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Constructivity

Classical logic does not build truth
it discovers a preexisting truth
Classical logic assumes facts are either true or false
` A ∨ ¬A Excluded middle, tertium non datur
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Excluded Middle

XM
A ∨ ¬A

···
¬¬A

¬¬
A

[¬A]
···
B

[¬A]
···
¬B

Contradiction
A

A ` A
`¬

` ¬A,A
` r∨

` A ∨ ¬A,A
` l∨

` A ∨ ¬A,A ∨ ¬A
`C

` A ∨ ¬A
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Reductio ad Absurdum
In Real Life

A You should respect C’s belief, for all beliefs are of equal
validity and cannot be denied.

B What about D’s belief? (Where D believes something that is
considered to be wrong by most people, such as nazism or
the world being flat)

A I agree it is right to deny D’s belief.
B If it is right to deny D’s belief, it is not true that no belief

can be denied. Therefore, I can deny C’s belief if I can give
reasons that suggest it too is incorrect.
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Reductio ad Absurdum
In Real Life

A You should respect C’s belief, for all beliefs are of equal
validity and cannot be denied.

B 1 I deny that belief of yours and believe it to be invalid.
2 According to your statement, this belief of mine (1) is

valid, like all other beliefs.
3 However, your statement also contradicts and invalidates

mine, being the exact opposite of it.
4 The conclusions of 2 and 3 are incompatible and

contradictory, so your statement is logically absurd.
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Reductio ad Absurdum
Mathematics: The Smallest Positive Rational

There is no smallest positive rational.

1 Suppose there exists one such rational r
2 r/2 is rational and positive
3 r/2 < r

4 Contradiction
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Reductio ad Absurdum
Mathematics:

√
2 is irrational

√
2 is irrational.

1 Assume
√
2 is rational: ∃a, b integers st. a/b =

√
2

2 a, b can be taken coprime
3 ∴ a2/b2 = 2 and a2 = 2b2

4 ∴ a2 is even (a2 = 2b2)
5 ∴ a is even
6 Because a is even, ∃k st. a = 2k .
7 We insert the last equation of (3) in (6): 2b2 = (2k)2 is equivalent to

2b2 = 4k2 is equivalent to b2 = 2k2.
8 Since 2k2 is even, b2 is even, hence, b is even
9 By (5) and (8) a, b are even
10 Contradicts 2
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Constructivity
Mathematics: Rationality and Power

There are irrational positive numbers a, b such that ab is rational.

1
√
2 is known to be irrational

2 Consider
√
2
√
2
:

1 If it is rational, take a = b =
√

2
2 Otherwise, take a =

√
2
√

2
, b =

√
2, ab = 2

But it is not known which numbers.
We proved A ∨ B , but neither A nor B .
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Constructivity
Mathematics: Unknown Numbers

Let σ be the number defined below. Its value is unknown, but it is rational.

For each decimal digit of π, write 3. Stop if the sequence 0123456789 is
found.

1 If 0123456789 occurs in π, then σ = 0, 3 . . . 3 = 10k−1
3.10k

2 If it does not, σ = 0, 3 . . . = 1/3

We proved ∃x .P(x), but know no t : P(t).
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Constructivity

Disjunction Property
If A ∨ B is provable, then either A or B is provable, and reading the proof
tells which one.

Existence Property
If ∃x · A(x) is provable, then reading the proof allows to exhibit a witness t
(i.e., such that A(t)).
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Intuitionistic Logic

1 Constructivity

2 Intuitionistic Logic
NJ: Intuitionistic Natural Deduction
LJ: Intuitionistic Sequent Calculus
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Intuitionistic Logic

Luitzen Egbertus Jan Brouwer (1881–1966)
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http://en.wikipedia.com/wiki/Luitzen_Egbertus_Jan_Brouwer


Intuitionistic Logic

Classical logic focuses on truth (hence truth values)
Intuitionistic logic focuses on provability (hence proofs)
A is true if it is provable
The excluded middle is. . . excluded

A ` A
`¬

` ¬A,A
` r∨

` A ∨ ¬A,A
` l∨

` A ∨ ¬A,A ∨ ¬A
`C

` A ∨ ¬A
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NJ: Intuitionistic Natural Deduction

1 Constructivity

2 Intuitionistic Logic
NJ: Intuitionistic Natural Deduction
LJ: Intuitionistic Sequent Calculus
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Intuitionistic Natural Deduction

Natural deduction supports very well intuistionistic logic.
In fact, classical logic does not fit well in natural deduction.

[A]
···
⊥
¬I

¬A

···
A

···
¬A
¬E

⊥

XM
A ∨ ¬A

···
¬¬A

¬¬
A

[¬A]
···
B

[¬A]
···
¬B

Contradiction
A
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Intuitionistic Negation

[A]
···
⊥
¬I

¬A

···
A

···
¬A
¬E

⊥

[A]
···
B

⇒I
A⇒ B

···
A

···
A⇒ B

⇒E
B

So define ¬A := A⇒ ⊥.
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Prove A ` ¬¬A

A [A⇒ ⊥]1

⇒E
⊥

⇒I1
(A⇒ ⊥)⇒ ⊥
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Prove ¬¬¬A ` ¬A

[A]2 [A⇒ ⊥]1

⇒E
⊥

⇒I1
(A⇒ ⊥)⇒ ⊥ ((A⇒ ⊥)⇒ ⊥)⇒ ⊥

⇒E
⊥

⇒I2
A⇒ ⊥
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Intuitionistic Natural Deduction

[A]
···
B

⇒I
A⇒ B

···
A

···
A⇒ B

⇒E
B

···
⊥
⊥E

A

A B
∧I

A ∧ B

A ∧ B
∧lE

A

A ∧ B
∧rE

B

···
A
∨lI

A ∨ B

···
B
∨rI

A ∨ B

···
A ∨ B

[A]
···
C

[B]
···
C
∨E

C



LJ: Intuitionistic Sequent Calculus

1 Constructivity

2 Intuitionistic Logic
NJ: Intuitionistic Natural Deduction
LJ: Intuitionistic Sequent Calculus
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LJ — Intuitionistic Sequent Calculus
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LK: Identity Group

Id
A ` A

Γ ` A,∆ Γ′,A ` ∆′

Cut
Γ, Γ′ ` ∆,∆′

A. Demaille Intuitionistic Logic 24 / 34



LK: Identity Group

Id
A ` A

Γ ` A,∆ Γ′,A ` ∆′

Cut
Γ, Γ′ ` ∆,∆′

A. Demaille Intuitionistic Logic 24 / 34



LJ: Identity Group

Id
A ` A

Γ ` A

,∆

Γ′,A ` B
Cut

Γ, Γ′ `

∆,

B

A. Demaille Intuitionistic Logic 24 / 34



LK: Structural Group
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LJ

Id
A ` A
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Prove A ` ¬¬A

A− ` A+ ⊥− ` ⊥+
⇒̀

A−,A+ ⇒ ⊥− ` ⊥+
⇒̀

A− ` (A+ ⇒ ⊥−)⇒ ⊥+
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[van Atten, 2009]
The history of intuitionistic logic.
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