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Abstract

This paper describes Tulip, a parallel run-time system
used by the pC++ parallel programming language. Tulip
has been implemented on a variety of scalable, MPP com-
puters including the IBM SP2, Intel Paragon, HP/Convex
SPP, Meiko CS2, SGI Power Challenge, and Cray T3D.
Tulip differs from other data-parallel RTS implementations;
it is designed to support the operations from object-parallel
programming that require remote member function execu-
tion and load and store operations on remote objects. It
is designed to provide the thinnest possible layer atop the
vendor-supplied machine interface. That thin veneer can
then be used by other run-time layers to build machine-
independent class libraries, compiler back ends, and more
sophisticated run-time support. Some preliminary perfor-
mance measurements for the IBM SP2, SGI Power Chal-
lenge, and Cray T3D are given.

1 Introduction

Object Parallelism is a term which we use to describe
a family of related approaches to programming parallel
computers. This model extends data parallelism to object-
oriented languages and systems. Object parallelism is de-
fined by the concurrent application of parallel functions and
operators to aggregate data structures (objects). In an object-
parallel system, the programmer creates and manipulates
collection or container objects that encapsulate a distributed
data structure on a massively parallel computer. Examples
of this style of programming include pC++ [1], a collection-
based parallel programming language; Single Program Mul-
tiple Data (SPMD) C++ class libraries such as LPARX [2],
P++ [3], the POOMA library [4] and CHAOS++ [5], that
provide user-defined distributed data structures; and data-
parallel extensions to the C++ Standard Templates Library
such as the Amelia Vector Template Library (AVTL) [6].

While C++ is the most common language for this work,
it is not the only way object parallelism may be expressed.
There are many other parallel programming models that
exploit object-oriented concepts. These include Mentat [7],
CC++ [8], CORBA, Charm++ [9], and UC++ [10]. In
these systems, the emphasis is on task-level parallelism with
networked and heterogeneous systems.

In this paper, we describe the Tulip run-time system,
which was designed to support object-parallelism on scal-
able, massively parallel processing (MPP) computers. Its
design was governed by a set of objectives and require-
ments that were derived from our experience with the pC++
project. We were motivated by the following concerns:

� Tulip will serve as a compiler target as well as an
API for parallel class library designers. Consequently, the
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design should be guided by optimization rather than end
user’s programming ease.

� Because the current standard for writing parallel class
libraries is to use SPMD style, Tulip should be based on
this model. However, it should also provide a path to a
more general multi-threaded implementation style. In par-
ticular, future support for dynamic, nested data parallelism
and mixed task-data parallelism will require multi-threaded
implementations.

� Basic message passing should be a fundamental part of
Tulip; the MPI standard [11] is now well supported on many
systems. However, object-parallelism differs from data par-
allelism. Unlike uniform arrays, distributed complex-linked
structures change size and shape over the lifetime of the pro-
gram. Consequently, translating all data movements into
predetermined send-receive pairs is not always easy. Fur-
thermore, object-oriented style lends itself more naturally
to a single-sided communication model where a member
function is invoked through a pointer to an object. Active
messages [12] and remote procedure call methods must be
a component of Tulip.

� Tulip must provide a consistent interface across all the
target platforms, but it should provide explicit support for
hardware features that have been added to many parallel
systems. A primary difference between an MPP architec-
ture and a network of workstations is the special hardware
for collective communication, barriers, and shared memory.
Tulip should include primitives such as barrier and remote
memory load and store, whose implementation can use spe-
cial hardware when it is available.

The work described here addresses three of these four
concerns. This paper does not consider the interface to
multi-threaded execution. A working group, known as
POrtable Run Time System (PORTS) [13], is currently con-
sidering the design of a multi-threaded RTS. We also em-
phasize that we have not considered issues related to nested
data parallelism, which may be handled by a multi-threaded
system or by compiler technology such as that pioneered
in the design the NESL system [14]. Our focus is on the
design problems associated with building a run-time system
that supports remote data load and store, collective opera-
tions, and remote procedure calls (RPC) within an SPMD
execution environment.

We are not the first to address these problems. Active mes-
sages provide a limited form of remote procedure call, i.e.,
messages invoke a remote handler with a few bytes of argu-
ment data. The message size is bounded by the architecture
of the processor network interface adaptor. Messages can
either interrupt the addressed processor, or a remote-queue
and polling mechanism can be used. Our approach differs
in that we allow arbitrary argument lengths and do not inter-
face the low-level hardware. NEXUS [15] also uses remote
handlers, but is designed for multi-threaded task parallelism
on heterogeneous networks. NEXUS does not attempt to
exploit special hardware for collective communication or
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remote shared memory. Internally, NEXUS uses the thread
interface specified by the PORTS consortium. The future
multi-threaded implementation of Tulip will share that layer.

In the paragraphs that follow, we will describe the ab-
stract machine model, the interface to the software, and the
implementation. We conclude with a description of a series
of experiments.

2 Machine Architectures

Object-parallel systems built atop Tulip are designed to
run on a wide range of architectures. That machine model
has been generalized to a collection of symmetric multipro-
cessors (SMPs) sharing some communication network. An
SMP is a basic building block; it contains one or more CPUs
that can share memory and have cache coherency. The
vendor-supplied interface to concurrency may be kernel-
level threads, virtual processors, or allocation of physical
CPU resources. Most workstation vendors provide high-
end SMP servers with 2-8 processors. For Tulip, a Node is
an SMP, possibly connected to other SMPs via a high speed
network. A Context is an address space. A Unix process
on a SMP would be a single context. Lightweight threads
share a context. A machine such as the SP2 can support
several contexts per node. To explore the design and im-
plementation issues for Tulip, three very different machine
architectures were selected. Below, is a quick tour of each
machine.

The IBM SP2 is a traditional distributed-memory mes-
sage passing supercomputer. However, unlike the TMC
CM5, Intel Paragon, and Cray T3D, each compute node is a
complete computer, with it’s own disk and host name. At the
present time, each POWER2-based SP node has only one
CPU, and cannot be an SMP. This makes mapping the SP2
to the parallel virtual machine quite simple - each processor
is one node.

IBM interconnects nodes with a multi-stage high per-
formance switch (HPS) capable of 40 MB/sec bandwidth
and application to application latency of 40 microseconds.
There are several software interfaces for communication on
the SP2; we used an experimental IBM implementation [16]
of MPI.

The T3D is a distributed-memory 3D torus-connected
compute array of DEC Alpha microprocessors. On the T3D
at the Pittsburgh Supercomputer Center, each processing
element (PE) is a 150 Mhz Alpha with 64 megabytes of
local memory. Each pair of PE share connection to a high
speed interconnection network, with a peak performance
of 300 MB/sec along each link. A convenient interface to
the interconnection hardware is Cray’s C communication
library. Tulip uses the library, which provides "shmem get"
and "shmem put" functions for accessing remote “shared
memory” without interrupting the node (network DMA).

The 75 Mhz. MIPS superscalar R8000 microprocessor
chipset is the heart of SGI’s Power Challenge (SGIPC).
The SGIPC at the Indiana University Computer Science
Department has 2 GB of total memory and 10 processors,
each equipped with a 4 MB data cache. The SGIPC uses
snooping cache coherency hardware and the high speed bus
can sustain a total peak transfer rate of 1.2 GB/sec.

SGI compilers are designed to interface the hardware
support for piggyback reads, which can combine read re-
quests so that other processors can share the response, and
synchronization counters, which count broadcast increment
transactions and help improve barrier synchronization times.
However, the software interface for parallelism is clumsy.
The current OS (IRIX 6.1) has no standardized thread in-
terface, so users are stuck with programming SPROCs, a
multiprocessor version of fork(). Furthermore, there is
no easy way to insist that an SPROC execute on a particu-
lar compute node. In true SMP style, the individual tasks
are moved from processor to processor based on unseen
heuristics within the operating system.

3 The Design of Tulip

Tulip provides functions for remote memory load/store,
remote procedure invocation, collective operations, timers,
process control, and tracing and profiling. In the subsections
that follow we discuss the first three of these. We will not
discuss timers, process control, or tracing and profiling in
this paper.

The object-parallel execution model is based on the par-
allel invocation of class member functions for a distributed
set of objects. Many operations use pointers to objects that
may exist within the same context or in a remote context.
To support this concept we use two types of pointers. A
local pointer is a simple, untyped, memory address valid
only within the context it was created. A global pointer
is the tuple of context number and local pointer. A global
pointer uniquely identifies any memory address in the com-
putational hardware.

3.1 Remote Memory Operations

The Tulip functions tulip Get() and tulip Put() are very
much like memcpy(). For tulip Get(), the source address
is a global pointer, and the destination is a local pointer.
For tulip Put() it is switched. Since the functions are non-
blocking, an address to a service handle must be passed into
both functions. Later, the handle may be used to check if
the operation has completed; tulip Probe() and tulip Wait(),
which are non-blocking and blocking respectively, take a
handle as an arguement. Tulip Barrier() does collective
synchronization. Tulip supports other collective functions
such as reduce and broadcast, but they are beyond the scope
of this paper.

3.2 Remote Procedure Invocation

Even on a shared memory machine such as the SGIPC,
writing a remote procedure call mechanism can be difficult.
There are two ways to detect the arrival of a RPC request,
poll for it, or rely on an interrupt mechanism. An interrupt
or active message mechanism embodies the asynchronous
nature of an RPC nicely. However, standard Unix signals
must go through many operating system layers, and usually
have high latency. Our experiments revealed that two pro-
cessors of the SGIPC take about 33 ms of wall clock time to
ping-pong a Unix signal between them. We decided to poll
for requests rather than pay that latency. Since the SGIPC
has snooping caches, polling for a RPC is very fast. Polling
can either be done after a timer has expired (again, using
a slow signal), or polls can be added to the source code.
The pC++ compiler "sprinkles" calls to tulip Poll() into the
code. Periodic calls to tulip Poll() were required on all the
computers.

Rather than provide a way to "register" function names
and pointers, we chose an interface only a compiler could



love. Global pointer member function invocations must be
identified by the compiler, and set up for remote execution.
There is only one handler for each node. That handler is
written by the compiler, or by the library writer. When
a node issues a RemoteAction request, a notice is sent to
the destination. The receiver must execute tulip Poll() to
check for its arrival. After the receiver notices the request,
it executes RemoteActionHandler(). RemoteAction() needs
only three parameters, a context number where the handler
should be run, an integer type field, and a buffer (usually
used to encode procedure arguments). The type field is an
easy way provide the RemoteActionHandler() with informa-
tion about the buffer. Future versions of Tulip will provide
function registration, so that library builders can each plug
in a module.

3.3 RemoteAction()

On the T3D, after tulip Poll() finds a RemoteAction(), it
uses shared memory to copy the argument buffer, eliminat-
ing a buffer copy and extra synchronization. Shared memory
machines can skip the explicit fetch of the argument buffer
and simply use a pointer. Unfortunately, a space leak results
unless the original buffer is freed after RemoteActionHan-
dler() exits. An acklowledge (ACK) must be sent back to
the caller, so the buffer can be freed and the service handle
updated.

RemoteAction() over a message passing layer combines
control and data into one message. This eliminates a round
trip to set up matched send and receive pairs by forcing
the messaging layer to buffer and hold the message until
tulip Poll() notices their arrival and posts a RECV() to pull
them in from the system buffers. Since argument buffers are
not large (or the buffer would be passed by global pointer
reference), this generally not a problem. After the handler
exits, an ACK message is sent to the caller. Tulip Poll()
detects the message, and the corresponding service handle
is modified.

3.4 Barrier()

Tulip implements non-blocking barriers, so user-level
threads may continue executing, and other data movement
operations can be serviced. Unfortunately most vendor-
supplied barrier synchronization functions are blocking.
Call their barrier function, and control is not returned until
all processors enter the barrier and synchronize. We cannot
use those types of vendor supplied barriers. For the SGIPC
and SP2, we were forced to write our own barrier, which
could execute tulip Poll() and detect service requests while
waiting at the barrier. Cray saw the wisdom of a provid-
ing a non-blocking barrier function interface on the T3D.
Calling set barrier() simply sets a bit on the hard-
ware and returns immediately. Processors can then execute
test barrier() and tulip Poll() until the barrier is over.

On the SP2 and SGIPC, a simple fan-in/fan-out binary
tree was constructed to provide barrier. Nodes entering the
barrier notify their parent node they are waiting at the barrier.
When all a node’s children have so registered, the event is
propagated. While the nodes wait for the fan-out message,
they execute tulip Poll(), and may service other requests.
When the root node receives a message from its children,
the barrier is done, and notification fans out in the reverse
direction.
3.5 Tulip Get() & Tulip Put()

Tulip Get() provides a "receiver driven" communication
primitive. On shared memory machines, tulip Get() should
never be called, since the compiler should be smart enough
to generate code for shared memory. Nevertheless, if used,
it is basically a call to memcpy(). For network DMA
machines such as the T3D, tulip Get() calls the appropriate
memory transfer function.

For message-passing machines like the SP2, tulip Get()
requires a rendezvous protocol to avoid buffer copies. Un-
needed buffer copies – especially for large objects, must be
avoided. If sender and receiver carefully choose a message
type, and the receive is preposted, extra buffer copies are
eliminated. To do this, a RECV() is posted, then a short con-
trol message is sent to the owner, informing it of the request
for data. The sender then “fills” the preposted RECV().
This senario also permits computation and communication
to overlap, since there are no blocking calls.

To agree on a message type to match up each send/receive
pairs requires the message type field be split into two log-
ical fields: a message ID (MID) and a message flavor. This
technique is quite similar to the way Chant [19] uses MPI to
send messages to threads, except in this case, the extra bits
stolen from the message type field are not used to encode
destination, but to distinguish between pending tulip Get()
messages. Each pending tulip Get() must have a unique
message ID, so Tulip can match senders and receivers, and
detect which preposted receives have completed, and which
corresponding service handles should be updated.

Tulip Put() is very similar to tulip Get(). On the T3D and
other network DMA machines, tulip Put() calls the vendor-
supplied data transfer engine. Tulip Put() is not atomic.
Unpredictable results occur when simultaneous writes over-
lap.

Tulip Put() on the SP2 is more complex that its
tulip Get() counterpart. To avoid extra buffer copies, an
extra message must be ping-ponged between source and
destination. The first message announces the intent of the
sender. The receiver must post a RECV() in anticipation of
the object data. A control message is returned to the sender
indicating it is clear to send. After the receiver detects that
the message has indeed arrived, it sends an ACK to the
sender, to notify the node the transaction is complete.

4 Early Performance Results

4.1 Communication

In this section we present some of the early performance
tests of Tulip. Figure 1 compares tulip Get() on the SP2 and
T3D with the native communication layer provided by the
vendor. Remember that tulip Get used "one sided" com-
munication. On the SP2, the remote "owner" of the data
simply executes tulip Poll(). When a control message ar-
rives, it decodes and services it. For the T3D, the owner
of the data polls, but since network DMA communication
occurs without owner participation, the owner remains idle.

For the native SP2 communication test, raw synchronous
MPI Ssend() and MPI Recv() between two nodes was used.
On the T3D, a call to shmem get() was all that was necessary.
For a 64K transfer, the T3D native layer achieved about 35
MB/sec bandwidth, while MPI on the SP2 got about 31.5
MB/sec.
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Figure 1: Tulip Get() on the SP2 and T3D
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Figure 2: Barrier on the SP2 and T3D

Figure 1 indicates that a small, nearly constant overhead
was associated with using tulip Get() instead of the native
communication layer. Because of the current design of
tulip Poll(), the added latency varies with the number of
processors. Clearly, tulip Poll() should get first priority as
the RTS is optimized and tuned.

4.2 RemoteAction

In this test, a RemoteAction() request was sent to a node,
which in turn, sent a RemoteAction() event back. This ping-
pong was repeated, and the time averaged. For the SP2,
with nodes waiting at the barrier and polling, the ping-pong
RemoteAction() averaged about 165 microseconds. On the
T3D, the time was 87.3. Dividing these numbers in two,
gives the optimal one-way RemoteAction() latency at 82.5
and 43.7 microseconds for the SP2 and T3D respectively.

4.3 SP2 and T3D Barrier Synchronization

As described earlier, Tulip’s barrier must be non-
blocking, and execute tulip Poll() between tests for com-
pletion. The following tests compare Tulip’s barrier with
the vendor-supplied barrier. The times represent the aver-
age wall clock time spent in the barrier

Several patterns for arrival of the nodes to the barrier
were tested, includingnearly-synchronized arrival (only one
floating point operation between successive barrier calls),
randomly staggered arrival (each node arrives at a different
time), and late arrival (one node arrives at the barrier late).
For the T3D and SP2, all three of these tests presented quite
similar results. For brevity, Figure 2 only shows synchro-
Native SGI
Barrier

Tulip_Barrier

0 

50 

100 

150 

200 

M
ic

ro
se

co
nd

s

0 2 4 6 8 10 12 14 16 
Processors

Figure 3: SGI Barrier

nized arrival, and compares the native barriers on the SP2
and T3D to Tulip’s non-blocking versions.

Notice that the native T3D barrier is blazingly fast. In all
of our tests, from 2 to 64 nodes, the barrier was never slower
than 4 microseconds. Cray Research uses a series of wires
and fast logic to make their hardware-assisted barrier. This
is a perfect example of why Tulip must, whenever possible,
use the fast hardware provided by the vendor. Tulip’s barrier
on the T3D once again demonstrates that the delays added
by tulip Poll() should be minimized. For the SP2, Tulip’s
polling barrier was within a factor of about 2 to 3 from the
MPI blocking barrier.

4.4 SGIPC Barrier Synchronization

Tulip’s barrier for the SGIPC proved to be the biggest
surprise. The first implementation, using a tree, had linear
performance. Careful investigation revealed that our entire
reduction tree was within a single 128 byte cache line –
serializing our updates. A careful distribution of tree nodes
improved performance. Our polling barrier outperformed
the native SGI barrier.

Figure 3 compares Tulip’s barrier to the SGI barrier for
nearly-synchronized arrival of nodes. The near-linear per-
formance of SGI’s barrier suggests that their implementation
does not use a tree, but rather all the nodes fight for control
over some resource. The more nodes, the more contention.

5 Conclusions

In this paper we have described a simple portable, light-
weight run-time system for scalable MPP architectures. The
design emphasizes the types of operations that are impor-
tant for implementing object-parallel extensions to the data-
parallel model. Tulip incorporates remote memory fetch
and store operations, remote procedure call, and collective
communication and synchronization. The design of the
primitives in this system are intended for use by a compiler
or a parallel library designer. Consequently, they are to be
as fast and efficient as possible. In particular, they are de-
signed to take advantage of any architectural feature that the
host parallel computer provides.

In our experiments we measured the performance of this
design on three different machines. For the SP2, we built
RPC and memory fetch/store operations on top of MPI.
Adding those features has a cost; barrier synchronization
is more complex, and about twice as slow. The cost of



fetch/store operations is nearly the same as MPI synchro-
nized send/receive pairs. For the CRAY T3D, we used the
existing hardware barrier to build an extended barrier that
allows asynchronous communication (RPCs) to take place
while processors wait. Our initial implementation is not
very fast compared to the 4 microsecond hardware barrier,
but it is still faster than the native MPI barrier on the SP2.
Furthermore, we feel that the costs can be substantially re-
duced by a carefully tuned, low-level implementation.

One conclusion that can be drawn from this work is that
an extension of the MPI standard to include active messages,
RPC operations and remote memory load and store opera-
tions, would allow vendors to optimize these operations to
match their special architectural features. Consequently, li-
brary designers and compiler writers would be given much
greater opportunity to optimize performance for a given ma-
chine than they currently have.
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