
= a B
£ N Y
N — —~ —~ —~ —~
DX X xS Ty
NS N X %
= A |
x > > > X
S < < < X <
X 2= = ke
e
< . MVYN
R
SN—r

0
c
.9
)
O
>
O
(O]
o
1
Q.
(0]
—
[©)
=

N X< R
Sk o> S
= <= S

N — —~ —~ — — —~
LoX XX SN SN
NSNS Y XY
\\M o X.WM
N V. N
X2 x 2 x
X ~— ~—~ ~—~ < ~— <
N N N e N
xR X X = =
< . MVYNX
= 5 BNV
\(A\HA\\(A\X\A\A
<~ ~—

~

0
c
.9
)
O
>
O
(O]
o
1
Q.
(0]
—
[©)
=

N X< R
Sk o> S
= <= 5 sl

~—~ ~ —~ —~ —~

—_ o~~~ o~ o~

N N N~ ~ —~
N TN N — T —

0
c
.9
)
O
>
O
(O]
o
1
Q.
(0]
—
[©)
=

(
(A - x)((Ax - x)y)

_)
_)
_>
*
_)
*
—
*
_)
ES
_>

—~~
N — —~ —~ —~ —~ — \V}J
XXX SN S X
NS Y X % ¢
=< . S S s
X S > > X ! —
2 S E S e =
.((((((
XXX XX F X 3
~ . .XvYNX X
N X- .
X X X <
SIS | X —
SN—r 8/
\A

0
c
.9
)
O
>
O
(O]
o
1
Q.
(0]
—
[©)
=

Therefore

Other rules

Ax - Mx — M
n
n-expansion
M — Ax - Mx
Texp J

A. Demaille Lambda Calculus 34 /75

Church-Rosser

© Reduction

@ Church-Rosser

A. Demaille Lambda Calculus 35 /75

Normal Forms

Given R, a relation on terms.

R-Normal Form (R-NF)

A term M is in R-Normal Form if there is no N such that M ;) N.

A. Demaille Lambda Calculus 36 / 75

Normal Forms

Given R, a relation on terms.

R-Normal Form (R-NF)

A term M is in R-Normal Form if there is no N such that M ;) N.

R-Normalizable Term

A term M is R-Normalizable (or has an R-Normal Form) if there exists a
term N in R-NF such that M %) N.

A. Demaille Lambda Calculus 36 / 75

Normal Forms

Given R, a relation on terms.

R-Normal Form (R-NF)

A term M is in R-Normal Form if there is no N such that M ;) N.

R-Normalizable Term

A term M is R-Normalizable (or has an R-Normal Form) if there exists a
term N in R-NF such that M %) N.

R-Strongly Normalization Term

A term M is R-Strongly Normalizable there is no infinite one-step
reduction sequence starting from M. l.e., any one-step reduction sequence
starting from M ends (on a R-NF term).

A. Demaille Lambda Calculus 36 / 75

B-Normal Terms

@ [= Xx-xisin B-NF

A. Demaille Lambda Calculus 37 /75

B-Normal Terms

@ [= Xx-xisin B-NF
o /I has a B-NF
B-reduces to /

A. Demaille Lambda Calculus 37 /75

B-Normal Terms

@ [= Xx-xisin B-NF
o /I has a B-NF
B-reduces to /

@ [l is B-strongly normalizing

A. Demaille Lambda Calculus 37 /75

B-Normal Terms

@ [= Xx-xisin B-NF
o /I has a B-NF
[B-reduces to /
@ [l is B-strongly normalizing

o Q is not (weakly) normalizable
Q = (Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx) = Q

A. Demaille Lambda Calculus 37 /75

B-Normal Terms

@ [= Xx-xisin B-NF
o /I has a B-NF
B-reduces to /
@ [l is B-strongly normalizing
o Q is not (weakly) normalizable
Q = (Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx) = Q
o KIQ is weakly normalizable (K = Ax - (Ay - x))
KIQ — |

A. Demaille Lambda Calculus 37 /75

B-Normal Terms

@ [= Xx-xisin B-NF
o /I has a B-NF
B-reduces to /

Il is B-strongly normalizing

Q is not (weakly) normalizable
Q = (Ax - xx)(Ax - xx) = (Ax - xx)(Ax - xx) = Q

o KIQ is weakly normalizable (K = Ax - (Ay - x))
KIQ — |

@ KIS is not strongly normalizable
KIQ — KIQ

A. Demaille Lambda Calculus 37 /75

Normalizing Relation

Normalizing Relation

R is weakly normalizing if every term is R-normalizable.
R is strongly normalizing if every term is R-strongly normalizable.

A. Demaille Lambda Calculus 38 /75

Q is not weakly normalizable

[-reduction is not weakly normalizing!)

A. Demaille Lambda Calculus 39 /75

Reduction Strategy

With a weakly normalizing relation that is not strongly normalizing:

@ some terms are not weakly normalizable but not strongly

A. Demaille Lambda Calculus 40 / 75

Reduction Strategy

With a weakly normalizing relation that is not strongly normalizing:
@ some terms are not weakly normalizable but not strongly

@ i.e., some terms can be reduced if you reduce them “properly”

A. Demaille Lambda Calculus 40 / 75

Reduction Strategy

With a weakly normalizing relation that is not strongly normalizing:
@ some terms are not weakly normalizable but not strongly

@ i.e., some terms can be reduced if you reduce them “properly”

Reduction Strategy

A reduction strategy is a function specifying what is the next one-step
reduction to perform.

A. Demaille Lambda Calculus 40 / 75

Confluence

Given R, a relation on terms.

Diamond property
? satisfies the diamond property if M ? Ny, M ? N5 implies the
existence of L such that N ? L, N> ? L.

A. Demaille Lambda Calculus 41 /75

Confluence

Given R, a relation on terms.

Diamond property

? satisfies the diamond property if M ? Ny, M ? N5 implies the
existence of L such that N ? L, N> ;> L.

Church-Rosser

? is Church-Rosser if % satisfies the diamond property.

A. Demaille Lambda Calculus 41 /75

Confluence

Given R, a relation on terms.

Diamond property

? satisfies the diamond property if M ? Ny, M ? N5 implies the
existence of L such that N ? L, N> ;> L.

Church-Rosser

? is Church-Rosser if % satisfies the diamond property.

;> is Church-Rosser if M % Ny, M % N, implies the existence of L such

that Ny = L, Np = L.
R R

A. Demaille Lambda Calculus 41 /75

Confluence

Given R, a relation on terms.

Unique Normal Form Property

;> has the unique normal form property if M % Ny, M %) N> with Ny, No

in normal form, implies Ny = Nb.

A. Demaille Lambda Calculus 42 /75

@ The diamond property implies Church-Rosser.

A. Demaille Lambda Calculus 43 / 75

@ The diamond property implies Church-Rosser.

o If R is Church-Rosser
then M = N iff there exists L such that M % Land N %) L.

A. Demaille Lambda Calculus 43 / 75

@ The diamond property implies Church-Rosser.

o If R is Church-Rosser
then M = N iff there exists L such that M % Land N %) L.

@ If R is Church-Rosser then it has the unique normal form property.

A. Demaille Lambda Calculus 43 / 75

A-calculus has the Church-Rosser Property

[-reduction is Church-Rosser. J

A. Demaille Lambda Calculus 44 / 75

A-calculus has the Church-Rosser Property

B-reduction is Church-Rosser. J

Any term has (at most) a unique NF.

A. Demaille Lambda Calculus 44 / 75

Reduction Strategies

© Reduction

@ Reduction Strategies

A. Demaille Lambda Calculus 45 / 75

Reduction Strategy

Reduction Strategy

A reduction strategy is a (partial) function from term to term.

A. Demaille Lambda Calculus 46 / 75

Reduction Strategy

Reduction Strategy
A reduction strategy is a (partial) function from term to term.

If — is a reduction strategy, then any term has a unique maximal reduction

sequence.

A. Demaille Lambda Calculus 46 / 75

Head Reduction

Head Reduction

The head reduction % on terms is defined by:

A% Ay - M)NL B Az [N/y|ML

A. Demaille Lambda Calculus 47 / 75

Head Reduction

Head Reduction

The head reduction % on terms is defined by:

A% Ay - M)NL B Az [N/y|ML

AX1 - X Ay - M)NLy . Ly B At oxo - [N/y]MLy .. Ly n,m >0

Note that any term has one of the following forms:

—

AR-(\y-ML AR-yL

A. Demaille Lambda Calculus 47 / 75

Head Reduction

KIQ D |
KQl & qi
Ao
Ly

xIx 7Z> XX

Normal terms have the form:

Ayl

A. Demaille Lambda Calculus 48 / 75

Leftmost Reduction

Leftmost Reduction

o , .
The leftmost reduction — performs a single step of 3-conversion on the
leftmost Ax - M.

A. Demaille Lambda Calculus 49 / 75

Leftmost Reduction

Leftmost Reduction

. , .
The leftmost reduction — performs a single step of 3-conversion on the
leftmost Ax - M.

Any head reduction is a leftmost reduction (but not conversly).)

A. Demaille Lambda Calculus 49 / 75

Leftmost Reduction

Leftmost Reduction

. , .
The leftmost reduction — performs a single step of 3-conversion on the
leftmost Ax - M.

Any head reduction is a leftmost reduction (but not conversly).)

Leftmost reduction is normalizing. J

A. Demaille Lambda Calculus 49 / 75

A-calculus as a Programming Language

©)-calculus as a Programming Language
@ Booleans
o Natural Numbers
o Pairs
@ Recursion

A. Demaille Lambda Calculus 50 / 75

Booleans

©)-calculus as a Programming Language
@ Booleans

A. Demaille Lambda Calculus 51 /75

Booleans

@ How would you code Booleans in A-calculus?

A. Demaille Lambda Calculus 52 /75

Booleans

@ How would you code Booleans in A-calculus?

o How would you translate if M then N else L7

A. Demaille Lambda Calculus 52 /75

Booleans

@ How would you code Booleans in A-calculus?
o How would you translate if M then N else L7
o if MNL

A. Demaille Lambda Calculus 52 /75

Booleans

How would you code Booleans in A-calculus?
How would you translate if M then N else L?
if MNL

Do we need if?

A. Demaille Lambda Calculus 52 /75

Booleans

How would you code Booleans in A-calculus?
How would you translate if M then N else L?
if MNL

Do we need if?

What if Booleans were the if?

A. Demaille Lambda Calculus 52 /75

Booleans

How would you code Booleans in A-calculus?
How would you translate if M then N else L?
if MNL

Do we need if?

What if Booleans were the if?

MNL

A. Demaille Lambda Calculus 52 /75

Booleans

How would you code Booleans in A-calculus?
How would you translate if M then N else L?
if MNL

Do we need if?

What if Booleans were the if?

MNL

What is true?

A. Demaille Lambda Calculus 52 /75

Booleans

How would you code Booleans in A-calculus?
How would you translate if M then N else L?
if MNL

Do we need if?

What if Booleans were the if?

MNL

What is true?

What is false?

A. Demaille Lambda Calculus 52 /75

Boolean Combinators

Boolean Combinators (Church Booleans)

T = Axy - x
F=Xxy y

A. Demaille Lambda Calculus 53 /75

Natural Numbers

©)-calculus as a Programming Language

@ Natural Numbers

A. Demaille Lambda Calculus 54 / 75

Church’s Integers

Integers

n=A -Ax-f"x=X dx-(f---(fx)--+)
—_——

n times n times

2=\ Ax-f(fx)
3=\ Xx-f(f(fx))

A. Demaille Lambda Calculus

55 / 75

Church’s Integers

Operations

succ = An - Af - Ax - f(nfx) l

plus := Am - An- Af - Ax - mf (nfx)

plus := Am- An- n succ m

plus := An - n succ

A. Demaille Lambda Calculus 56 / 75

©)-calculus as a Programming Language

@ Pairs

A. Demaille Lambda Calculus 57 / 75

Church’s pairs

pair i= Axy - Xf - fxy
first = Ap-pT
second ‘= Ap - pF

A. Demaille Lambda Calculus 58 / 75

Recursion

©)-calculus as a Programming Language

@ Recursion

A. Demaille Lambda Calculus 59 / 75

Fixed point Combinators

Curry's Y Combinator

Y = M - (Ax - f(xx))(Ax - f(xx))

There are infinitely many fixed-point combinators.

A. Demaille Lambda Calculus 60 / 75

Fixed point Combinators

Curry's Y Combinator

Y = M - (Ax - f(xx))(Ax - f(xx))

Turing's © Combinator

© = (Axy - y(xxy))(Axy - y(xxy))

There are infinitely many fixed-point combinators.

A. Demaille Lambda Calculus 60 / 75

Fixed point Combinators

Curry's Y Combinator

Y = M- (Ax - f(xx))(Ax - f(xx))

= (M- (Ax - f(xx))(Ax - f(xx))) g
—p (Ax - g(xx))(Ax - g(xx))

=5 8((Ax - g(xx))(Ax - g(xx)))
g(Y g) =5 g(Af - (Ax - F(xx))(Ax - f(xx)))g)
=5 8(AF - ((Ax - FOx))(Ax - F(xx)))g)

Lambda Calculus

Reduction strategies in Programming Languages

Full beta reductions
Reduce any redex.

Applicative order
The leftmost, innermost redex is always reduced first. Intuitively
reduce function “arguments”’ before the function itself. Applicative
order always attempts to apply functions to normal forms, even when
this is not possible.

Normal order
The leftmost, outermost redex is reduced first.

A. Demaille Lambda Calculus 62 / 75

Reduction strategies in Programming Languages

Call by name
As normal order, but no reductions are performed inside abstractions.
Ax - (Ax - x)x is in NF.

Call by value
Only the outermost redexes are reduced: a redex is reduced only when
its right hand side has reduced to a value (variable or lambda
abstraction).

Call by need
As normal order, but function applications that would duplicate terms
instead name the argument, which is then reduced only “when it is
needed”’. Called in practical contexts “lazy evaluation”.

A. Demaille Lambda Calculus 63 / 75

A-calculus as a Programming Language

— ——

AT ONCE, JUST LIKE THEY SAID, I FELT A

LAST NIGHT I DRIFTED OFF |
WHILE READING A LIsP BOOK.

TRULY, THIS WiS
GREAT ENLIGHTENMENT. I SAW THE NAKED J| THE LANGURGE
STRUCTURE OF LisP CooE: UNFLD BeroRe ME-{| FROM WHIH THE AN
= i e T e GoDS WRoUGHT

THE INIVERSE. Jﬂ Y.
PR

| P
'y
- ?{3 AN

-~ _
—% 4 T MEAY, OSTENSIBLY, YES.

HONESTLY, WE HACKED MOsT
OF IT TOGETHER WITH PERL.

METAPATTERNS DANCED.
SYNTAX FADED, AND I SWAM INTHE PURITY OF
QUANTIFIED (ONCEPTION. OF IDEAS MANIFEST.

' SUDDENLY, I WAS BATHED
IN A SUFFIJSIO BLUE.

Lisp (xked 224)

A. Demaille Lambda Calculus 64 / 75

Combinatory Logic

@ Combinatory Logic

A. Demaille Lambda Calculus 65 / 75

Moses llyich Schénfinkel (1889-1942)

Russian logician and mathematician.
Member of David Hilbert's group at
the University of Gottingen.
Mentally ill and in a sanatorium in
1927.

His papers were burned by his
neighbors for heating.

A. Demaille Lambda Calculus 66 / 75

Combinatory Logic

@ is complex

o its implementation is full of subtle pitfalls

Combinatory Logic

@ a simpler alternative
@ invented by Moses Schonfinkel in 1920's
o developed by Haskell Curry in 1925

A. Demaille Lambda Calculus 67 / 75

Combinatory Logic

@ is complex

o its implementation is full of subtle pitfalls
@ invented in 1936 by Alonzo Church

Combinatory Logic
@ a simpler alternative
@ invented by Moses Schonfinkel in 1920's
o developed by Haskell Curry in 1925

A. Demaille Lambda Calculus 67 / 75

Classic Combinators

S =(Mx-(Ay-(Az- ((x2)(y2)))))
K= (Ax-(\y-x))
I :=(A\x-x)

We no longer need A!

SXYZ = XZ(Y2Z)
KXY — X
IX = X

A. Demaille Lambda Calculus 68 / 75

The Combinator |

I = (Ax-x)

A. Demaille Lambda Calculus 69 / 75

Combinators

The Combinator |

I = (Ax-x)

X =X

A. Demaille Lambda Calculus 69 / 75

Combinators

The Combinator |

I = (Ax-x)

X =X

SKKX — KX(KX) = X

A. Demaille Lambda Calculus 69 / 75

Combinators

The Combinator |

I = (Ax-x)

X =X

SKKX — KX(KX) = X

I = SKK

A. Demaille Lambda Calculus 69 / 75

Combinatory Logic

S SXYZ —» XZ(YZ)

(- (y - (Az - ((x2)(¥2)))))
K KXY — X

(Ax - (Ay - x))
I X =X

(Ax - x)

A. Demaille Lambda Calculus 70 / 75

Combinatory Logic

o Combination is left-associative:
SKKX = (((SK)K)X) = KX(KX) — X

@ le., I = SKK: two symbols and two rules suffice.

@ Same expressive power as A-calculus.

A. Demaille Lambda Calculus 71 /75

Boolean Combinators

Boolean Combinators

F=KI

XY — X
XY =Y

KIXY = (KNX)Y) = IY > Y

A. Demaille Lambda Calculus 72 /75

The Y Combinator in SKI

Y = S(K(SIN))(S(S(KS)K)(K(SII)))

The Y Combinator in SKI

Y = S(K(SIN))(S(S(KS)K)(K(SII)))

@ The simplest fixed point combinator in SK

Y = SSK(S(K(SS(S(SSK))))K

The Y Combinator in SKI

Y = S(K(SIN))(S(S(KS)K)(K(SII)))

@ The simplest fixed point combinator in SK
Y = SSK(S(K(SS(5(5SK))))K
@ by Jan Willem Klop:
Yk = (LLLLLLLLLLLL L LLLLLLLLLLLL)
where:

L = Xabcdefghijklmnopqgstuvwxyzr(r(thisisafixedpointcombinator))

A. Demaille Lambda Calculus 73 /75

Bibliography Notes

[Ker, 2005a] Complete and readable lecture notes on A-calculus. Uses
conventions different from ours.

[Ker, 2005b] Additional information, including slides.

[Barendregt and Barendsen, 2000] A classical introduction to A-calculus.

A. Demaille Lambda Calculus 74 / 75

Bibliography |

[4 Barendregt, H. and Barendsen, E. (2000).
Introduction to lambda calculus.
http:
//www.cs.ru.nl/"erikb/onderwijs/T3/materiaal/lambda.pdf.

[Ker, A. D. (2005a).
Lambda calculus and types.
http://web.comlab.ox.ac.uk/oucl/work/andrew.ker/
lambda-calculus-notes-full-v3.pdf

[Ker, A. D. (2005b).
Lambda calculus notes.
http://web.comlab.ox.ac.uk/oucl/work/andrew.ker/.

A. Demaille Lambda Calculus 75 / 75

http://www.cs.ru.nl/~erikb/onderwijs/T3/materiaal/lambda.pdf
http://www.cs.ru.nl/~erikb/onderwijs/T3/materiaal/lambda.pdf
http://web.comlab.ox.ac.uk/oucl/work/andrew.ker/lambda-calculus-notes-full-v3.pdf
http://web.comlab.ox.ac.uk/oucl/work/andrew.ker/lambda-calculus-notes-full-v3.pdf
http://web.comlab.ox.ac.uk/oucl/work/andrew.ker/

	lambda calculus
	The Syntax of lambda calculus
	Substitution, Conversions

	Reduction
	Beta-Reduction
	Church-Rosser
	Reduction Strategies

	lambda calculus as a Programming Language
	Booleans
	Natural Numbers
	Pairs
	Recursion

	Combinatory Logic

