Fast Level Lines Transform algorithm

Christophe Berger

LRDE – EPITA Research and Development Laboratory

December 07, 2006
About Olena:

- Generic image processing library
- Developed at the LRDE [ole]
- Latest release, April 2004
The FLLT algorithm

Roughly

- Introduced by Pascal Monasse and Frédéric Guichard in [MG98]
- Image segmentation algorithm
- Contrast invariant image representation
- *Should be faster than existing algorithms*

Figure: Image, the extracted contours, the segmentation
Contrast invariance?

- Contrast is hardware dependant
- Grey level quantization process
- Brightness

A limited greylevel space to represent all the magic of our world?

Figure: A greylevel scale: from 0 (black) to 255 (white)
Outline

1. Concept
2. Theory
3. The algorithm
A special image representation

Figure: Original image

Figure: Corresponding inclusion tree

Fast Level Lines Transform algorithm
Connected components

Connected operators \(\psi \)

- \(\forall y \in \mathcal{N}(x), f(x) = f(y) \Rightarrow \psi(f)(x) = \psi(f)(y) \)
- Input flat zones are included into output flat zones
- Preserve object contours

Leveling

Subclass of connected operators

- \(\forall y \in \mathcal{N}(x), f(x) < f(y) \Rightarrow \psi(f)(x) \leq \psi(f)(y) \)
- Preserve local spatial ordering of the image
Upper level set χ_λ and lower level set χ_μ

$$\chi_\lambda = \{ x \in \mathbb{R}^2, u(x) \geq \lambda \}$$
$$\chi_\mu = \{ x \in \mathbb{R}^2, u(x) \leq \mu \}$$

The family of χ_λ (or χ_μ) is sufficient to rebuild the image:

$$u(x) = \sup\{ \lambda / x \in \chi_\lambda \} = \inf\{ \mu / x \in \chi_\mu \}$$

Consequence

$$\forall \lambda \leq \mu, \chi_\lambda \supset \chi_\mu, \chi_\lambda \subset \chi_\mu$$

Inclusion of the level sets implies a tree structure

Moreover these operators are contrast invariant
Jordan theorem

- C is a closed curve in the plane \mathbb{R}^2
- Space separated in 2 connected components, *in* and *out*
- This is applied to \mathbb{Z}^2, the 2D image domain
Jordan theorem in 2D image space

- H is no longer a closed curve in the plane \mathbb{Z}^2
- Brings up problems to detect interior and exterior
- We need to use different connexity for interior and exterior

Figure: 4-connexity

Figure: 8-connexity
Inputs

- Image to process

Outputs

- A tree of ordered shapes expressing the “brighter than” relation
- An image expressing the smallest shape containing a pixel

Principle

- Build the upper level sets and lower level sets trees of connected components
- Find the correspondance in both trees of “holes”
- Merge the trees
Building of the level sets trees

Principle of lower level set tree construction

1. Image scanning
 search for a not tagged local minimum
2. Create a new “region” with this local minimum
3. Examine the neighbors and proceed with a region growing
4. Continue until borders of region are reached

Return to step 1 until end of image

Apply the same algorithm for upper level set building (searching for local maximums)
Example of lower level tree building

Processed image: Using the set of points sorted by greylevel

Stages:
Example of lower level tree building

Processed image: The first minimum not tagged is processed

Stages:
Example of lower level tree building

Processed image: Region growing

Stages:
Example of lower level tree building

Processed image: The next not tagged minimum is processed

Stages:
Example of lower level tree building

Processed image:

Region growing

Stages:

level = 0
Example of lower level tree building

Processed image: The next not tagged minimum is processed

Stages:
Example of lower level tree building

Processed image: The entire image has been processed

Stages:
Example of lower level tree building

Processed image:

Lower level tree complete!

Stages:
Final stage: merging the trees

Nothing to do if no shape is “pierced”
Otherwise we apply some rules to merge the branches

The processed image was:
Final stage: merging the trees

Nothing to do if no shape is “pierced”
Otherwise we apply some rules to merge the branches

The processed image was:
Applications

Fast Level Lines Transform algorithm
Applications
Work relevance

- Understand this algorithm
- Prepare an implementation
- Finally, use FLLT in Olena
Bibliography I

C. Ballester, V. Caselles, and P. Monasse.
Preprint CMLA.

Grégoire Malandain.
Digital topology lecture.

P. Monasse and F. Guichard.