
DDE: A Modi�ed Dimension Exchange Methodfor Load Balancing in k-ary n-cubesMin-You Wu and Wei ShuDepartment of Computer ScienceState University of New York at Bu�aloBu�alo, NY 14260wu,shu@cs.bu�alo.eduAbstract| The dimension exchange method (DEM) was initially proposed as a load-balancingalgorithm for the hypercube structure. It has been generalized to k-ary n-cubes. However, thek-ary n-cube algorithm must take many iterations to converge to a balanced state. In this paper,we propose a direct method to modify DEM. The new algorithm, Direct Dimension Exchange(DDE) method, takes load average in every dimension to eliminate unnecessary load exchange. Itbalances the load directly without iteratively exchanging the load. It is able to balance the loadmore accurately and much faster. 1. IntroductionThe dimension exchange method (DEM) was initially proposed as a fully load-balancing algo-rithm for the hypercube structure [5, 1]. It balances the load for independent tasks on distributedmemory machines. The experiment carried by Willebeek-LeMair and Reeves conformed thatDEM is superior to other scheduling methods [7]. DEM for the hypercube network is a simplealgorithm. Load balancing is performed iteratively in each of the log N dimensions, in which onlynode pairs exchange their load information and attempt to average the number of tasks. After asweep (log N iterations), the load is balanced.Unfortunately, when DEM applies to other structures, such as the mesh or the k-ary n-cube,it takes many sweeps to converge to the balanced load. Hosseini et al. extended it for arbitrarystructures using the technique of edge-coloring of graphs [3]. Xu and Lau proposed the generalizeddimension exchange (GDE) method [9]. The GDE method was extended to the k-ary n-cubenetwork [10]. Because a node exchanges workload with only one of its neighbor at a time, GDEis not able to reach the balanced state in one sweep. The number of sweeps for convergence islinearly proportional to the number of nodes in a chain, and hence to the dimension order k ofthe k-ary n-cube structure. 1

We present a direct method for the k-ary n-cube, called the Direct Dimension Exchange (DDE)method. Unlike iterative algorithms, this direct method can balance the load in one sweep. Theload in a chain is fully balanced by utilizing information of the total number of tasks, which canbe easily obtained by a sum reduction. Each node in the chain knows whether it is overloadedor underloaded and subsequently exchange workload with other nodes. The DDE method canbe applied to two or more dimensions to balance the load for the mesh, the torus, and the k-aryn-cube.This paper is organized as follows. Section 2 briey reviews the DEM and the GDE algorithms.Then, the direct method for the chain and the ring structures is described in sections 3 and 4,respectively. The algorithm for the k-ary n-cube is presented in section 5. In section 6, the directmethod is compared to the GDE method. Section 7 concludes the paper.2. The DEM and GDE AlgorithmsThe goal of load balancing is to schedule works so that each processor has the same workload.To achieve this goal, an estimation of the task execution time is needed, which can be done eitherby a programmer or by a compiler. Sometimes the estimation can be application-speci�c, andsometimes it is impossible to obtain such an estimation. Due to these di�culties, each task ispresumed to require the equal execution time and the goal of the algorithm is to schedule tasksso that each processor has the same number of tasks.The scheduling problem can be described as follows. In a parallel or distributed system, Ncomputing nodes are connected by a given topology. Each node i has wi tasks. A schedulingalgorithm is to redistribute tasks so that the number of tasks in each node is equal. Assume thesum of wi of all nodes can be evenly divided by N . The average number of tasks wavg is calculatedby wavg = PN�1i=0 wiN :Each node should have wavg tasks after scheduling.DEM was designed for the hypercube structure. In DEM, small domains are balanced �rstand then combined to form larger domains until ultimately the entire system is balanced. The\integer version" of DEM is described in Figure 1. All node pairs in the �rst dimension whoseaddresses di�er in only the least signi�cant bit balance the load between themselves. Next, allnode pairs in the second dimension balance the load between themselves, and so forth, until eachnode has balanced its load with each of its neighbors.After execution of the DEM algorithm, the load di�erenceD = max(wi)�min(wi)2

DEMfor l = 0 to n � 1node i exchanges with node j the current values of wi and wj , where j = i� 2lif (wi � wj) > 1, send b(wi � wj)=2c tasks to node jif (wj � wi) > 1, receive b(wj � wi)=2c tasks from node jwi = (d(wi + wj)=2e if wi > wjb(wi + wj)=2c otherwiseFigure 1: The DEM algorithm for the hypercube.GDEwhile (not terminate)for l = 1 to cfor edge colored l connecting nodes i and jnode i exchanges with node j the current values of wi and wjif (wi � wj) > 1, send b(�wi � �wj)c tasks to node jif (wj � wi) > 1, receive b(�wj � �wi)c tasks from node jwi = (d(1� �)� wi + �� wje if wi > wjb(1� �)� wi + �� wjc otherwiseFigure 2: The GDE algorithm for the k-ary n-cube.is bounded by n, the dimension of the hypercube [3]. The number of communication steps of theDEM algorithm is 3n [7].The GDE algorithm operates on color graphs derived from edge-coloring of the given systemgraph. The \integer version" of the algorithm is shown in Figure 2. A node �nishes a completesweep after c consecutive exchange operations, where c is the number of colors. In k-ary n-cubes,c = 2n if k is an even number. The termination condition is that the di�erence of the number oftasks between neighboring nodes is less than or equal to one. The convergence rate depends onthe exchange parameter �. The value � varies for di�erent topologies and di�erent network sizes.For the hypercube, the optimal � = 12 , and GDE is equivalent to the original DEM algorithm. Forother topologies, � is to be optimized to maximize the convergence rate. For the k-ary n-cube, theload di�erence between any pair of nodes is bounded by nk=2. The convergence rate decreaseswhen the dimension order k increases. There is no communication conict in this algorithm.Willebeek-LeMair and Reeves suggested another approach to extend DEM to anM�M meshtopology by \folding" the mesh in each dimension dlogMe times [7]. This method could be applied3

to k-ary n-cubes too. The load di�erence is bounded by ndlogke. However, in this approach, nodepairs would no longer be directly linked to one another and communications would conict.3. The DDE Method for the ChainInstead of using the GDE method which balances the load iteratively, we propose a directmethod. The workload in a chain can be balanced directly. The basic idea is to calculate thetotal number of tasks in the chain and the average number of tasks per node. Thus, nodes in thechain can exchange tasks to balance the load.DDE-chainLet wi be the number of tasks in node i, where i = 0; 1; :::; k� 1.1. Global Information Collection: Perform the scan with sum operation of wi:Wi = k�1Xl=i wl2. Average Load Calculation: T = W0, wavg = bT=kc, and R = T mod k, where T is thetotal number of tasks.3. Quota Calculation: The quota of each node qi is computed:qi = (wavg + 1 if i < Rwavg otherwiseAlso, an accumulation quota for each node is computed:Qi = k�1Xl=i ql4. Flow Calculation: xi�1;i = Qi � Wi, for i = 1; 2; :::; k � 1, where xi;j is the ow onedge (i; j). Figure 3: The DDE algorithm for the chain.The DDE algorithm for the chain shown in Figure 3 is its \integer version." It takes as inputthe node weight wi(i = 0; 1; :::; k� 1) and outputs the calculated ow xi�1;i(i = 1; 2; :::; k� 1)for every edge in the chain. The �rst step is to obtain the total number of tasks in the chain byusing the scan with sum operation from node k� 1 to node 0, where k is the length of the chain.Each node records a partial sum Wi =Pk�1l=i wl. The second step calculates the average numberof tasks per node at node 0. If the number of tasks cannot be evenly divided by k, the remaining4

R tasks are distributed to the �rst R nodes so that they have one more task than the others.The values of wavg and R are broadcast to every node. In the third step, each node calculates itsquota. The accumulation quota Qi can be calculated directly as follows:Qi = wavg � (k � i) + min(0; R� i):Each node keeps records of Qi, Wi, Qj , and Wj , where j = i + 1. In the fourth step, the owis calculated by taking di�erence between Qi and Wi. Node i calculates xi�1;i and xi;i+1. Whenthe ow is available, the workload is exchanged so that each node has the same number of tasksas its quota.Example 1:An example is shown in Figure 4. At the beginning of scheduling, each node has wi tasksready to be scheduled. Values of Wi are calculated in step 1. Node 0 calculates the value of wavgand R: wavg = 4; R = 5:Then, each node calculates the value of Qi in step 3. The values of wi, Wi, Qi, and xi�1;i are asshown below: i wi Wi Qi xi�1;i0 9 37 37 {1 7 28 32 42 4 21 27 63 1 17 22 54 4 16 17 15 6 12 12 06 1 6 8 27 5 5 4 �19 7 4 1 4 6 1 5i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=74 6 5 1 2 1Figure 4: Example for DDE-chain.After task exchange, nodes 0{4 have �ve tasks each, and nodes 5{7 have four tasks each.Lemma 1: After execution of DDE and task exchange, the number of tasks in each node is equalto its quota. 5

Proof: After execution of DDE and task exchange, the number of tasks in node i isw0i = wi + xi�1;i � xi;i+1Becausexi�1;i = Qi �Wi; xi;i+1 = Qi+1 �Wi+1; Wi+1 = Wi � wi; and Qi+1 = Qi � qiw0i = wi + (Qi �Wi)� (Qi+1 �Wi+1) = Qi � Qi+1 = qi 2In this algorithm, steps 1 and 2 spend 2k communication steps. The number of communicationsteps in step 4 is at most k. Therefore, the total number of communication steps of this algorithmis no more than 3k. This algorithm can be further improved by selecting node k/2 as the rootand applying the TWA algorithm in [6]. Thus, the total number of communication steps of thisalgorithm can be reduced to 2k. When T is evenly divided by k, this algorithm minimizes thetotal number of task transfers and the total number of communications. This algorithm alsomaximizes locality. That is, it minimizes the number of tasks that are migrated to other nodes.The workload is exchanged according to the ow generated by DDE. There are two task-exchange algorithms. The �rst one, called receive-before-send, is shown in Figure 5.Receive-before-sendFor node i1. if i > 0 and xi�1;i > 0, wait to receive xi�1;i tasks from node i� 12. if i < k � 1 and xi;i+1 < 0, wait to receive jxi;i+1j tasks from node i+ 13. if i > 0 and xi�1;i < 0, send jxi�1;ij tasks to node i� 14. if i < k � 1 and xi;i+1 > 0, send xi;i+1 tasks to node i+ 1Figure 5: Task exchange: receive-before-send.Using the receive-before-send algorithm, the load exchange in Example 1 takes four commu-nication steps to �nish:(1) node 0 to node 1, node 5 to node 6, node 7 to node 6(2) node 1 to node 2(3) node 2 to node 3(4) node 3 to node 4 6

Send-before-receiveFor node ilet ai = xi�1;i; bi = xi;i+1while (ai 6= 0 or bi 6= 0)1. if i > 0 and (wi > �ai > 0) send jaij tasks to node i� 1, and let wi = wi + ai, ai = 02. if i < k � 1 and (wi > bi > 0) send bi tasks to node i+ 1, and let wi = wi � bi, bi = 03. if i > 0 and ai > 0 and received ai tasks from node i� 1, and let wi = wi + ai, ai = 04. if i < k � 1 and bi < 0 and received jbij tasks from node i+ 1, and let wi = wi � bi, bi = 0Figure 6: Task exchange: send-before-receive.In the receive-before-send algorithm, each node must receive an incoming message, if any,before sending out messages. By relaxing this constraint, a send-before-receive algorithm is shownin Figure 6. In this algorithm, a node can start sending messages out before it has received anincoming message. The communication time and processor idle time can be reduced. It takesonly two communication steps for Example 1:1) node 0 to node 1, node 1 to node 2, node 3 to node 4,node 5 to node 6, node 7 to node 62) node 2 to node 3The send-before-receive algorithm may have some negative impact in locality. In the receive-before-send algorithm, a node can keep the maximum number of local tasks and send non-localtasks to other nodes. But in the send-before-receive algorithm, a node may send local tasks toother nodes and then receive tasks from others. Therefore, the decision on use of the receive-before-send or send-before-receive algorithms is a trade-o� between communication time andlocality.Most massively parallel computers use wormhole routing with which the e�ect of path lengthon communication time can often be ignored. The recursive doubling algorithm [2] can takeadvantage of the pipeline e�ect of wormhole routing while avoiding channel contention. Thisalgorithm organizes the nodes in a chain to a tree. An example of eight nodes is shown inFigure 7. Applying the TWA algorithm in [6] to the tree, the load can be balanced within 4 log kcommunication steps. 7

i=0 i=1i=2i=3i=4i=5i=6i=7Figure 7: The tree for recursive doubling.4. The DDE Algorithm for the RingA ring can be obtained by adding an end-round connection to a chain. The DDE-chain al-gorithm can be applied to the ring by ignoring the end-round edge. The load can be balanced,however, the communication may not be minimal. By utilizing the end-round edge, communica-tion could be reduced. We describe an algorithm to minimize the total number of tasks transferred.The algorithm is derived from the minimum cost ow algorithm [4] and shown in Figure 8. In thisalgorithm, an initial solution is obtained by using DDE-chain without considering the end-roundDDE-ringApply DDE-chain to the ring without considering the end-round edge (k � 1; 0) to obtainx0;1; x1;2; :::; xk�2;k�1, where xi;j is the ow on edge (i; j). Let xk�1;0 be 0.If the ow is clockwise, xi;j is positive; otherwise, it is negative.Let np be the number of edges with xi;j > 0, nn the number of edges with xi;j < 0, and nz thenumber of edges with xi;j = 0.1. If nn+nz �np < 0, let xm be the m th largest xi;j from all xi;j > 0; and if np+nz �nn < 0,let xm be the m th smallest xi;j from all xi;j < 0, where m = dk=2e.2. For each edge, xi;j = xi;j � xm.Figure 8: The DDE algorithm for the ring.8

edge. Then, an augmentation is applied to obtain an optimal solution. The complexity of thisalgorithm is O(k log k).We can use either the receive-before-send or send-before-receive algorithm for task exchangeof DDE-ring. Here, we let x�1;0 = xk�1;0.The following lemma shows that this algorithm minimizes the total cost of ow, that is, thenumber of tasks transferred.Lemma 2: After execution of DDE-ring, the total network ow is of minimum cost.Proof: If np + nz � nn � 0 and nn + nz � np � 0, there is no ow augmenting cycle withnegative cost. Therefore, the network ow is of minimum cost [4].If nn + nz � np < 0, after modi�cation of xi;j = xi;j � xm, we haven0z + n0p � mThen, n0z + n0p � n0n � m� n0n = m� (k � n0z � n0p) � 2m� kNote that n0n + n0z + n0p = k. Because of m = dk=2e,n0z + n0p � n0n � 2m� k � 0We also have n0n + n0z � k �m+ 1Then, n0n + n0z � n0p � k �m+ 1� n0p = k �m+ 1� (k � n0n � n0z) = 1�m+ n0n + n0z� 1�m+ k �m+ 1 = k � 2m+ 2Because of m = dk=2e, n0z + n0p � n0n � k � 2m+ 2 � 0Thus, the network ow is of minimum cost.The case of np + nz � nn < 0 can be proved similarly. Thus, the network ow is of minimumcost in all cases. 2An example is shown in Figure 9. An end-round edge is added to the chain in Figure 4to construct a ring. Applying the DDE-chain algorithm to the ring without considering the9

end-round edge, the ow is shown in Figure 9(a). The number of tasks transferred is 19. Theaugmentation is applied to this ow:np = 1; nz = 2; nn = 5Because np + nz � nn < 0 and the 4th smallest xi;j is �2, every xi;j is subtracted by �2. Theresult is shown in Figure 9(b). The number of tasks transferred is reduced to 17.9 7 4 1 4 6 1 5i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=74 6 5 1 2 1(a)9 7 4 1 4 6 1 5i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=72 4 3 1 2 32(b)Figure 9: Example for DDE-ring.5. The DDE Method for the k-ary n-cubeWith the DDE-ring algorithm, it is not di�cult to composite a DDE algorithm for the k-aryn-cube. The algorithm is shown in Figure 10. In iteration l of the DDE algorithm, subcube Slmis divided into k partitions Sl+1km+b where m = 0; 1; :::; kl � 1 and b = 0; 1; :::; k� 1. Slm has kn�lnodes. The nodes in each ring exchange their load and then each node i has wl+1i tasks. ExecutingDDE, node i will have wni tasks. The task exchange step can use either the receive-before-sendor send-before-receive algorithm.This algorithm can be applied to the n-dimensional torus, which allows di�erent number ofnodes in di�erent dimensions. Taking a torus and strip them of all the end-round connections, weget a mesh. This algorithm can be applied to the mesh by performing the DDE-chain algorithminstead of DDE-ring in each step.The following theorem shows that the load di�erence of DDE is bounded by n, the dimensionof the k-ary n-cube. 10

DDE for k-ary n-cubeAssume a k-ary n-cube S00 , the number of nodes is kn, and node i has w0i tasks.for l = 0 to n � 1apply the DDE-ring algorithm to kn�1 rings in the lth dimension independently,where every ring has k nodes (a0; a1; :::; al; :::; ak�1) and al = 0; 1; :::; k� 1exchange tasks according to the oweach node updates its weight wl+1i = wli + xi�1;i � xi;i+1Figure 10: The DDE algorithm for the k-ary n-cube.Theorem 1: After execution of DDE, the load di�erenceD = max(wni)�min(wni)is bounded by n.Proof: In the lth step of DDE, a k-ary (n�l)-cube is partitioned into k k-ary (n�l�1)-cubes.The di�erence of the number of tasks between two partitions is maximal when in each ring everynode in �rst partition, say Sl+1km , has one more task than that possessed by the node in the otherpartitions, Sl+1km+b, where b = 1; 2; :::; k� 1. ThusXj2Sl+1km wl+1j = Xj2Sl+1km+k�1 wl+1j + jSl+1km j = 1k � 1(Xj2Slm wlj � Xj2Sl+1km wl+1j) + kn�l�1where jSl+1km j denotes the number of nodes in subcube Sl+1km which is kn�l�1. Therefore,Xj2Sl+1km wl+1j = 1k Xj2Slm wlj + (k � 1)kn�l�2Similarly,Xj2Sl+1km+k�1 wl+1j = Xj2Sl+1km wl+1j � jSl+1km j = (Xj2Slm wlj � (k � 1) Xj2Sl+1km+k�1 wl+1j)� kn�l�1Therefore, Xj2Sl+1km+k�1 wl+1j = 1k Xj2Slm wlj � kn�l�2Let Almax = max0�m<kl Xj2Slm wlj11

and Almin = min0�m<kl Xj2Slm wlj :When l = 0, A0max = A0min = Xj2S00 w0j = X0�j<kn w0j = Twhere T is the total number of tasks. Thus,Almax = (T if l = 01kAl�1max + (k � 1)kn�l�1 otherwise (1)Similarly, Almin = (T if l = 01kAl�1min � kn�l�1 otherwise (2)The solution to the above recurrence is given byAlmax = Tkl + (k � 1)� l � kn�l�1 (3)Almin = Tkl � l � kn�l�1 (4)It clearly satis�es (1) and (2) for the basis, l = 0. If (3) satis�es (1) for l = m, thenAm+1max = Tkm+1 +(m+1)(k� 1)kn�(m+1)�1 = 1k (Tkm +(k� 1)�m�kn�m�1)+ (k� 1)kn�(m+1)�1= 1kA(m+1)�1max + (k � 1)kn�(m+1)�1Therefore, it satis�es (1) for l = m+1. Thus, by induction on l we have shown that (3) satis�es (1)whenever l � 0. Similarly, it can be shown that (4) satis�es (2) whenever l � 0.Let l = n Anmax = max0�j<kn wnj = Tkn + k � 1k � nAnmin = min0�j<kn wnj = Tkn � 1k � n;Because D = Anmax�Anmin = (k�1k + 1k)�n = n, the number of tasks in any two processors di�ersat most by n. 2An example is shown in Figure 11. This is a 4-ary 2-cube (i.e., torus 4 � 4). Figure 11(a) showsthat the DDE-ring algorithm applies to each ring in the �rst dimension. Then, DDE-ring appliesto each ring in the second dimension, as shown in Figure 11(b). The resultant load distributionis shown in Figure 11(c). The maximum load di�erence is 2.12

6 12 6 1617 3 0 152 13 5 56 6 4 12224 728 125 31 2
(a) 10 10 10 109 9 9 87 6 6 67 7 7 711 112 112 22(b)

9 8 8 88 8 8 88 8 8 88 8 8 7
(c)Figure 11: Example for DDE (4-ary 2-cube).6. Experimental ResultsIn this section, we compare performance of GDE and DDE. We consider a test set of loaddistributions, in which the load at each processor is randomly selected with the mean equal to aspeci�ed value. In this simulation experiment, the average number of tasks (average weight) perprocessor is 1,000. Each result is the average of 100 test cases. We tested an 8�8 mesh, a 16�16torus, an 8�8�8 3D-mesh, and a 16�16�16 3D-torus. For these networks, the optimal value of� for GDE is 0.723 [10].First, we compare load imbalance of GDE and DDE. The load di�erence of DDE is boundedby n, whereas that of GDE is bounded by n(k�1) for the mesh and nk=2 for the torus. Figure 12shows its average in di�erent networks. Here, the load di�erence of GDE is four to six times largerthan that of DDE. 13

0

2

4

6

8

10

12

14

16

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

GDE

DDE

Figure 12: Load di�erence.DDE completes load balancing in one sweep but GDE needs many sweeps. Figure 13 showsthe number of sweeps s for di�erent networks. The value of s is proportional to k [10]. Moreover,s increases with the average weight. Table I shows the relationship between the number of sweepsand the average number of tasks, measured on an 8�8 mesh.
0

2

4

6

8

10

12

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

GDE

DDE

Figure 13: The number of sweeps.Next, we compare the number of communication steps of GDE and DDE. For GDE, eachsweep has c iterations, where c is the number of colors. For even number of k, c = 2n. Eachiteration has three communications, two for exchanging load information and one for load bal-ancing. Therefore, the total number of communications of s sweeps are 3sc = 6sn. For DDE,there are k communication steps in each dimension for collection and broadcasting of load infor-mation. Load balancing needs at most k � 1 and k=2 communication steps for the mesh and thetorus, respectively. Therefore, 2kn or 32kn communication steps in total are required. DDE canreduce the number of communication steps signi�cantly. The analysis has been con�rmed by theexperiment, as shown in Figure 14. 14

Table I: The Relationship Between the Number of Sweeps and the Average WeightAverage Number of Tasks 100 300 1,000 3,000 10,000Average Number of Sweeps 7.28 9.20 11.08 13.02 14.67
0

20

40

60

80

100

120

140

160

180

200

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

GDE

DDE

Figure 14: The number of communication stepsFigure 15 shows the normalized communication cost of GDE and DDE. The normalized com-munication cost is de�ned as the the total numbers of tasks transferred divided by the totalnumber of tasks: Pj ejPi wi ;where ej is the number of tasks transmitted through the edge j. The communication cost of GDEis about 50% larger than that of DDE. It is due to the fact that GDE transfers tasks unnecessarily.Finally, DDE has better locality than GDE. Figure 16 shows the percentage of local tasks thatare not migrated to other nodes. DDE keeps 20% to 50% more tasks in local.
15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

GDE

DDE

Figure 15: Normalized communication cost.
0%

10%

20%

30%

40%

50%

60%

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

GDE

DDE

Figure 16: The percentage of local tasks.16

7. ConclusionThis paper proposed a direct method for load balancing. It extended the DEM algorithmto the k-ary n-cube. Compared to the GDE algorithm, which also extended DEM to the k-aryn-cube, DDE is faster, balances the load well, reduces communications, and keeps better locality.DDE can be further improved for a more balanced load and less communications by extendingthe Mesh Walking Algorithm [8]. However, DDE retains its simplicity of implementation and candeliver a satis�ed performance at the same time.References[1] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. of ParallelDistrib. Comput., 7:279{301, 1989.[2] M. Barnett et al. Broadcasting on meshes with wormhole routing. Technical Report TR-93-24, Univ. Texas at Austin, 1993.[3] S.H. Hosseini, B. Litow, M. Malkawi, J. McPherson, and K. Vairavan. Analysis of a graphcoloring based distributed load balancing algorithm. Journal of Parallel and DistributedComputing, 10:160{166, 1990.[4] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart andWinston, 1976.[5] S. Ranka, Y. Won, and S. Sahni. Programming a hypercube multicomputer. IEEE Software,pages 69{77, September 1988.[6] W. Shu and M.Y. Wu. Runtime parallel scheduling for distributed memory computers. InInt'l Conf. on Parallel Processing, pages II. 143{150, August 1995.[7] Marc Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic load balancingon highly parallel computers. IEEE Trans. Parallel and Distributed System, 9(4):979{993,September 1993.[8] M.Y. Wu and W. Shu. High-performance incremental scheduling on massively parallel com-puters | a global approach. In Supercomputing '95, December 1995.[9] C. Z. Xu and F. C. M. Lau. Analysis of the generalized dimension exchange method fordynamic load balancing. Journal of Parallel and Distributed Computing, 16(4):385{393,December 1992.[10] C. Z. Xu and F. C. M. Lau. The generalized dimension exchange method for load balancingin k-ary n-cubes and variants. Journal of Parallel and Distributed Computing, 24(1):72{85,January 1995. 17

