In the Proceedings of International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’97), pp. 1044 - 1053,
June 30 - July 3, 1997, Las Vegas, USA. Copyright 1997 CSREA

Object-oriented Data Parallel Programming in C+4+

Hua Bi
RWCP Laboratory at GMD-FIRST
GMD Institute for Computer Architecture and Software Technology
Rudower Chaussee 5, 12489 Berlin, Germany
email: bi@first.gmd.de

Abstract A lot of applications executed on dis-
tributed memory parallel computers can be classi-
fied as data parallel applications, in which paral-
lel operations on data elements are performed in o
loosely synchronous manner. However implementa-
tion of such applications is still difficult. This pa-
per presents an object-oriented approach for an easy
and efficient data parallel programming in C++.
More exactly, an object model for distributed data
is defined for modularity, polymorphism, and ob-
ject sharing in programs, and data distribution and
message passing details are encapsulated to reduce
programming complezity and make reuse of code
easier. Experiments show that this approach is effi-
cient for a large class of data parallel applications.

Keywords: data parallel programming, object ori-
entation, SPMD paradigm, distributed memory
parallel architecture

1 Introduction

By data parallel applications executed on dis-
tributed memory parallel computers, we mean
applications in which a large set of data ele-
ments is partitioned on the distributed mem-
ory, and operations on those data elements are
performed in the SPMD paradigm. The pro-
cesses created by a SPMD program perform
parallel computation locally; if the remote data

!This work is supported by the Real World Com-
puting Partnership (RWCP), Japan.

elements are needed, they must be fetched be-
fore the computation.

However implementation of such applica-
tions is still difficult by using a message passing
system like MPI1 or PvM. Object orientation is
the best way to reduce programming complex-
ity and write efficient programs. This paper
introduces a programming approach to apply
object orientation in implementation of data
parallel applications. The underlying princi-
ples of this approach can be best described by
the following features:

e An object model is introduced to specify
distributed data by the principle of func-
tionality decomposition. In this model,
distributed data can be organized at three
levels: topology, distribution and dis-
tributed object such that data distribution
details are encapsulated. It leads to mod-
ularity, polymorphism and object sharing
in programs

o Message passing details are encapsulated
to reduce programming complexity and
make reuse of code easier by decoupling
communication patterns from communica-
tion itself.

This approach can be applied in a large
class of applications, because the object model
supports not only rectangular data topolo-
gies or shapes in applications, but also non-
rectangular ones such as sparse or irregularly

enumerated structures. By exploiting object
orientation, this approach will lead to an easy
data parallel programming, as well as an effi-
cient implementation of data parallel applica-
tions.

In this paper we first present the object-
oriented data parallel programming approach
with a sample application in Section 2. In Sec-
tion 3 our work is compared with other related
work, and in Section 4 some performance re-
sults are given for conclusions.

2 Object-oriented Approach
in SPMD Programming

Our approach assumes that a set of SPMD pro-
cesses runs in parallel on a distributed memory
parallel computer. Each process has its own
control flow and its own address space. In our
term, the address space of a process is called a
domain. Each process can only access elements
on its own domain, and can communicate with
other processes by receiving and sending ele-
ments from and to other domains.

A domain can be identified by a domain
number of the type Domain (typedef int Do-
main;) and a domain number ranges from 0
to domain_maz -1 . The global variable do-
main-maz denotes the total number of do-
mains, and the global variable mydomain de-
notes the domain number assigned to the own
process.

2.1 Distributed Object

A distributed object is a collection of data ele-
ments which are partitioned and then mapped
on the distributed memory. In many appli-
cations such as particle simulation, finite el-
ement method and computational fluid dy-
namics, problem-oriented data topologies or
shapes may not only have rectangular spatial
structures like arrays, but also non-rectangular
ones. In order to specify an arbitrary spatial
structure required by applications, one should
be able to define an index space for a dis-
tributed object as an arbitrary finite subset of

the power set Z", where Z is the set of all in-
tegers and n is an integer. Thus a Topology
class is introduced to represent such an index
space as a set of Points, where a Point is an
n-dimensional integer vector:

typedef int* Point;

class Topology {
public:
Topology(...);

~Topology();
int valid(const Point) const;

static int dim() const; };

The method walid determines which point
is a valid point in a topology. The dimension
of a topology can be answered by the method
dim.

To specify distributed data, in addition to
a spatial structure we need to know how data
elements are partitioned and mapped, and how
data elements are stored and accessed at each
domain. A Distribution class is introduced for
this purpose:
class Distribution {

const Topology& _topo;
public:

Distribution(const Topology& tp, ...): _topo(tp) {...}

~Distribution();

const Topology& topo() const { return _topo; }

Domain domain(const Point) const;

int index(const Point) const;
int length(const Domain) const; };

A Distribution is a partitioned Topology. For
a valid point p in a topology, the method do-
main(p) defines into which domain the point
p is mapped. At each domain d, points are
arranged in a sequence ranging from 0 to
length(d)-1 , and can be accessed by an in-
dex number indez(p) for a point p. The pair
<domain, indezx> is called point identification.
Each point in a Topology can be uniquely ex-
pressed by the point identification which can
be used in element allocation and element ac-
cess.

Based on a distribution and an element type,
distributed objects can be defined in the form
of template classes as follows:
template<class DT, class ET> Disobj {
public:

Disobj(const DT& t, const ET& init);

~Disobj();
ET& operator| |(const int index) const; };

That is, a distributed object can be defined
with a distribution class DT and an element
type ET, in the meaning that data elements
are of the type ET, and data elements are par-
titioned and allocated according to the distri-
bution class DT. The operator [] accesses local
data elements by an index number at mydo-
main.

A Disobj class can be implemented generi-
cally according to the information provided in
a distribution and in an element type, that is,
at each domain local data elements are allo-
cated in a vector whose size can be calculated
by the method length and the element size, and
accessed by the method indez. Because the fre-
quently used operations on a distributed ob-
ject are defined in a Distribution and they can
be specifically implemented or optimized for a
specific application on a specific machine, our
implementation of distributed data will not im-
pose a significant overhead.

A Topology encapsulates the spatial struc-
ture details, and a Distribution encapsulates the
data partition and allocation details. Different
objects of Distribution can share the same ob-
ject of Topology, and different objects of Disobj
can share the same object of Distribution. In
this way, we provide an object-oriented repre-
sentation of distributed data.

In the following, we give a simple example
to show a triangular matrix as a topology and
its block distribution. A Triangular class can
be defined as follows:

class Triangular {
int _n;
public:
Triangular(const int n) {_n=n;}
~ Triangular() {}
int valid(const Point p) const {
if ((p[0]>=0) && (p[0]<n) &&
(p[1]>=0) && (p[1]<n) &&
(p[0]>=p[1])) return 1;
else return 0;}
static int dim() const { return 2;}

)

Figure 1 shows a triangular matrix Triangu-
lar(8) in which all points in this topology are
given.

For a Triangular(n) , we can define many dif-
ferent distributions. The following code just

<0, 0>
<1,0> <1,1>

<2,0> <2,1> <2, 2>

<3,0> <3,1> <3,2> <3,3>

<4,0> <4,1> <4,2> <4,3> <4, 4>

<5,0> <5,1> <5,2> <5, 3>,<5,4> <5,5>

<6,0> <6, 1> <6, 2> <6, 3> <6, 4> <6, 5> <6, 6>

<7,0> <7,1> <7,2> <7,3> <7,4> <7,5> <7,6> <7, 7>

Figure 1: Topology: Triangular(8)

<0, 0>

<0, 1> <0, 2>

<1,0> <1,1> <1, 2>

<1,3> <1,4> <1,5> <1,6>

<2,0> <2, 1> <2,2> <2,3> <2,4>

<2,5> <2,6> <2, 7> <2,8>,<2,9> <2, &>

<3,0> <3,1> <3,2> <3,3> <3,4> <3,5> <3,6>
<3,7> <3,8> <3,9> <3,a <3,b> <3,¢c> <3,d> <3, &>

Figure 2: Distribution: TriMat(8)

gives a block distribution on the first dimen-
sion. Figure 2 shows the point identification
for TriMat(8) , where domain_maz = 4.

class TriMat {
const Triangular& _topo;
int blk_len;
public:
TriMat(const Triangular& tp, const int n) : _topo(tp) {
blk_len=n/domain_max; }
~TriMat() { }
const Triangular& topo() const { return _topo; }
Domain domain(const Point p) const {
return p[0]/blk_len;}
int index(const Point p) const {
int ddx=p[1];
int row=domain(p)*blk_len;
for(int i=p[0]—1; i>=_row; i——) {
ddx + = i+1;}
return _idx;}
int length(const Domain d) const {
return dxblk_lenxblk_len+blk_len*(blk_len+1)/2; }
};

After defining a distribution, we can declare
distributed objects which may share the same
distribution as in the following code:

Tiangular tp(128);

TRiMat dis(tp, 128);
Disobj<TRiMat, double> x(dist, 0.0);
Disobj<TRiMat, int> y(dist, 0);

2.2 Parallel Computation

A data parallel application consists of a se-
quence of computational steps. At each step a
collective communication can be performed at
first, then a parallel computation can be exe-
cuted completely locally, because the preceding
communication has fetched the data needed to
carry out the computation.

To simplify the problem, we assume that a
parallel computation will be performed only on
distributed objects with the same distribution,
and element accesses on distributed objects in
the computation should have the same align-
ment. If this is not the case, communication,
which will be discussed in the next subsection,
is needed.

With the above assumption, a parallel com-
putation can be performed in an iteration over
all selected local elements at each domain. A
class of Local_lter is introduced as an iterator
on the index numbers of selected local elements
as follows:
class Local Iter {
public:

Local Iter(const Dist&, const Topo&...);

~Local Iter();

void rewind();
int next(); };

Local_lter(Dist, Topo) defines an iterator on
the local index numbers with respect to a dis-
tribution Dist and a topology Topo which re-
stricts the iteration on a subset of index num-
bers. The method rewind initializes the local
iterator and moves to the first index at mydo-
main. The method nezt returns the current in-
dex number and moves to the next index at my-
domain, or returns -1 if the iteration ends. The
implementation of the above methods requires
the data distribution information to transform
data element addresses from a (global) point
to a (local) index. Therefore Local_lter encap-
sulates the localization details.

Because an object of Local_lter is only de-
pendent on a distribution, not on a distributed

object, an object of Local_lter can be reused by
different operations on distributed objects, if
these operations have the same execution pat-
tern.

2.3 Communication

In our approach, a parallel computation is per-
formed on distributed objects with the same
distribution.
can be viewed as assignment between two dis-
tributed objects with different distributions.
The implementation of such an assignment in-
volves the data distribution and message pass-
ing details. As the first step of object ori-
entation in communication, we introduce a
Comm_Pattern class to encapsulate the local-
ization details.

In contrast a communication

class Comm Pattern {
public:
Comm _Pattern(const Dist1&, Const Dist2&, ...);
~Comm _Pattern();
Local_Tter send(const Domain);
Local_Tter recv(const Domain); };

A Comm_Pattern takes one or two arguments
of Distributions and possibly other arguments.
The method send(i) returns a local iterator on
all index numbers (relative to the one distribu-
tion) whose designated elements must be sent
to the domain i, and the method recv(i) returns
a local iterator on all index numbers (relative
to the other distribution) whose designated el-
ements will be operated with received data el-
ements from the domain i, where i ranges from
0 to domain_max-1.

A communication pattern is defined as lo-
cal observation on communication. In other
words, the pattern defines the selection of data
elements at mydomain. Such a pattern is
problem-specific, and programming effort can
be made to get an efficient implementation.

Because a communication pattern is only de-
pendent on distributions, not on distributed
objects, it provides the following three opti-
mization possibilities in writing data parallel
applications.

A communication pattern can be reused by
different communication operations, if these

communication operations have the same com-
munication relation and the same distribution
relation among distributed objects. A commu-
nication pattern can be lifted out of a loop, if
communication and computation in the loop
do not change the spatial structure and data
partition. The generation of communication
patterns for the succeeding communications
can be overlapped with the current communi-
cation, if these communication patterns are not
dependent on the result of the current commu-
nication. In our experiments, the possibility to
apply these optimizations is very high in many
applications.

Based on communication patterns, the en-
capsulation of message passing details is pro-
vided by the following two template functions:

template< class DT1, class DT2, class CP,
class ET1, class ET2, class FP>
void Expand(Disobj<DT1, ET1>&,
const Disobj<DT2, ET2>&, CP&, FP&);

template<class DT1, class DT2, class CP,
class ET1, class ET2, class FP>
void Reduce(Disobj<DT1, ET1>&,
const Disobj<DT2, ET2>&, CP&, FP&);

In Ezpand are Reduce, elements of a dis-
tributed object of <DT2, ET2> should be sent
to remote domains for the operation with the
corresponding elements of a distributed object
of <DT1, ET1>, according to a communica-
tion pattern of CP and an operation object of
FP in which void FP::operator()(ET1&, const ET2&)
is given. Both FEzpand are Reduce involve an
all-to-all collective communication, and then a
one-to-many or many-to-one operation respec-
tively.

In message passing programming, program-
mers should consider the details about the cre-
ation of communication buffer and its manage-
ment, the synchronization, and the data pack-
ing and unpacking. Such details are encapsu-
lated within the functions Ezpand and Reduce,
which can be implemented generically on top
of a message passing system such as MPI or
PvM. In the following, we describe one of their
implementation frameworks called three-phase
scheme.

In the first phase, all local data elements
which must be sent to other remote domains
are collected in a buffer and a non-blocking
send is started.

In the second phase, the local operations are
performed in a loop over index numbers defined
by send(mydomain) and recv(mydomain). The
local operations are performed before receiving
remote elements for the tolerance of communi-
cation delay.

In the third phase, it waits for any messages
from all other domains. If a message from one
domain is received, the relevant local data ele-
ments are operated with remote data elements
according to an operation object. Because op-
erations here are associative and commutative
as defined in Reduce or single-target as defined
in Ezpand, they can be performed just after
the message from one domain arrives. In this
way, computation is overlapped with the com-
munication. In the third phase the synchro-
nization is implicitly generated to wait for the
completion of the overall collective communi-
cation. That is, it is a blocking receive for the
collective communication, while messages from
remote domains can be received in any order.

A distributed object may have a static ele-
ment type like int or double or a dynamic el-
ement type (containing pointers) like a tree.
Different code must be generated for packing
and unpacking messages in Ezpand and Re-
duce. For distributed objects of dynamic el-
ement types, the class of these element types
must have two methods pack and unpack. The
method pack copies elements of a distributed
object into a communication buffer, recursively
copying all elements referenced through point-
ers. The method unpack restores an object
from a communication buffer, recursively re-
assigning all pointers in the object with the
correct linking value. For distributed objects
with static element types, packing and unpack-
ing are just simple memory copy.

2.4 A Sample Application

In this subsection we discuss how a sample ap-
plication in particle simulation is programmed

by using this object-oriented approach. A Par-
ticle class is used to describe a particle in a
two-dimensional space as follows:

class Particle {
public:
double mass; // the mass of a particle
double x_pos, y_pos; // the position of a particle
double x_vel, y_vel; // the velocity of a particle
Particle(...);
~Particle();
int near(const Particle& another);
void update(const Particle& another); };

The method near returns 1, if a particle is
close enough to another particle such that they
will collide; otherwise returns 0; If a particle
collides with another particle, the method up-
date updates its velocity and position.

A Particle_Bulk class is used to describe a
collection of particles gathered in a subspace:
class Particle_Bulk {
public:

int x_pos, y_pos; // the position of a particle bulk;

Particle_Bulk(...);

~Particle_Bulk();

Particle_Bulk& operator=(const Particle_Bulk&);

int num() const; // the number of particles in the bulk

particle& operator[](const int) const; // the ith particle

void add(const Particle&); // add a particle to the bulk
void null(); // clear the particle bulk

b

All particles at the position < z,y > are
gathered in a particle bulk at the position <
X, Y > ,if |[z/N| == X and |y/N| ==Y,
where N is an integer denoting the diameter
of the subspace.

The following function collide describes that
if paricles in a particle bulk collide with parti-
cles in another particle bulk, the velocity and
position of all particles in this bulk will be up-
dated:
void collide::operator()(Particle_Bulk& p,

const Particle_Bulk& q) {
for(int i=0; i<p.num(); i++)
for(int j=0; j<q.num(); j++)
if (p[i]-near(q[j])) pli].collide(q[j]) }

After collision, some particles in a particle
bulk will be moved to another particle bulk as
described by the following function mowve:
void move::operator()(Particle_Bulk& p,

const Particle_Bulk& q) {
for(int j=0; j<q.num(); j++)

if ((p.x_pos==(int)(q[j].x_-pos/N)) &&
(p-y-pos==(int)(q[j].y-pos/N))) p.add(q[i]); }

Then the simulation of particle collision and
movement can be described by the following
code:

template <class Dist, class Llter, class CP >
void motion_phase(Disobj<Dist, Particle Bulk>& x,
LIter& local, CP& cp) {
Disobj<Dist, Particle_Bulk> y; // auxiliary object
for(int i=0; i<Iter_No; i++) {
copy (y, x, local); // copy x to'y
Reduce(y, x, cp, collide()); // update particles
clear(x, local); // clear x
Reduce(x, y, cp, move()); // move particles

+}

template <class Dist, class LIter>
void copy(Disobj<Dist, Particle_ Bulk>& vy,
const Disobj<Dist, Particle_Bulk>& x,
LIter& local) {
int j;
local.rewind();
while ((j=local.next())! =-1) {
y[j]-null();
ylil=x[il;} }

template <class Dist, class LIter >
void clear(Disobj<Dist, Particle_Bulk>& x,
LIter& local) {
int j;
local.rewind();
while ((j=local.next())! =-1) x[j].null(); }

The above code assumes that in a space of
Particle_Bulks, particles collide with each other
and move to its neighboring bulks (the neigh-
borhood relation is described in CP).

The code is written without involving any
distribution and message passing details. Mes-
sage passing details are encapsulated in the
function Reduce, and distribution details are
encapsulated in the containing classes Dist,
Llter, and CP. Because of encapsulation, the
code is polymorphic for different Dist, Llter
and CP, while Llter and CP are created once
and used many times in a loop.

2.5 Communication Scheduling

The work to find a communication pattern
for a communication is called communication
scheduling. It is not easy to generate a commu-
nication pattern, because it involves the distri-
bution details of distributed objects. In this
subsection, we discuss generic implementation
of communication scheduling by giving a logi-
cal communication relation as global observa-

tion which is more concise than a communica-
tion pattern as local observation.

A logical position of a data element in a dis-
tributed object can be described by a Point.
Thus a logical communication relation can be
defined as a mapping from a point to a list of
points as follows:

template < int N, int M> class CommRel {
public:
CommRel() { };
~CommRel() { };
virtural PointList<M>& connect(const Point);
static int indim() const {return N;}
static int outdim() const { return M; }

};

CommRel<N, M> defines a logical commu-
nication relation form a N-dimensional Topol-
ogy to a M-dimensional Topology. The method
connect returns a list of M-dimensional points
by giving a N-dimensional point p, in the
meaning that the point p will be communicated
with (assigned to, reduced from, or expanded
to) all points in the point list returned. The
class PointList is defined as follows:

template <int M> class PointList {
public:
PointList(int sz);
~PointList();
Point& operator[](int);
int length() const ;
static int dim() const { return M; }
void rewind(int i=0);
PointList<M>& operator< < (int);

b

PointList<M> defines a list of M-
dimensional points with the length of sz A
list of points can be written by the the opera-
tor << after applying the method rewind(i) to
set the writing position to the i-th point, and
can be read by the operator [i] for 0 < i <
length().

In the example of particle simulation, if
the neighborhood relation in communication is
defined in a two-dimensional topology as de-
scribed in Figure 3, the logical communication
relation then can be represented by the follow-
ing class:

class Near : CommRel<2, 2> {
PointList<2> _pl(8);
publlic:

——

i+1

-1 i j+1

Figure 3: Neighborhood Relation

PointList<2>& connect(const Point p) {
_pl.rewind();

return _pl << p[0] << p[1]+1
<< p[0] << p[1]-1
<< pl0]+1 << p[1]
<< p[0]-1 << p[1];
<< p[O]1 << p[1]-1;
<< p[0]-1 << p[1]+1;
<< p[0]4+1 << p[1]+1;
<< p[0]+1 << p[1]-1; }

};

Having a logical communication relation,
the following template function can be used for
communication scheduling:

template<class DT1, class RS1, class DT2, class RS2>
void CommSch(CP*, DT1&, RS1&, DT2&, RS2&, CR&);

CommSch generates a communication pat-
tern of CP according to a logical communi-
cation relation of CR. The communication re-
lation of CR defines a one-to-many communi-
cation relation from a distribution of DT1 re-
stricted by a topology of RS1 to a distribution
of DT2 restricted by a topology of RS2.

CommdSch can be implemented as a SPMD
program, running in parallel at each domain
as follows:

for each point p in Local ITter(DT1, RS1) do
for each point q in CR::connect(p) do
if DT2::valid(q) and RS2::valid(q) then
put q in a queue[DT2::domain(q)];
endif
endfor
build DT1::index(p) into the iterator
for CP::send(DT2::domain(q));
endfor

for each domain d except mydomain do
send queue[d] to the domain d;
endfor

for each domain d except mydomain do
receive queue[d] from the domain d;

for each point q in received queue[d] do
build DT2::index(q) into the iterator
for CP::recv(d);
endfor
endfor

In the above implementation, a local iter-
ator Local_Tter(DT1, RS1) should be specifi-
cally implemented by involving the distribu-
tion details. The implementation of Comm-
Sch is generic with respect to the local iterator.
The above implementation is also scalable, be-
cause the iteration number and communication
amount decrease as the number of domains in-
creases.

For an easy specification, a logical commu-
nication relation is always defined to be one-
to-many. For a many-to-one communication
from < DT2, RS2 > to < DT1, RS1 >defined
by Expand, a one-to-many communication re-
lation from < DT1, RS1 > to < DT2, RS2
> can be directly passed to the CommSch. In
this case, at mydomain the local iterators for
CP::send are built directly, and the local it-
erator for CP::recv(d) is built according to a
list of points received from the domain d, be-
cause these points are accumulated in consis-
tency with a list of index numbers designating
all elements to be sent from the domain d to
mydomain.

For a one-to-many communication from <
DT2, RS2 > to < DT1, RS1 > defined by Re-
duce, DT1 and DT2, RS1 and RS2, send and
recv should be exchanged in the code of Comm-
Sch, because a one-to-many communication re-
lation from < DT2, RS2 > to < DT1, RS1 >
is given to Comm.Sch.

In the example of particle simulation, a com-
munication pattern for the communications in
reduce/collide and reduce/move can be ob-
tained with respect to a distribution DIST by
the following code:

class sel_all {

public:
int valid(const Point p) const { return 1;}
static int dim()const { return 2;}

};

Near cr;
sel_all s;
Comm_Pattern cl;

DIST di;

CommSch(&cl, d1, s, d1, s, cr);

As we see, a communication pattern is com-
puted in a generic manner, that is, after defin-
ing a logical communication relation, it can
be used for any kinds of distributions. The
generic communication scheduling is less effi-
cient than a direct implementation. Therefore
only when communication scheduling is per-
formed once and then reused many times in
an application, it will not largely degrade the
overall performance of an application. From
our experience, a large class of data parallel ap-
plications such as in particle simulation, finite
element method, and partial differential equa-
tion solver can be implemented in this way.

3 Related Work and Compar-
isons

Our approach is one of parallel C++ effort for
data parallelism. It can be used at three levels:
C++-level, library-level, and compiler-level.
This paper just describes the approach used in
C++-level without library support or compiler
support. In the project PROMOTER[5, 1, 2],
this approach is exploited at all three levels.
At a library-level, libraries for different
Topology and Distribution classes can be pro-
vided, and runtime support to compute Lo-
cal_lter and Comm_Pattern with respect to de-
fined Topology and Distribution classes can be
used in writing data parallel programs. At
a compiler-level, compile time techniques to
construct Topology, Distribution, Local_lter and
Comm_Pattern can be developed. For example,
a HPF compiler should generate Local_lter and
Comm_Pattern for a forall loop with distributed
arrays with the (cycle) block distribution.
There are a lot of work in parallel
C++ Efforts: Icc++ [4], C** [7], Pc++
[8], CHAOS++ [3], HPC++[6], and others.
Roughly speaking these efforts exploit two
types of parallelism: data and task parallelism.
In our approach, only data parallelism is ex-
ploited and no task parallel efforts such as ob-

<0, 0>
<1, 0> / \ <11>
/ \
<2,0> <2, 1> <2,2> <2,3>

SN /N /N /N

<3,0> <3,1> <3,2> <3,3> <3,4><3,5> <3,6><3, 7>

Figure 4: Topology: BinTree(4)

ject concurrency model have been made.

For data parallelism, collection, aggregate,
or distributed array are used to represent par-
allel data structures in the other efforts. All of
them can only specify rectangular structure. In
our approach, arbitrary spatial structures are
allowed. In other words, rectangular and non-
rectangular (or irregular) spatial structures can
be dealt with in our approach.

To support irregular data parallel applica-
tions, other approaches must use pointer-based
data structures. For example, CHAOS++
provides support for distributed pointer-based
data structures.

In our approach, such a pointer-based data
structure is divided into two different worlds:
topology and element type. In a topology, no
pointers are allowed. This means that a struc-
ture like a tree must be flattened to a topol-
ogy with all nodes in a tree. In an element
type, pointers are allowed, but only possible to
reference objects at the same domain. There-
fore our data model is a restricted form of dis-
tributed pointer-based data structures, and we
believe that many applications can be repre-
sented by this model, which can lead to a sim-
ple and efficient implementation for these ap-
plications.

To show how to flatten a pointer-based data
structure, we define a topology BinTree for a
binary tree (see Figure 4) as follows:

class BinTree {
int _n;
public:
BinTree(const int n) {_n=n;}
~ BinTree() {}
int valid(const Point p) const {
if ((p[0]>=0) && (p[0]<m) &&

(p[1]>=0) && (p[1]<pow(2,m)))
return 1;
else return 0;}
static int dim() const { return 2;}

};

This binary tree is embedded in a two-
dimensional space. A data topology or shape
can be embedded in different index spaces. In
general, an index space selected for a data
topology or shape must facilitate expression of
logical communication relations. For example,
a communication relation from a father to two
sons in BinTree can be easily expressed by a
one-to-many relation as follows:

<t j>=2<i+1,j%2>,<i+1,5%24+1 >.

4 Conclusions

Our approach introduces a kind of object-
oriented data parallel programming approach.
At first we decouple distribution information
from a distributed object itself such that a
Distribution class can be implemented specifi-
cally for efficiency and a Disobj class can be
implemented generically. Then we decouple a
communication pattern from a communication
such that a communication pattern can be im-
plemented specifically also for efficiency, and
a communication can be implemented gener-
ically. Lastly a communication pattern can
be implemented generically under the condi-
tion that a corresponding local iterator is im-
plemented specifically.

By using object orientation, a data parallel
program can be written with modularity and
polymorphism. Object orientation also leads
to high performance, because it supports spe-
cialization, object sharing, and code reuse.

In our experiments, many applications such
as heat conduction, fluid dynamics and finite
element method have been or are being tested.
The experiment results show that such appli-
cations can be efficiently implemented by us-
ing this approach, especially if a communica-
tion pattern generated can be used many times
such as in a loop.

In the following we show the performance
of three benchmark programs written by using

Table 1: Benchmark Performance

Bench- 4 Nodes 8 Nodes 16 Nodes
mark PRO/PVM | PRO/PVM | PRO/PVM
MM 0.281/0.246 | 0.155/0.137 | 0.088/0.083
RL 0.280/0.261 | 0.137/0.132 | 0.075/0.072
CG 8.23/8.21 4127411 2.36/2.34

this approach and by directly using the mes-
sage passing system PvM on the parallel ma-
chine MANNA!. Table 1 shows the times (sec-
onds) needed for matrix multiplication (MM),
relaxation (RL), and conjugate gradients (CG).

One of our future work is support of Dy-
namic Topology [9], that is, a distributed object
can change its shape at runtime. It provides
a conceptual equivalence to dynamic creation
or expansion in pointer-based data structures.
Dynamic topologies are mostly needed in the
adaptive applications, in which a problem do-
main or a spatial structure has to be changed
at runtime according to intermediate runtime
results. In considering dynamic topologies we
must also consider dynamic load balancing be-
cause distributions must also be dynamically
changed according to changing topologies. Our
preliminary work on these topics shows that
efficient implementation of dynamic topologies
seems to be possible, if some regularity in the
adaption algorithm can be utilized.

References

[1] M. Besch, H. Bi, P. Enskonatus, G. Heber,
M. Wilhelmi. High-level Data Parallel Pro-
gramming in PROMOTER, In Proc. of 2nd
Int. Workshop on High-level Parallel Pro-
gramming Models and Supportive Environ-
ments, pp. 47-54, IEEE CS Press, April,
1997, Geneva, Switzerland.

[2] H. Bi. Towards Abstraction of Message
Passing Programming . In Proc. of Int.
Conference on Advances on Parallel and

IMANNA is a scalable parallel machine with dis-
tributed memory. See http://www.first.gmd.de.

8]

Distributed Computing, pp- 100-107, IEEE
CS Press, March, 1997, Shanghai, China.

C. Chang, J. Saltz, and A. Sussman.
Chaos++: A runtime library for support-
ing distributed dynamic data structure.
Technical Report CRPC-TR95624, Center
for Res. on Parallel Computation, Rice
University, Nov. 1995.

A. A. Chien and J. Dolby. The illinois con-
cert system: A problem-solving environ-
ment for irregular applications. In Proc. of
DAGS’94, The Sym. on Parallel Compu-
tation and Problem Solving Environments,
1994.

W. K. Giloi, M. Kessler, and A. Schramm.
Promoter : A high level object-parallel pro-
gramming language. In Proc. of Inter-
nat. Conf. on High Performance Comput-
ing, New Delhi, India, Dec. 1995.

G. HPC. Hpc++ white paper. Technical
Report CRPC-TR95633, Center for Res.
on Parallel Computation, Rice University,
1995.

L. R. Larus. A large-grain, object-oriented
data-parallel programming language. In
U. Banerjee, A. N. D. Gelernter, and
D. Padua, editors, Languages and Compil-
ers for Parallel Computing (5th Interna-
tional Workshop), pages 326-341. Springer-
Verlag, Aug. 1993.

A. Malony, B. Mohr, D. Beckman, D. Gan-
non, S. Yang, F. Bodin, and S. Kesavan.
A parallel c++ runtime system for scal-
able parallel systems. In Proc. of Supercom-
puting’93, pages 140-152. IEEE CS. Press,
Nov. 1993.

A. Schramm. Irregular applications in pro-
moter. In W. K. Giloi, S. Jaenichen,
and B. Shriver, editors, Proc. of Internat.
MPPM Conference, Berlin, Germany, Oct.
1995. IEEE CS. Press.

