DDE: A Modified Dimension Exchange Method

for Load Balancing in k-ary n-cubes

Min-You Wu and Wei Shu
Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260
wu,shu@cs.buffalo.edu

Abstract— The dimension exchange method (DEM) was initially proposed as a load-balancing
algorithm for the hypercube structure. It has been generalized to k-ary n-cubes. However, the
k-ary m-cube algorithm must take many iterations to converge to a balanced state. In this paper,
we propose a direct method to modify DEM. The new algorithm, Direct Dimension Fzchange
(DDFE) method, takes load average in every dimension to eliminate unnecessary load exchange. It
balances the load directly without iteratively exchanging the load. It is able to balance the load

more accurately and much faster.

1. Introduction

The dimension exchange method (DEM) was initially proposed as a fully load-balancing algo-
rithm for the hypercube structure [5, 1]. It balances the load for independent tasks on distributed
memory machines. The experiment carried by Willebeek-LeMair and Reeves conformed that
DEM is superior to other scheduling methods [7]. DEM for the hypercube network is a simple
algorithm. Load balancing is performed iteratively in each of the log NV dimensions, in which only
node pairs exchange their load information and attempt to average the number of tasks. After a

sweep (log N iterations), the load is balanced.

Unfortunately, when DEM applies to other structures, such as the mesh or the k-ary n-cube,
it takes many sweeps to converge to the balanced load. Hosseini et al. extended it for arbitrary
structures using the technique of edge-coloring of graphs [3]. Xu and Lau proposed the generalized
dimension exchange (GDE) method [9]. The GDE method was extended to the k-ary n-cube
network [10]. Because a node exchanges workload with only one of its neighbor at a time, GDE
is not able to reach the balanced state in one sweep. The number of sweeps for convergence is
linearly proportional to the number of nodes in a chain, and hence to the dimension order k of

the k-ary n-cube structure.

We present a direct method for the k-ary n-cube, called the Direct Dimension Exchange (DDE)
method. Unlike iterative algorithms, this direct method can balance the load in one sweep. The
load in a chain is fully balanced by utilizing information of the total number of tasks, which can
be easily obtained by a sum reduction. Each node in the chain knows whether it is overloaded
or underloaded and subsequently exchange workload with other nodes. The DDE method can
be applied to two or more dimensions to balance the load for the mesh, the torus, and the k-ary

n-cube.

This paper is organized as follows. Section 2 briefly reviews the DEM and the GDE algorithms.
Then, the direct method for the chain and the ring structures is described in sections 3 and 4,
respectively. The algorithm for the k-ary n-cube is presented in section 5. In section 6, the direct

method is compared to the GDE method. Section 7 concludes the paper.
2. The DEM and GDE Algorithms

The goal of load balancing is to schedule works so that each processor has the same workload.
To achieve this goal, an estimation of the task execution time is needed, which can be done either
by a programmer or by a compiler. Sometimes the estimation can be application-specific, and
sometimes it is impossible to obtain such an estimation. Due to these difficulties, each task is
presumed to require the equal execution time and the goal of the algorithm is to schedule tasks

so that each processor has the same number of tasks.

The scheduling problem can be described as follows. In a parallel or distributed system, N
computing nodes are connected by a given topology. Each node i has w; tasks. A scheduling
algorithm is to redistribute tasks so that the number of tasks in each node is equal. Assume the
sum of w; of all nodes can be evenly divided by N. The average number of tasks wg,, is calculated
by i wi

N

FEach node should have wg,, tasks after scheduling.

Wopg =

DEM was designed for the hypercube structure. In DEM, small domains are balanced first
and then combined to form larger domains until ultimately the entire system is balanced. The
“integer version” of DEM is described in Figure 1. All node pairs in the first dimension whose
addresses differ in only the least significant bit balance the load between themselves. Next, all
node pairs in the second dimension balance the load between themselves, and so forth, until each

node has balanced its load with each of its neighbors.

After execution of the DEM algorithm, the load difference

D = max(w;) — min(w;)

DEM

forl=01t n-1
node ¢ exchanges with node j the current values of w; and w;, where j =1+ @ 2!
if (w; —w;) > 1, send |(w; —w;)/2] tasks to node j
if (w; —w;) > 1, receive |(w; — w;)/2] tasks from node j
v — { [(wi+ w;)/2] if wi>w;
Y] (wi+wj)/2| otherwise

Figure 1: The DEM algorithm for the hypercube.

GDE

while (not terminate)
forl=1 to ¢
for edge colored | connecting nodes ¢ and j
node ¢ exchanges with node j the current values of w; and w;
if (w; —w;) > 1, send |(Aw; — Aw;)| tasks to node j
if (w; — w;) > 1, receive [(Aw; — Aw;)| tasks from node j
[(1—/\)><wi—|—A><wﬂ if w; > wj

Wi = [(1—A) X w; + A X w;| otherwise

Figure 2: The GDE algorithm for the kary n-cube.

is bounded by n, the dimension of the hypercube [3]. The number of communication steps of the
DEM algorithm is 3n [7].

The GDE algorithm operates on color graphs derived from edge-coloring of the given system
graph. The “integer version” of the algorithm is shown in Figure 2. A node finishes a complete
sweep after ¢ consecutive exchange operations, where ¢ is the number of colors. In k-ary n-cubes,
¢ = 2n if k is an even number. The termination condition is that the difference of the number of
tasks between neighboring nodes is less than or equal to one. The convergence rate depends on
the exchange parameter A. The value A varies for different topologies and different network sizes.
For the hypercube, the optimal A = %, and GDE is equivalent to the original DEM algorithm. For
other topologies, A is to be optimized to maximize the convergence rate. For the k-ary n-cube, the
load difference between any pair of nodes is bounded by nk/2. The convergence rate decreases

when the dimension order k increases. There is no communication conflict in this algorithm.

Willebeek-LeMair and Reeves suggested another approach to extend DEM to an M x M mesh
topology by “folding” the mesh in each dimension [log M times [7]. This method could be applied

to k-ary n-cubes too. The load difference is bounded by n[logk]. However, in this approach, node

pairs would no longer be directly linked to one another and communications would conflict.

3. The DDE Method for the Chain

Instead of using the GDE method which balances the load iteratively, we propose a direct
method. The workload in a chain can be balanced directly. The basic idea is to calculate the
total number of tasks in the chain and the average number of tasks per node. Thus, nodes in the

chain can exchange tasks to balance the load.

DDE-chain

Let w; be the number of tasks in node ¢, where ¢ = 0,1, ...,k — 1.

1. Global Information Collection: Perform the scan with sum operation of w;,:
k-1
W; = Z wy
=t

2. Average Load Calculation: 7' = Wy, wg,, = |T/k], and R = T mod k, where T is the
total number of tasks.

3. Quota Calculation: The quota of each node ¢; is computed:

q}_{wwg—l—l if i<R

Wang otherwise

Also, an accumulation quota for each node is computed:
k-1
Qi=> aq
=t

4. Flow Calculation: z;_y; = @; — W;, for ¢« = 1,2,...,k — 1, where z;; is the flow on

edge (i, 7).

Figure 3: The DDE algorithm for the chain.

The DDE algorithm for the chain shown in Figure 3 is its “integer version.” It takes as input
the node weight w;(¢ = 0,1,....,k — 1) and outputs the calculated flow z;_1 (¢ = 1,2,...,k — 1)
for every edge in the chain. The first step is to obtain the total number of tasks in the chain by
using the scan with sum operation from node k — 1 to node 0, where k is the length of the chain.
Each node records a partial sum W; = Zf:_il w;. The second step calculates the average number

of tasks per node at node 0. If the number of tasks cannot be evenly divided by &, the remaining

R tasks are distributed to the first R nodes so that they have one more task than the others.
The values of wy,, and R are broadcast to every node. In the third step, each node calculates its

quota. The accumulation quota ¢); can be calculated directly as follows:

Qi = Wqyg * (k - 7/) + mln(O,R — Z)

Each node keeps records of @;, W;, @;, and W;, where j = ¢ 4 1. In the fourth step, the flow
is calculated by taking difference between (); and W;. Node 7 calculates z;_y; and z;;4;. When
the flow is available, the workload is exchanged so that each node has the same number of tasks

as its quota.
Example 1:

An example is shown in Figure 4. At the beginning of scheduling, each node has w; tasks
ready to be scheduled. Values of W; are calculated in step 1. Node 0 calculates the value of wgy,
and R:

Weyg = 4, R =5.
Then, each node calculates the value of ¢); in step 3. The values of w;, W;, ¢);, and z;,_1; are as

shown below:

iwi [Wi] Qi | wicay

0 91 37| 37 -

1 7] 28| 32 4

20 4| 21 27 6

3 1| 17| 22 5

41 41 16 | 17 1

5 6| 12| 12 0

6 1 6| 8 2

T 5 51 4 -1

— (7 . (1) > (1) ! (1) (6 . (1) !

DO OO DG
1=0 =1 1=2 1=3 i=4 1=5 1=6 1=7

Figure 4: Example for DDE-chain.

After task exchange, nodes 0—4 have five tasks each, and nodes 5-7 have four tasks each.

Lemma 1: After execution of DDE and task exchange, the number of tasks in each node is equal

to its quota.

Proof: After execution of DDE and task exchange, the number of tasks in node ¢ is
Wi = wi i1 = T
Because
T =0 — Wi, 200 =Qipn —Wipn, Wi =W, —w;, and Q1 =0 — ¢

wi = w; + (Qi = Wi) = (Qiy1 — Wig1) = Qi — Qi1 =

a

In this algorithm, steps 1 and 2 spend 2k communication steps. The number of communication
steps in step 4 is at most k. Therefore, the total number of communication steps of this algorithm
is no more than 3k. This algorithm can be further improved by selecting node k/2 as the root
and applying the TWA algorithm in [6]. Thus, the total number of communication steps of this
algorithm can be reduced to 2k. When T is evenly divided by k, this algorithm minimizes the
total number of task transfers and the total number of communications. This algorithm also

maximizes locality. That is, it minimizes the number of tasks that are migrated to other nodes.

The workload is exchanged according to the flow generated by DDE. There are two task-

exchange algorithms. The first one, called receive-before-send, is shown in Figure 5.

Receive-before-send

For node ¢
1. if ¢ > 0 and 2;_1; > 0, wait to receive x;_; ; tasks from node ¢ — 1
2. if i <k —1and z;;41 < 0, wait to receive |z; ;11| tasks from node ¢ 4 1
3. if7>0and 2;_1; <0, send |z;_1 ;| tasks to node ¢ — 1

4. if i <k —1and z;;41 > 0, send z; ;41 tasks to node ¢ + 1

Figure 5: Task exchange: receive-before-send.

Using the receive-before-send algorithm, the load exchange in Example 1 takes four commu-

nication steps to finish:

(1) node 0 to node 1, node 5 to node 6, node 7 to node 6
(2) node 1 to node 2
(3) node 2 to node 3
(4) node 3 to node 4

Send-before-receive
For node ¢
let a; = @;_1, b; = ;41

while (a; # 0 or b; # 0)
1. if i > 0 and (w; > —a; > 0) send |a;| tasks to node ¢ — 1, and let w; = w; + a;, a; =0
2. if i <k —1and (w; > b; > 0) send b; tasks to node ¢ + 1, and let w; = w; — b;, b; =0
3. if ¢ > 0 and a; > 0 and received a; tasks from node ¢ — 1, and let w; = w; + a;, a; = 0

4. if i <k —1 and b; < 0 and received |b;| tasks from node ¢ + 1, and let w; = w; — b;, b; = 0

Figure 6: Task exchange: send-before-receive.

In the receive-before-send algorithm, each node must receive an incoming message, if any,
before sending out messages. By relaxing this constraint, a send-before-receive algorithm is shown
in Figure 6. In this algorithm, a node can start sending messages out before it has received an
incoming message. The communication time and processor idle time can be reduced. It takes

only two communication steps for Example 1:

1) node 0 to node 1, mnode 1 to node 2, node 3 to node 4,
node 5 to node 6, node 7 to node 6
2) node 2 to node 3

The send-before-receive algorithm may have some negative impact in locality. In the receive-
before-send algorithm, a node can keep the maximum number of local tasks and send non-local
tasks to other nodes. But in the send-before-receive algorithm, a node may send local tasks to
other nodes and then receive tasks from others. Therefore, the decision on use of the receive-
before-send or send-before-receive algorithms is a trade-off between communication time and

locality.

Most massively parallel computers use wormhole routing with which the effect of path length
on communication time can often be ignored. The recursive doubling algorithm [2] can take
advantage of the pipeline effect of wormhole routing while avoiding channel contention. This
algorithm organizes the nodes in a chain to a tree. An example of eight nodes is shown in
Figure 7. Applying the TWA algorithm in [6] to the tree, the load can be balanced within 4 log k

communication steps.

Figure 7: The tree for recursive doubling.

4. The DDE Algorithm for the Ring

A ring can be obtained by adding an end-round connection to a chain. The DDE-chain al-
gorithm can be applied to the ring by ignoring the end-round edge. The load can be balanced,
however, the communication may not be minimal. By utilizing the end-round edge, communica-
tion could be reduced. We describe an algorithm to minimize the total number of tasks transferred.
The algorithm is derived from the minimum cost flow algorithm [4] and shown in Figure 8. In this

algorithm, an initial solution is obtained by using DDE-chain without considering the end-round

DDE-ring

Apply DDE-chain to the ring without considering the end-round edge (k — 1,0) to obtain
L1, X125 ey Th—2,k—1, Where z; ; is the flow on edge (¢,7). Let 25_1 o be 0.

If the flow is clockwise, z; ; is positive; otherwise, it is negative.

Let n, be the number of edges with z; ; > 0, n,, the number of edges with z;; < 0, and n, the
number of edges with z; ; = 0.

1. If ny +n. —n, <0, let 2, be the mth largest x; ; from all ; ; > 0; and if n, +n, —n, <0,
let z,, be the mth smallest z; ; from all z; ; < 0, where m = [k/2].

2. For each edge, z;; = z;; — ¥y

Figure 8: The DDE algorithm for the ring.

edge. Then, an augmentation is applied to obtain an optimal solution. The complexity of this

algorithm is O(klog k).

We can use either the receive-before-send or send-before-receive algorithm for task exchange

of DDE-ring. Here, we let 2_1 9 = 25_10.

The following lemma shows that this algorithm minimizes the total cost of flow, that is, the

number of tasks transferred.
Lemma 2: After execution of DDE-ring, the total network flow is of minimum cost.

Proof: If n, + n, — n, > 0 and n, + n, — n, > 0, there is no flow augmenting cycle with

negative cost. Therefore, the network flow is of minimum cost [4].
If n, + n. —n, <0, after modification of z; ; = z; ; — z,,, we have

! !
nZ—I—anm

Then,

nl4n, —n, >m—mn, =m-—(k—nl,—n))>2m—k

Note that nj, 4+ n’, + nj, = k. Because of m = [k/2],
n’z—l—n;—n%ZQm—kZO

We also have
n%—l—n’ZZk—m—l—l

Then,
n,+n,—n,>k—-—m+1l—n,=k—m+1—(k—n,—nl)=1-m+n;, +n,

>1l-m+k-—-m+1=k-2m+2

Because of m = [k/2],
n’Z—I—n;—n%Zk—Qm—I—QZO

Thus, the network flow is of minimum cost.

The case of n, + n, — n,, < 0 can be proved similarly. Thus, the network flow is of minimum

cost in all cases. O

An example is shown in Figure 9. An end-round edge is added to the chain in Figure 4

to construct a ring. Applying the DDE-chain algorithm to the ring without considering the

end-round edge, the flow is shown in Figure 9(a). The number of tasks transferred is 19. The

augmentation is applied to this flow:
n,=1, n,=2, n,=95

Because n, + n, —n, < 0 and the 4th smallest z;; is —2, every z;; is subtracted by —2. The

result is shown in Figure 9(b). The number of tasks transferred is reduced to 17.

4 6 5 1 2
= D SR N () 1)
9), &) O, & 6),
1=0 i=1 1=2 1i=3 1=4 1=5 1=6 1=7
(a)
2
2 4 3 1 2 3
N D (D) (D) (D=6 (D)——
U N 2/ N N 2/
1=0 1=1 1=2 1=3 1=4 1=5 1=6 1=7

Figure 9: Example for DDE-ring.

5. The DDE Method for the k-ary n-cube

With the DDE-ring algorithm, it is not difficult to composite a DDE algorithm for the k-ary
n-cube. The algorithm is shown in Figure 10. In iteration / of the DDE algorithm, subcube §!
is divided into k partitions Sk"' 4y, where m = 0,1, vkl —=1and b=0,1,....,k—1. S' has k™!
nodes. The nodes in each ring exchange their load and then each node 7 has wﬁ"'l tasks. Executing
DDE, node ¢ will have w} tasks. The task exchange step can use either the receive-before-send

or send-before-receive algorithm.

This algorithm can be applied to the n-dimensional torus, which allows different number of
nodes in different dimensions. Taking a torus and strip them of all the end-round connections, we
get a mesh. This algorithm can be applied to the mesh by performing the DDE-chain algorithm
instead of DDE-ring in each step.

The following theorem shows that the load difference of DDE is bounded by n, the dimension
of the k-ary n-cube.

10

DDE for k-ary n-cube

Assume a k-ary n-cube SQ, the number of nodes is k", and node ¢ has w? tasks.

forl=01to n—1
apply the DDE-ring algorithm to k"~! rings in the /th dimension independently,
where every ring has k nodes (ag, a1, ..., az,...,ax—1) and a; = 0,1, ...,k — 1
exchange tasks according to the flow

each node updates its weight wH'1 = wf + 21— Tiit

Figure 10: The DDE algorithm for the k-ary n-cube.

Theorem 1: After execution of DDE, the load difference
D = max(w!) — min(w!)
is bounded by n.

Proof: In the lth step of DDE, a k-ary (n—1[)-cube is partitioned into k k-ary (n—1—1)-cubes.

The difference of the number of tasks between two partitions is maximal when in each ring every

I+1

node in first partition, say S has one more task than that possessed by the node in the other

km
partitions, Sk 4ps Where b=1,2,..,k— 1. Thus
I+1 _ 1+1 1 _ I+1 n—l-1
> witt= 3 1S | = (X w2 w4k
J€S JES k1 Viesh T esty

where |S,l€‘|7;ll| denotes the number of nodes in subcube S,lgj;ll which is £”~'~1. Therefore,

Z wé"’l = Z w +(1)]6”_1_2

]ESH'l]ESl
Similarly,
1+1 _ gl 2 o I+1y _ pn—l-1
> Y DRAITIIITD SR USSR S
1+1 1+1 1 1+1
Skm-l-k 1 Skm GS Skm-l-k 1
Therefore,
Z l-|-1 _ Z n—l-2
w —k
141 1
T€S k-1]eS
Let
l _ l
Aw = max w;
0<m<k et

and

When [= 0,

0 _ 0 _ 0 _ 0 __
Apge = A= D wf = > wlf =T
JESY 0<j<k™

where T is the total number of tasks. Thus,

N :{T if 1=0 (1)

max %Alealac + (k — 1)kn_l_1 otherwise

Similarly, .
Amin = { 1att Tk”"‘l Zo];hle;m(,)se @
The solution to the above recurrence is given by
Al = % +(k=1)xIx k"1 (3)
Al = % — 1 x kit (4)

It clearly satisfies (1) and (2) for the basis, [= 0. If (3) satisfies (1) for [= m, then

AT %(kimﬂk—n X m x KM (k= 1)k ()=

mar km+1

+(m41)(k— 1)k mt)=1 =

_ lA(m—I—l)—l + (k B 1)kn—(m—|—1)—1

k max

Therefore, it satisfies (1) for { = m+1. Thus, by induction on [we have shown that (3) satisfies (1)
whenever [> 0. Similarly, it can be shown that (4) satisfies (2) whenever [> 0.

Letl=mn
" = max w? = T—I—k_lxn
mar - ogickn 4 k
T 1
I min w? = — X n,

min T

o<j<kn J km k

Because D = A7 — A" :(kk;l_|_

mas — An) X n = n, the number of tasks in any two processors differs

=

at most by n. a

An example is shown in Figure 11. This is a 4-ary 2-cube (i.e., torus 4 x 4). Figure 11(a) shows
that the DDE-ring algorithm applies to each ring in the first dimension. Then, DDE-ring applies
to each ring in the second dimension, as shown in Figure 11(b). The resultant load distribution

is shown in Figure 11(c). The maximum load difference is 2.

12

&
&

=
Sy

()

D=
(=)

N
S

(o

N
A
\&//=\"/5
N
S —=\C

e
s
hId

>
SRR

%?
S
B
(@)
[\
I
=
S
L@\
S
=
L@\
S

N
\>/
o
\>/
o
\>/

N

>/

©

-\

>/
GHA

()
Figure 11: Example for DDE (4-ary 2-cube).

6. Experimental Results

In this section, we compare performance of GDE and DDE. We consider a test set of load
distributions, in which the load at each processor is randomly selected with the mean equal to a
specified value. In this simulation experiment, the average number of tasks (average weight) per
processor is 1,000. Each result is the average of 100 test cases. We tested an 8x8 mesh, a 16x16
torus, an 8xX8x8 3D-mesh, and a 16x16x16 3D-torus. For these networks, the optimal value of
A for GDE is 0.723 [10].

First, we compare load imbalance of GDE and DDE. The load difference of DDE is bounded
by n, whereas that of GDE is bounded by n(k — 1) for the mesh and nk/2 for the torus. Figure 12
shows its average in different networks. Here, the load difference of GDE is four to six times larger
than that of DDE.

13

16
W oo

14
9 ooe

12

10

8

6

4

2

0

8x8 mesh 8x8x8 mesh 16x16torus 16x16x16 torus

Figure 12: Load difference.

DDE completes load balancing in one sweep but GDE needs many sweeps. Figure 13 shows
the number of sweeps s for different networks. The value of s is proportional to k [10]. Moreover,
s increases with the average weight. Table I shows the relationship between the number of sweeps

and the average number of tasks, measured on an 8x8 mesh.

. W o
10 9 ooe

8x8 mesh 8x8x8 mesh 16x16torus 16x16x16 torus

Figure 13: The number of sweeps.

Next, we compare the number of communication steps of GDE and DDE. For GDE, each
sweep has c¢ iterations, where ¢ is the number of colors. For even number of k, ¢ = 2n. Each
iteration has three communications, two for exchanging load information and one for load bal-
ancing. Therefore, the total number of communications of s sweeps are 3s¢ = 6sn. For DDE,
there are k communication steps in each dimension for collection and broadcasting of load infor-
mation. Load balancing needs at most k — 1 and k/2 communication steps for the mesh and the
torus, respectively. Therefore, 2kn or %kn communication steps in total are required. DDE can
reduce the number of communication steps significantly. The analysis has been confirmed by the

experiment, as shown in Figure 14.

14

Table I: The Relationship Between the Number of Sweeps and the Average Weight

Average Number of Tasks

100

300

1,000

3,000

10,000

Average Number of Sweeps

7.28

9.20

11.08

13.02

14.67

200

180

160

140

120

100

80

60

20

8x8 mesh 8x8x8 mesh

16x16 torus

16x16x16 torus

Figure 14: The number of communication steps

Figure 15 shows the normalized communication cost of GDE and DDE. The normalized com-

munication cost is defined as the the total numbers of tasks transferred divided by the total

> wi
where e; is the number of tasks transmitted through the edge j. The communication cost of GDE
is about 50% larger than that of DDE. It is due to the fact that GDE transfers tasks unnecessarily.
Finally, DDE has better locality than GDE. Figure 16 shows the percentage of local tasks that

number of tasks:

W oo
9 ooe

are not migrated to other nodes. DDE keeps 20% to 50% more tasks in local.

15

14
12
1.0
0.8
0.6
0.4
0.2
0.0

60%

50%

40%

30%

20%

10%

0%

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

Figure 15: Normalized communication cost.

8x8 mesh 8x8x8 mesh 16x16 torus 16x16x16 torus

Figure 16: The percentage of local tasks.

W coe
9 ooe

W co:
9 oot

7. Conclusion

This paper proposed a direct method for load balancing. It extended the DEM algorithm

to the k-ary n-cube. Compared to the GDE algorithm, which also extended DEM to the k-ary

n-cube, DDE is faster, balances the load well, reduces communications, and keeps better locality.

DDE can be further improved for a more balanced load and less communications by extending

the Mesh Walking Algorithm [8]. However, DDE retains its simplicity of implementation and can

deliver a satisfied performance at the same time.

References

[1]

[2]

[3]

[4]
[5]
[6]
[7]

G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. of Parallel
Distrib. Comput., 7:279-301, 1989.

M. Barnett et al. Broadcasting on meshes with wormhole routing. Technical Report TR-93-
24, Univ. Texas at Austin, 1993.

S.H. Hosseini, B. Litow, M. Malkawi, J. McPherson, and K. Vairavan. Analysis of a graph
coloring based distributed load balancing algorithm. Jouwrnal of Parallel and Distributed
Computing, 10:160-166, 1990.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, 1976.

S. Ranka, Y. Won, and S. Sahni. Programming a hypercube multicomputer. IFEFE Software,
pages 69-77, September 1988.

W. Shu and M.Y. Wu. Runtime parallel scheduling for distributed memory computers. In
Int’l Conf. on Parallel Processing, pages II. 143-150, August 1995.

Marc Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic load balancing
on highly parallel computers. IEEE Trans. Parallel and Distributed System, 9(4):979-993,
September 1993.

M.Y. Wu and W. Shu. High-performance incremental scheduling on massively parallel com-
puters — a global approach. In Supercomputing °95, December 1995.

C. Z. Xu and F. C. M. Lau. Analysis of the generalized dimension exchange method for
dynamic load balancing. Journal of Parallel and Distributed Computing, 16(4):385-393,
December 1992.

C.7Z.Xu and F. C. M. Lau. The generalized dimension exchange method for load balancing

in k-ary n-cubes and variants. Journal of Parallel and Distributed Computing, 24(1):72-85,
January 1995.

17

