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Abstract
Tiling has proven to be an effective mechanism to develop high
performance implementations of algorithms. Tiling can be used
to organize computations so that communication costs in parallel
programs are reduced and locality in sequential codes or sequential
components of parallel programs is enhanced.

In this paper, a data type - Hierarchically Tiled Arrays or HTAs
- that facilitates the direct manipulation of tiles is introduced.
HTA operations are overloaded array operations. We argue that
the implementation of HTAs in sequential OO languages trans-
forms these languages into powerful tools for the development of
high-performance parallel codes and codes with high degreeof lo-
cality. To support this claim, we discuss our experiences with the
implementation of HTAs for MATLAB and C++ and the rewriting
of the NAS benchmarks and a few other programs into HTA-based
parallel form.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Language

Keywords Parallel programming, data-parallel, locality enhance-
ment, tiling

1. Introduction
This paper introduces a type of object that facilitates the provision
of locality and parallelism. These objects are tiled arrayswhose
tiles could be tiled and whose components, tiles or the underlying
scalars, can be accessed using an intuitive notation. In other words,
a hierarchically tiled array can be accessed as a flat n-dimensional
array where the scalar elements are addressed using the conven-
tional subscript notation or as a hierarchy of tiles whose compo-
nents are addressed by a sequence of subscript tuples, one for each
level of tiling.
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The main motivation behind the design of theseHierarchically
Tiled Arraysor HTAs is that, for a wide range of problems, data
tiling has proven to be an effective mechanism for improvingper-
formance by enhancing locality [26] and parallelism [3, 9, 8, 21].
Our objective in this paper is to make a first attempt in the identifi-
cation of the set of operations on tiles needed to develop programs
that are at the same time readable and efficient and to show that
such operations facilitate programming of high performance com-
putations.

To implement parallel computations for distributed memory
machines, HTA tiles are distributed. Parallel computations and
communications are represented by overloaded array operations.
Thus, interprocessor communication operations are represented by
assignments between HTAs with different distributions. Parallel
computations take the form of array (or data parallel) operations on
the distributed tiles. HTAs are designed for use by single threaded
programs where parallel computations are represented as array op-
erations. As a result, parallelism is highly structured, which im-
proves readability over the SPMD paradigm. The use of array op-
erations to represent parallel computations on a distributed memory
system is, of course, not new. It was the only mechanism to express
parallelism in Illiac IV [5] and other SIMD systems and it hasbeen
used in a variety of languages including High Performance For-
tran [3] and its variants [10] and ZPL [9], X10 [11], and others.
The main contribution of HTA is the use of array operations toma-
nipulate tiles directly. HTAs are also useful for the development of
efficient programs for shared-memory and uniprocessor computa-
tions because data tiling tends to reduce data traffic in SMP com-
putations and increase locality in sequential computations. More
specifically, HTAs are a convenient notation to program multicore
processors and hybrid parallel machines such as the CELL Broad-
band Engine [22]. Furthermore, because of their hierarchical na-
ture, HTAs can be used to take advantage of the multiple levels
of parallelism that can be exploited by systems such as clusters of
multicore processors as well as multiple levels of memory hierar-
chy.

The rest of the paper is organized as follows. In Section 2, we
describe HTAs and the operations on them that we have found
most useful in our studies. In Section 3, we present some code
examples to illustrate how a few important parallel kernelscan
be implemented with HTAs. Our objective in this Section is to
demonstrate that HTAs can be used to produce elegant and intuitive
formulations of these kernels. In Section 4 we discuss our efforts to
incorporate HTAs in two sequential languages: MATLAB and C++.
Finally, in Section 5 we compare the HTA approach with other
parallel programming approaches. Finally, Section 6 concludes.
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Figure 1. Pictorial view of a Hierarchically Tiled Array.
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Figure 2. Construction of an HTA by partitioning an array-(a).
Mapping of tiles to processors-(b).

2. A New Programming Paradigm
In this Section we describe the semantics of the Hierarchically
Tiled Arrays (HTA) (Section 2.1), their construction and distri-
bution (Section 2.2) mechanisms to access the HTA components
(Section 2.3), assignment statements and binary operations (Sec-
tion 2.4) and other HTA methods (Section 2.5). For simplicity, in
all the examples in this Section we use the syntax of our MATLAB
extension.

2.1 Semantics

Hierarchically Tiled Arrays (HTAs) are arrays partitionedinto tiles.
These tiles can be either conventional arrays or lower levelHierar-
chically Tiled Arrays. Tiles can be distributed across processors in
a distributed-memory machine or be stored in a single machine ac-
cording to a user specified layout. We distribute the outermost tiles
across processors for parallelism and utilize the inner tiles for lo-
cality. Figure 1 shows an example of an HTA with two levels of
tiling.

2.2 Construction of HTAs

Two different approaches can be used to create an HTA. The first
is to tile an existing array using delimiters for each dimension. For
example, ifM is a6×6 matrix, the functionhta(M, {[1 3 5],[1
3 5]}) creates a3×3 HTA resulting from partitioningM in tiles of
2×2 elements each, as show in Figure 2-(a). The second parameter
of the HTA constructor is an array of vectors that specifies the
starting location of the tiles. Thei-th vector contains thepartition
vectorfor the i-th dimension of the source array. The elements of
this partition vector mark the beginning of each sub-tile along the
corresponding dimension. In our example, rows 1 , 3 and 5, and
columns 1, 3 and 5 are the partitions points.

Alternatively, an HTA can be built as an empty set of tiles. In
order to create an HTA of this form, the HTA constructor is in-
voked with the number of desired tiles per dimension. For example,

C{2,1}(1,4)
C(5,4) 

, C{2,1}{1,2}(1,2) or 
, or 

C{2,1}

C(1:2,3:6)

HTA C

Figure 3. Accessing the contents of HTAs.

hta(3,3) creates an HTA with3× 3 empty tiles. To complete the
HTA, each tile must be assigned a content after the empty shell is
created.

The tiles of an HTA can be local or distributed across proces-
sors. To map tiles to processors, the topology of the mesh of pro-
cessors and the type of distribution (block, cyclic, block cyclic, or
a user-defined distribution) must be provided. Figure 2-(b)shows
an example where a6 × 6 matrix is distributed on a2 × 2 mesh
of processors. The last parameter of the HTA constructor specifies
the processor topology. In our current implementation, thedefault
distribution is a cyclic distribution of the tiles on the mesh, which
corresponds to a block cyclic [3] distribution of the matrixcon-
tained in the HTA, with the blocks defined by the topmost levelof
tiling.

Notice that, although not illustrated here due to space limita-
tions, HTAs can be built with several levels of tiling, like those
shown in Figure 1.

2.3 Accessing the Components of an HTA

Figure 3 shows examples of how to access HTA components. The
expressionC{2,1} refers to the lower left tile. The scalar element
in the fifth row and fourth column can be referenced asC(5,4)
just as ifC were an unpartitioned array. This element can also be
accessed by selecting the leaf tile that contains it and its relative po-
sition within this tile:C{2,1}{1,2}(1,2). A third expression rep-
resentingC(5,4) selects the top-level tileC{2,1} that contains the
element and thenflattens or disregards its internal tiled structure:
C{2,1}(1,4). Regions such asC(1:2,3:6) can also be accessed
using parenthesis to disregard the tiling of the HTA. The result of
such expressions do not keep the tiled structure of the HTA, that
is, C(1:2,3:6) will simply return a plain standard2 × 4 matrix.
If the HTA C is distributed, this output matrix is a replicated local
object that appears in all the processors. Flattening is particularly
useful when transforming a conventional program onto a tiled form
for locality/parallelism or both. During the intermediatesteps of
the transformation, regions of the program can remain unmodified
and arrays accessed as if they were not partitioned while in other
regions, the arrays are manipulated by tiles.

Sets of components may be chosen at any level and along each
dimension using triplets of the formbegin:step:end. The: notation
can be used in any index to refer to the whole range of possible
values for that index. For example,C{2,:}(1:2:4,:) refers to
the odd rows of the two lower outer-level tiles ofC.

We can also use boolean arrays as HTA subscripts When this
logical indexing is applied every true element in the boolean array
used as a subscript designates a tile of the HTA based on the
position of the true elements. As illustrated in Figure 4 logical
indexing allows the selection of arbitrary, banded diagonal or upper
triangular tiles of an HTA.

2.4 Assignments and Binary Operations

We generalize the notion of conformability of Fortran 90. When
two HTAs are used in an expression, they must be conformable.
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Figure 4. Logical indexing in HTA.
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V{2:3,:}(1,:)=
V{1:2,:)(5,:)

Figure 5. Assignment of all the elements in the last row of each
one of the tiles located in the rows of tiles 1 and 2 to the first row
of the corresponding tiles in the rows of tiles 2 and 3.

That is, they must have the same topology (number of levels and
shape of each level), and the corresponding tiles in the topology
must have sizes that allow the operation to act on them. The op-
eration is executed tile by tile, and the output HTA has the same
topology as the operands.

Also, an HTA and an untiled array are conformable when the
array is conformable with each of the leaf tiles of the HTA. An
HTA and a scalar are always conformable. When an untiled array
is operated with an HTA, each leaf tile of the HTA is operated with
the array. Also, when one of the operands is a scalar, it is operated
with each scalar component of the HTA. Again, the output HTA
has the same topology as the input HTA.

Assignments to HTAs must follow similar rules to those of
binary operators. When a scalar is assigned to a range of positions
within an HTA, the scalar is replicated in all of them. When anarray
is assigned to a range of tiles of an HTA, the array is replicated to
create tiles. Finally, an HTA can be assigned to another HTA (or a
range of tiles of it).

References to local HTAs do not involve communication.
However, in distributed HTAs assignments between tiles which
are in different processors involve communication. Consider a
3 × 3 distributed HTA, V. The assignmentV{2:3,:}(1,:) =
V{1:2,:}(5,:) copies all the elements in the fifth row in the
two first rows of tiles to the first row in the tiles in the two last rows
of tiles as shown in Figure 5. When the tiles ofV are distributed
across processors, this assignment involves communication.

2.5 Other HTA Methods

We have overloaded frequently-used functions on arrays such as
circshift, transpose, permute, or repmat, as well as the
standard arithmetic operators so that when applied to HTAs they
operate at the tile level. For example, the MATLAB function
circshift implements circular shifts for arrays. The overloaded
HTA version shifts instead whole tiles of HTAs, which involves
interprocessor communication when the HTAs are distributed.

h’

��

 � �� �
� �� � � �� �

��
� �� �
� �� �

� �� �
� �� �

� �� �
� �� �

� �� �
��

� �� �� �
��
�

� �� �
��

(c)(a)

h = hta(1,3)

(b)

h = transpose(h)  
h = permute(h,[2,1]) h = dpermute{h,[2,1]}

or

Figure 6. Permute and dpermute.
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X=dpermute(X,[3,1,2])

Figure 7. Data Permutation in FFT.(a)-Pictorial view.(b)-code

We have also implemented methods, only applicable to the HTA
class, that we have found to be useful in many parallel programs.
These are methods likereduceHTA which is a generalized reduc-
tion method that operates on HTA tiles, andparHTA which applies
in parallel the same function to each tile of an HTA.

3. HTA operations
In this Section, we use code examples to illustrate how the HTA
assignments and methods mentioned in the previous section can be
used to write parallel programs. The examples are simple kernels
and the NAS parallel benchmarks [2], which we implemented using
MATLAB extensions. We classify the methods as either communi-
cation operations or global computations.

3.1 Communication Operations

In HTA programs, communication is represented as assignments on
distributed HTAs as shown in the example in Figure 5. However,
in HTA programs, communications can also be expressed using
methods such aspermute, circshift andrepmat. We discuss
them in the next Sections.

3.1.1 Permute Operations

Figure 6 shows two examples ofpermute operations. Figure 6-(b)
shows the HTA that results after applying the overloaded MATLAB
transpose or permute operator to the HTA in Figure 6-(a). Fig-
ure 6-(c) shows the HTA that results after applying a new method
calleddpermute, which is a special case of a permutation opera-
tion where only the data are transposed, but the shape of the con-
taining HTA remains the same. That is, the number of tiles in each
dimension remains constant. Thus, as shown in Figure 6-(c),af-
ter thedpermute operator the data have been transposed, but the
resulting HTA contains1 × 3 tiles, as in Figure 6-(a).

Thedpermute operator is applied in the NAS FT, and operates
on a 3-D array (A) which is partitioned into tiles which are dis-
tributed along theZ dimension, as shown in Figure 7-(a). To com-
pute the Fourier Transform (FT) along theZ dimension we need to
bring the blocks from the distributed dimension to the undistributed
ones so that the FT can be locally applied. Figure 7-(b) showsan
outline of the NAS FT. The FT along the first and second dimension
of an HTA is computed using the overloaded version of the standard
MATLAB fft operator which applies the standard MATLABfft



function C = cannon(A,B,C)
for i=2:m

A{i,:} = circshift(A{i,:}, [0, -(i-1)]);
B{:,i} = circshift(B{:,i}, [-(i-1), 0]);

end
for k=1:m-1

C = C + A * B;
A = circshift(A, [0, -1]);
B = circshift(B, [-1, 0]);

end

Figure 8. Cannon’s algorithm using HTAs.

function C = matmul (A, B, C)
if (level(A) == 0)

C = C + A * B;
else

for i=1:size(A,1)
for k=1:size(A,2)

for j=1:size(B,2)
C{i, j} = matmul(A{i,k}, B{k,j}, C{i,j});

end
end

end
end

Figure 9. Recursive matrix-matrix multiplication that exploits
cache locality.

to each of the tiles of the HTA along the dimension specified in
the third parameter. To apply thefft along the third dimension,
we need to make this dimension local to a processor. For that,we
transpose the HTA using the HTAdpermute operator explained
above. Notice that when programming with HTAs it is possibleto
determine where communication occurs if the distribution of tiles
across the processors is known.

3.1.2 Circular Shift

The communication pattern of the circular shift (circshift) oper-
ator appears in Cannon’s algorithm [7], which is shown in Figure 8.
HereA andB arem × m HTAs tiled along both dimensions and
mapped onto a mesh ofn × n processors. To implement Cannon’s
algorithm, the first loop shifts circularly the tiles inA andB to place
them in the appropriate position. To this end, tiles in rowi of A are
circularly shiftedi-1 times to the left. Similarly, tiles in columni of
B are circularly shifted upi-1 times. In each iteration of the main
loop, each server executes a local matrix-matrix multiplication of
the tiles ofA andB which each processor owns. The result is ac-
cumulated into a local tile of the resulting HTA,C. Then tiles ofA
andB are circularly shifted once. Tiles ofA are circularly shifted
to the left, and tiles ofB are circularly shifted up. At the end of
the main loop, the result of the matrix multiplication is theHTA C
which is distributed across processors with the same mapping of A
andB. A more conventional implementation of Cannon’s algorithm
will shift rows of matrixA and columns of the matricesB instead of
shifting tiles and the multiplication will be element by element, not
a matrix-matrix multiplication of tiles as in our HTA implementa-
tion. (The MATLAB * operator has been overloaded such that it
performs a tile-by-tile matrix multiplication). The main advantages
of the tiled approach is aggregation of data into a tile for commu-
nication and the increased locality resulting from a singlematrix-
matrix multiplication over the element by element multiplication.
We can further increase cache locality by using HTAs with twoor
more levels of tiling. Thus, the tiled matrix-matrix multiplication

function C = summa (A, B, C)
for k=1:m

T1 = repmat(A{:, k}, 1, m);
T2 = repmat(B{k, :}, m, 1);
C = C + T1 * T2;

end

Figure 10. SUMMA Matrix Multiplication using HTAs.

matmul of Figure 9 can be applied to each pair of corresponding
tiles by writingC = parHTA (@matmul, A, B, C) in the Can-
non’s algorithm of Figure 8. By usingparHTA (discussed in Sec-
tion 3.2), thematmul function is applied in parallel to all the tiles
of HTAs A, B andC. In Figure 9 thelevel(A) function will return
0 whenA is either a scalar or a matrix. IfA is not a scalar or a matrix
we have to recursively proceed down into the HTA hierarchy until
we reach the leaf tile of the HTA. The functionsize(H,i) returns
the number of tiles of an HTA H along thei-th dimension. Notice
that the implementation of Cannon’s algorithm that usesmatmul
works correctly regardless of the number of levels of tiles in the
hierarchy.

3.1.3 Repmat

Another important type of communication is replication (repmat)
which appears in the SUMMA Matrix algorithm [13] shown in Fig-
ure 10. This algorithm is based on the outer product version of the
matrix multiplication. In SUMMA, the resultC of the multiplica-
tion of the matricesA andB is computed as the addition ofC with
the outer product of columnk of A and rowk of B, for each possible
value ofk. In our implementation, matricesA andB are tiled and
distributed one tile per processor across a two-dimensional proces-
sor mesh. The column of tilesA{:,k} is replicated on all columns
of processors and the row of tilesB{k,:} is replicated along all
rows of processors. This replication is achieved with an overloaded
version of therepmat vector operator.

3.1.4 Logical Indexing

A more complex pattern of communication appears in parallel
wavefront computations. This type of computations resultsfrom
the parallelization of codes where the value of an element depends
on the value or values of neighbors elements computed in previous
iterations. These codes can be efficiently parallelized by comput-
ing in parallel the element of each diagonal of the matrix, where
the angle of the diagonal is a function of the dependences. The pro-
cessors compute local data before sending them to the processors
containing the dependent data. Wavefront computations canalso be
parallelized in a tiled fashion, and for that we used logicalindex-
ing. Figure 11-(a) shows a Fortran code with a 2D wavefront com-
putation. The tiled HTA version is shown in Figure 11-(c), where
logical indexing is used to determine the tiles that can operate in
each iteration of thek loop. Those tiles where the condition(x+y
== k) is true will locally compute the 2D wavefront computation.
A pictorial view of how the computation advances across tiles is
shown in Figure 11-(b), where the values of thex andy matrices
are also shown. In the Figure,A is am × n HTA, distributed on a
m×1 processor mesh, so that rows of tiles are mapped to the same
processor. The last two statements in Figure 11-(c) copy thelast
row and column of tiles that finished the computation in iteration
k to the first row and column of the tiles that are going to start the
computation in the iterationk + 1. A parallel wavefront similar to
the one shown in Figure 11 appears in the LU NAS code.



A{x+y == k+1 & y>1}(:, 1) = A{x+y == k & y<n}(:, dimy−1);

for j=2:dimy−1
       

   

 

for j=2:n−1

for i=2:m−1

A(i,j)= A(i−1,j) +

end
end

A(i,j−1);
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end

end
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for i=2:dimx−1

for k=2:m+n

x = y =

A{x+y == k}(i, j) = A{x+y == k}(i−1, j) + 

    A{x+y == k}(i, j−1);

A{x+y == k+1 & x>1}(1, :) = A{x+y == k & x<m}(dimx−1,:);

Figure 11. 2-D wavefront computation.(a) Fortran code. (b) Pictorialview. (c) HTA code using logical indexing.

3.1.5 Redistribution

A different pattern of communication appears in a type of sci-
entific applications that use Adaptive Mesh Refinement, where a
portion of the mesh needs to be re-distributed across the proces-
sors. Redistribution can be done by selecting the section ofthe
array underlying the HTA and specifying a new distribution:A
= hta(H(x1:x2, y1:y2), {partition vectors}, [m n]),
where HTAH contains the region(x1:x2, y1:y2), that we want
to redistribute. The region of interest is selected first, then a stan-
dard non-partitioned matrix is generated. This matrix is, in turn,
partitioned using the appropriate partition vectors, in order to dis-
tribute the resulting tiles on am × n processor mesh.

3.2 Global Computations

The simplest form of global computation is achieved by operating
in parallel on a set of tiles from an HTA distributed across a parallel
machine. This can be accomplished withparHTA(@func, H) that
applies the functionfunc. In MATLAB @func represents a pointer
to functionfunc. Many global computations take the form of re-
duction operations where the operator can besum, max, or a user de-
fined function. These operations can be expressed in HTA programs
with thereduceHTA method. Figure 12 shows a matrix-vector mul-
tiplication where thereduceHTA method is applied.A is an HTA
containing the matrixMX which is distributed acrossm×n proces-
sors and tiled as specified bypartition A. B is a two-dimensional
HTA obtained by replicating the htaV which contains the vector
VX to multiply. The HTAV is replicatedm times as specified by the
operatorrepmat(V,m,1). SinceV is a distributed HTA replication
takes place along the vertical dimension of the processor mesh. The
matrix-vector multiplicationA * B takes place locally and each
processor multiplies its portion of the matrixA by its portion of
the vector inB. Notice that the row vectorB has been first trans-
posed within each processor byparHTA(@transpose,B) into a
column. After the multiplication, a reduction along the rows (the
second dimension as specified in the 3rd parameter ofreduceHTA)
will generate the resulting HTAC which consists of a column vec-
tor distributed across them rows of ourm × n mesh and repli-
cated along itsn columns of processors. This vector is replicated
because thereduceHTA operator was invoked with the last param-
eter set totrue, which indicates that it is an all-to-all reduction.
The core computation of NASCG benchmark is a sparse matrix-
vector multiplication. Notice that the code is highly simplified by
the overloading of array operators so that they also apply tosparse
arrays.

4. Two Implementations
We have developed implementations of the HTA class for two
sequential languages: MATLAB and C++. We have also imple-
mented an extension of the X10 parallel language developed by
IBM in which HTAs replace distributed arrays. We implemented

A = hta(MX, {partition_A}, [m n]);
V = hta(VX, {partition_B}, [m n]);
B = repmat(V, m, 1)
B = parHTA(@tranpose, B)
C = reduceHTA(’sum’, A * B, 2, true);

Figure 12. HTA code for matrix-vector multiplication

HTAs as a class using the OO capabilities of each of these two
languages. Although a single implementation could be used across
languages, we decided to develop a different implementation for
each one of these languages mainly because our first implementa-
tion, developed for MATLAB , demonstrated that, for many com-
putations it is difficult to obtain reasonable absolute performance.
To avoid the inefficiencies of MATLAB , we reimplemented the
library in C++ and X10. To obtain the syntax of HTA shown in
the previous sections, we applied the operator overloadingcapabil-
ities of MATLAB . So far, we have not taken advantage of operator
overloading in our C++ implementation and, as a result, the cur-
rent notation is somewhat verbose, but this will be fixed. Below,
we briefly discuss the MATLAB and C++ implementations.

4.1 MATLAB

The purpose of our first implementation on MATLAB was to
demonstrate that a conventional sequential language couldbe eas-
ily extended for parallel computation using HTAs. MATLAB was
a natural choice for this experiment because of its array syntax and
OO capabilities. We found that MATLAB ’s syntax for cell array
accesses, generalized with triplet notation and extended to allow
operations between components, was convenient to represent HTA
accesses and therefore we adopted it. HTAs were implementedas
a MATLAB toolbox programmed in both C and MATLAB with
invocations to MPI primitives. The MATLAB toolbox mechanism
proved adequate to implement with reasonable efficiency andnat-
ural syntax all needed HTA operations except for theforall array
operation. However, we were able to develop an elegant implemen-
tation of all the codes we studied withoutforall.

Our first MATLAB implementation of HTAs followed the
client/server model in which the main thread is executed on awork-
station and HTAs are stored and manipulated in a distributedsys-
tem that operates as a co-processor. Although this approachfacili-
tates program understanding, it requires too much communication
between the workstation and the processors in the background par-
allel machine. We decided to change the implementation to follow a
SPMD execution model although the programmer could still think
in terms of the client-server model to understand the functional be-
havior of the program (but, of course, not to analyze performance).
This was achieved by executing the program on all processorsand
replicating on each processor scalar variables, arrays, and non-
distributed HTAs. All processors redundantly execute the compu-



Nprocs EP (CLASS C) FT (CLASS B) CG (CLASS C) MG (CLASS B) LU (CLASS B)
Fortran+ Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab + Fortran + Matlab +

MPI HTA MPI HTA MPI HTA MPI HTA MPI HTA

1 901.6 3556.9 136.8 657.4 3606.9 3812.0 26.9 828.0 15.7 245.1
4 273.1 888.8 109.1 274.0 362.0 1750.9 17.0 273.8 6.3 60.5
8 136.3 447.0 65.5 159.3 123.4 823.6 9.6 151.3 2.9 29.9
16 68.6 224.8 37.2 87.2 89.5 375.2 4.8 87.0 1.2 16.0
32 34.7 112.0 20.7 42.9 48.4 250.3 3.3 54.9 1.1 9.8
64 17.1 56.7 10.4 24.0 44.5 148.0 1.6 50.4 1.3 7.1
128 8.5 29.1 5.9 15.6 30.8 123.0 1.4 38.5 1.6 N/A

Table 1. Execution times in seconds for some of the applications in the NAS benchmarks for Fortran+MPI versus MATLAB +HTA. The
execution time for 1 processor corresponds to the serial application in Fortran or MATLAB , without MPI or HTAs.

tation not involving distributed HTA operations. Since alldata are
replicated, the behavior in each processor is exactly the same as
what would be the behavior of the client except that no communi-
cation is necessary to use data from the main thread in operations
on distributed HTAs. On invocation of a method on a distributed
HTA, each processor applies the corresponding operation tothe
tiles of the HTA it owns.

The incorporation of HTAs in MATLAB produced an explicitly
parallel programming extension of MATLAB that integrates seam-
lessly with the language. Most other parallel MATLAB extensions
either make use of extraneous primitives (MultiMATLAB [24]) or
do not allow explicit parallel programming (Matlab*P [17]). Also,
the incorporation of HTA gives MATLAB a mechanism to access
and operate on tiles much more powerful than that provided bytheir
nativecell arrays. The main disadvantage of the implementa-
tion is that the immense overhead of the interpreted MATLAB lim-
its the efficiency of many applications. The three main sources of
this overhead are:

• Excessive creation of temporary variables.MATLAB creates tem-
poraries to hold the partial results of expression, which signifi-
cantly slows down the programs.

• Frequent replication of data.MATLAB passes parameters by
value and assignment statements replicate the data, and

• Interpretation of instructions.The overhead resulting from the in-
terpretation of instructions is more pronounced when the compu-
tation relies mainly on scalar operations.

Table 1 presents the execution time for Fortran+MPI and our
MATLAB +HTA implementations of most of the NAS bench-
marks. The table shows the execution times in seconds when the
applications execute on a cluster of up-to 128 processors. Each pro-
cessor is a 3.2 GHz Intel Xeon connected through a Gigabit Ether-
net. For the NAS benchmarks we used the version 3.1, and com-
piled them with the INTEL ifort compiler, version 8.1, and flag
-03. For MATLAB we used the version 7.0.1 (R14). Finally, for
MPI we used MPI-LAM [6].

The execution time for 1 processor corresponds to the serial
execution of the pure Fortran or MATLAB code without MPI or
HTAs. Results in Table 1 correspond to the class C input for EP
and CG, and class B for MG, FT and LU.

As can be seen in the table, in the case of EP and FT the parallel
MATLAB code takes advantage of parallelism leading to execution
times that are of the same magnitude as those of the Fortran+MPI
code. In the case of CG our parallel MATLAB does reasonably
well, although not as well as the Fortran+MPI version that ob-
tains super-linear speedups when the number of processors is 64 or
smaller. However, for MG and LU the performance of the sequen-
tial MATLAB implementation was slow and, in the case of MG,

the parallel MATLAB does not improve upon the serial Fortran
version. Similarly, for BT (not shown) the serial MATLAB version
runs so slow that, even the parallel version is not comparable with
its sequential Fotran counterpart. Overall, for EP, FT and CG where
the sequential MATLAB version runs 1 to 5 times slower than the
Fortran version, the parallel MATLAB implementation does rea-
sonably well improving upon the serial Fortran version. In these
cases, it could be said that parallelism at least compensates for the
interpretation overhead. For 128 processors the parallel MATLAB
obtains speedups of 30.9, 8.8 and 29.3 over the sequential Fortran
counterpart for EP, FT and CG, respectively.

4.2 C++

In the C++ implementation, HTAs are represented as compos-
ite objects with methods to operate on both distributed and non-
distributed HTAs. As in the case of MATLAB , MPI is used
for communication and, while the programming model is single
threaded, HTA C++ programs execute in SPMD form. To facil-
itate programming, our C++ implementation enforces an alloca-
tion/deallocation policy through reference counting as follows: (1)
HTAs are allocated through factory methods on the heap. The
methods return a handle which is assigned to a (stack allocated)
variable. (2) All accesses to the HTA occur through this handle,
which itself is small in size and typically passed by value across
procedure boundaries. (3) Once all handles to an HTA disappear
from the stack, the HTA and its related structures are automatically
deleted from memory. This design permits sharing of sub-trees
among HTAs and also precludes deallocation errors. Moreover, the
temporary arrays that are for instance created during the partial
evaluation of expressions, are handled through this mechanism and
deleted automatically as early as possible.

Performance is one of the main goals of our C++ implementa-
tion. Methods were optimized and whenever possible specialized
for specific cases. Also, the user is given control over the memory
layout of non-distributed HTAs. In MATLAB the layout was in the
hands of the system and the user had no way of influencing it. Fi-
nally, to enable efficient access to scalar components of HTAs, the
implementation was organized to guarantee that hot methodswere
inlined. This last strategy enabled the codes written usingthe li-
brary to have performance similar to that of traditional (non-HTAs)
implementations. For example, the code in Figure 13 represents the
multiplication of two two-dimensional arrays recursivelytiled. The
code is similar to the MATLAB code shown Figure 8.

The code in Figure 13 shows the declaration of the HTAsA, B,
andC. The functionalloc is the factory method that creates the
HTAs. It takes as input the complete tiling information for each
HTA, number of tiles in each dimension(xtiles,ytiles), tile
size (tile size x, tile size y), and memory layout (ROW,
COLUMN, or TILE). The functionmult is recursive. When the input



typedef Tuple<2> T;

HTA<double, 2, 1> A, B,C;
A =HTA<double, 2, 1>::alloc((T(xtiles, ytiles),

T(tile_sz_x,tile_sz_y)),ROW);
B =HTA<double, 2, 1>::alloc((T(xtiles, ytiles),

T(tile_sz_x,tile_sz_y)),ROW);
C =HTA<double, 2, 1>::alloc((T(xtiles, ytiles),

T(tile_sz_x,tile_sz_y)),ROW);

template <int LEVEL> void mult(
HTA<double, 2, LEVEL> A,
HTA<double, 2, LEVEL> B,
HTA<double, 2, LEVEL> C) {

int M = A.shape()[0].size();
int N = B.shape()[0].size();
int Q = B.shape()[1].size();
for (int i = 0; i< M; i++) {

for (int k = 0; k < N; k++) {
for (int j = 0; j< Q; j++) {

mult (A[T(i,k)], B[T(k,j)], C[T(i,j)]);
}}}

}

void mult(double& A,double& B,double& C)
{
C += A * B;

}

Figure 13. Recursive matrix multiplication in C++ using HTAs

template <> void mult(
HTA<double, 2, 0> A,
HTA<double, 2, 0> B,
HTA<double, 2, 0> C){

int M = A.shape()[0].size();
int N = B.shape()[0].size();
int Q = B.shape()[1].size();
for (int i = 0; i< M; i++) {

for (int k = 0; k < N; k++) {
for (int j = 0; j< Q; j++) {

C[T(i,j)]+=A[T(i,k)]*B[T(k,j)];
}}}

}

Figure 14. Specialization ofmult for Leaf HTAs

HTAs have 1 or more levels the generalmult function is called.
When the recursion reaches the scalars finally, the functionmult
for scalars is called.

It is possible to specializemult and terminate the recursion at a
different level. For example in Figure 14, the recursion ends at level
0. At this point, an optimized library generated code can also be
used to perform the matrix-matrix multiplication. For example, in
Figure 15 the mini-MMM code generated by ATLAS [25] is used.
The mini-MMM code is optimized for matrix-matrix multiplica-
tion of smaller matrices that fits into the cache. It benefits from
optimizations like register-level tiling, unrolling and prefetching.
In all the figures,T(i, j) represents the subscript pair(i, j).
The code of Figure 13- 15 can be tuned for practically any memory
hierarchy configuration. This can be accomplished with minimal
modifications to the source code, by changing the number of levels
and sizes of the tiles in the HTA constructor.

template <> void mult(
HTA<double, 2, 0> A,
HTA<double, 2, 0> B,
HTA<double, 2, 0> C){

ATL_Mini_MMM(A, B, C);
}

Figure 15. Specialization with a call to a wrapper function that in
turn calls the mini-MMM code generated by ATLAS.

Approach Implementation Address Space Control
Language Library Global Local MT ST

CAF
√ √ √

GAS
√ √ √

HPF
√ √ √

HTA
√ √ √

MPI/PVM
√ √ √

POET
√ √ √

POOMA
√ √ √

Titanium
√ √ √

UPC
√ √ √

X10
√ √ √

ZPL
√ √ √

Table 3. Characterization of parallel programming infrastructures

To give an indication of the overhead of our current C++ imple-
mentation, we show in Table 2 the performance results in MFLOPs
for matrix-matrix multiplication (MMM). Results are shownfor
different matrix sizes and six different versions: a naı̈veimplemen-
tation of MMM with 3 nested loops (Naı̈ve 3 loops), a tiled ver-
sion with 6 loops (Tiled 6 loops), our HTA matmul implemen-
tation in Figure 13(HTA naı̈ve), an HTA matmul implementation
where the MMM code for level 0 has been implemented using the
mini-MMM code generated by ATLAS [25] (HTA+ATLAS), ATLAS
and theINTEL MKL library [1]. For ATLAS we used the MMM
code with the parameter values that ATLAS found to be optimal
for tile size, and register blocking parameters, among others. No-
tice that SSE multimedia extensions were not used forHTA+ATLAS.
For the tiled implementations (all exceptNaı̈ve 3 loops) we used
a square tile of36 × 36, which is the value that we found to be the
optimal for the machine where we ran the experiments (an INTEL
Pentium 4 with 3.0 Gz and 8KB in L1). ForNaı̈ve 3 loops and
Tiled 6 loops we show results using the gcc compiler, version
3.2.3. For the HTA implementations we used g++, version 3.2.3,
since our HTA implementation has been done in C++. For ATLAS
we used the version 3.6.0 and for the INTEL MKL library we used
the version 8.0. Notice that INTEL MKL runs faster than the oth-
ers because it uses INTEL SSE2 vector extensions, while all the
other versions use scalar code. As can be seen by comparing the
HTA+ATLAS with the ATLAS column, the overhead introduced
in our current implementation by one level of HTA is between8

and13.5%.

5. HTAs and Other Parallel Programming
Infrastructures

In this section, we compare the HTA approach with some of the
other parallel programming infrastructures. Table 3 presents a sum-
mary of the main characteristics of the programming infrastructures
discussed in this section. The first column classifies the program-
ming infrastructure according to the type of implementation. (1)
libraries containing operations that represent communication and



Matrix Size Naı̈ve 3 loops Tiled 6 loops HTA naı̈ve HTA+ATLAS ATLAS Intel MKL(1)

504 161 657 675 2069 2387 3624
1008 150 649 679 2192 2384 3762
2016 133 632 675 2216 2492 3821
3024 135 644 668 2245 2509 3716
4032 36 588 613 2217 2519 3752

Table 2. Performance in MFLOPS for different versions of matrix-matrix multiplication. (1) MKL uses SSE2 vector extension.

data sharing on programs where the rest of the operations arerepre-
sented in conventional, sequential constructs and (2) programming
language constructs or directives designed to represent parallelism
implicitly or explicitly. The second column classifies the infrastruc-
tures according to the address space seen by each component of the
parallel program. Except for the message-passing library approach,
where a thread of execution is only allowed to reference datalo-
cated in the node where it is running (local view), all other pro-
gramming models allow the threads to access data located in any
node (global view). The third column distinguishes betweenthose
approaches where the operations of each individual thread must
be specified separately (multiple-threaded or MT) and thosewhich
provide a single-threaded (ST) view of the computation. We now
compare the library and language approaches in three separate sub-
sections: discussing the HTA approach, other library approaches,
and the language extension approach.

5.1 The HTA library

As we have seen in Section 4, the HTA class can be integrated
in a very natural way in different languages thanks to operator
overloading and the polymorphic features of current OO languages.
Thus, the resulting programs tend to be more readable than those
based on conventional libraries. As mentioned in the introduction,
the most important characteristic that distinguishes HTAsfrom all
other approaches is the consideration of the tile and its possible
hierarchical decomposition as first-class concepts. This makes the
HTAs ideal to design and write programs that can be naturally
expressed in terms of blocks (e.g.. several matrix multiplication
algorithms -Cannon [7], Summa [13]-, solvers such as LU, etc.)
or which can be solved recursively (e.g., FT). Such blocks can
be used to achieve parallelism or data locality or both, possibly
using several levels of tiling for different purposes. WithHTAs it is
easy to adjust the point where recursive computations end and the
iterative solutions start by changing the number of levels of tiling.

As shown in Table 3, HTA and POOMA [23] are the only
library-based approaches that provide a global view of the data and
follow a single threaded programming approach. This combination
helps programmers’ productivity in at least two ways. First, pro-
grammers can use familiar sequential programming languages, and
reuse sequential modules, perhaps with small changes. Therefore,
programmers can write parallel programs practically in thesame
way they write sequential programs. Second, the single-threaded
semantics of HTAs eases the transition from sequential to par-
allel because programmers need not be concerned with the pro-
gram’s behavior on a per processor basis, deadlocks, race condi-
tions, etc., since parallelism and synchronization are implicit. The
single-threaded property also improves readability. Furthermore, in
the case of HTA, flattening enables gradual migration of sequential
applications to parallel form. This was the approach we followed in
our translation of the NAS benchmarks from sequential MATLAB
to the HTA-based parallel version.

A good indication of the benefit of the single-threaded form is
obtained by comparing the number of lines of code of the HTA with
those of MPI programs. Although the number of lines of code isnot
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Figure 16. Linecount of key sections of HTA and MPI programs.

the best metric to measure ease of programming, it can give a rough
estimate of program complexity. The plot in Figure 16 shows the
lines of code for HTA and MPI codes. Since MATLAB language
does not have declarations, we ignored those lines from the FOR-
TRAN/MPI codes as well. Each bar shows the lines of code for the
computation, communication and data decomposition sections of
the codes. The difference in the number of lines of computation is
not relevant to our discussion here since it is due to the characteris-
tics of the MATLAB language, especially the availability ofvector
operations. However, the other two numbers are good indications
of ease of programming and clearly show the advantages of HTAs.
Thus, the lines of code for communication are significantly lower
in HTA programs. The reason is that HTA programs only need
assignment instructions to perform communication, while in MPI
programs, in addition to the send and receive instructions,packing
and unpacking data and checking boundary conditions in the com-
munication are also needed. HTA programs also have significantly
fewer data decomposition instructions. HTAs are partitioned and
distributed using the single HTA constructor, while MPI programs
need to compute the limits of data owned by each processor, neigh-
bors of a given processor, active set of processors in a givenstep of
the program, etc.

A downside of the single-threaded approach is that asyn-
chronous overlap is not easy to express explicitly. However, much
of this overlap can be achieved automatically with the appropriate
implementation.

A valuable property of a programming approach is the abilityto
convey to the programmers the cost of the execution of their code.
This is particularly true in the case of parallel environments, where
communication costs can easily dominate the execution time. HTAs
are faithful to this idea: the statements that require data communi-
cation are clearly identified in the code either because of the usage



of different indexes in the tiles, or because of the invocation of func-
tions that involve data communication (transposition, circular shift,
etc.).

HTAs have also drawbacks. For example, just as the other
global-view approaches [12], they only allow limited formsof
task-parallelism. Other limitations are due to the implementation.
For example, our current implementation as a library forcesto use
dynamic analysis techniques to determine the communication pat-
terns required when data is to be shuffled among processors. A
compiler could calculate statically those patterns when they are
regular enough, and generate a code with less overhead.

5.2 Other Library Approaches

The most popular parallel programming approach for distributed-
memory systems is the use of a message passing library such as
MPI [15] or PVM [14]. In this approach, the programmer has a lo-
cal view of the data structures and must write programs that execute
in a SPMD fashion. The communication and computation state-
ments can be interleaved in an unstructured manner, potentially
leading to programs that are difficult to understand and maintain.

An improvement over this approach is the usage of libraries that,
while requiring SPMD programming, provide the user with a global
view of the data structures. This is the case of the Global Arrays
library [20] or the POET framework [4]. However, the SPMD
programming style and the requirement of explicit synchronization
complicates programming.

Other libraries like POOMA [23] integrate their classes in ahost
OO language, and exploit operator overloading and polymorphism
in order to provide a global view of the data and a single-threaded
view of the computation, as our HTA library. However, POOMA
differs in fundamental ways from our approach. For example,while
POOMA’s arrays can be distributed in tiles, the library provides
no easy means to explicitly refer to those tiles. Also, hierarchical
decomposition is not natural to POOMA’s arrays, while it is a
defining property of HTAs.

5.3 Language/Compiler Based Approaches

Several infrastructures are based on new languages with constructs
to control concurrency and distribution. As we can see in Table 3,
all the language-based approaches provide a global view of the
data, but they can be classified in two groups according to their
view of the control flow: The multiple-threaded languages, like Co-
Array Fortran (CAF) [21], Titanium [27],UPC [8] or X10 [11];and
single threaded form like High Performance Fortran HPF [16,18]
and ZPL [9]. All these approaches (except HPF) share a common
drawback: they force programmers to rewrite their applications in
parallel from scratch, an effort that can be ameliorated by providing
interfaces with codes and libraries written in other languages.

5.3.1 Multiple-threaded Languages

The control model of many language-based infrastructures is ex-
plicitly parallel SPMD in which programmers are responsible for
managing data distribution and low-level synchronization. An ad-
vantage of these languages is that they are much more suitable than
the single-threaded counterparts for expressing task parallelism.

Another common characteristic of these languages is that they
provide a Partitioned Global Address Space (PGAS), in which
any thread of execution can create objects that can be accessed
by other threads. And each thread and piece of data is associated
with exactly one node of execution. They typically provide also
constructs to distinguish between remote and local accesses. This
helps programmers reason about the cost of their codes.

5.3.2 Single-Threaded Languages

In single-threaded languages, communication and synchronization
are no longer responsibility of the programmer, but of the com-
piler. Programs written in this model tend to be shorter and eas-
ier to understand and maintain than those expressed in localview
languages, which increases programmers’ productivity. The down-
sides of these languages are their limited ability to express irregular
parallelism and the responsibility they put on compiler technology,
which may not be developed enough to generate efficient codesin
some situations.

Different strategies have been studied to provide parallelcodes
with a global view of the algorithms to execute. For example,
High Performance Fortran (HPF) [16, 18] annotates sequential
Fortran codes with directives that specify array distribution, loop
scheduling, etc. These directives are optional, and there is little
information about how the compiler will translate them. Thelack
of a clear performance model makes it difficult for programmers to
reason about an algorithm’s performance.[19].

Another approach is design a language from scratch, which
is the case of ZPL [9]. This language is designed in order to
minimize the effort of the compiler. Its syntax allows to identify
the operations that generate communication and their qualitative
cost in a similar way to our HTAs.

6. Conclusions
In this paper we have introduced Hierarchically Tiled Arrays
(HTAs). Our experience with the implementation of the NAS
benchmarks and a few kernels using this new data type indicates
that HTAs are an effective device for the development of highper-
formance programs that are readable, easy to develop and maintain.
During this study we determined that well-known array operations
can be overloaded to represent communication and parallel com-
putation and that, at least for the NAS benchmarks and the kernels
we considered, are sufficient to represent efficient implementation
of parallel algorithms and algorithms with a high degree of local-
ity. We expect that the study reported in this paper will leadto
useful portable libraries and provide insights useful for the further
development of vector constructs and vector languages. This last
issue is particularly important since vector operations are a pow-
erful mechanism to express parallelism in a structured manner for
many classes of algorithms.
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