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Abstract

Tiling has proven to be an effective mechanism to develop hig
performance implementations of algorithms. Tiling can lsecu
to organize computations so that communication costs iallpar
programs are reduced and locality in sequential codes oesgigl
components of parallel programs is enhanced.

In this paper, a data type - Hierarchically Tiled Arrays orA$T
- that facilitates the direct manipulation of tiles is irdteed.
HTA operations are overloaded array operations. We argae th
the implementation of HTAs in sequential OO languages trans
forms these languages into powerful tools for the developroé
high-performance parallel codes and codes with high denfrke
cality. To support this claim, we discuss our experiences e
implementation of HTAs for MATLAB and C++ and the rewriting
of the NAS benchmarks and a few other programs into HTA-based
parallel form.

Categories and Subject Descriptors D.1.3 [Programming Tech-
nique§: Concurrent Programming; D.3.3Pfogramming Lan-
guage¥ Language Constructs and Features

General Terms Language

Keywords Parallel programming, data-parallel, locality enhance-
ment, tiling

1. Introduction

This paper introduces a type of object that facilitates tlowigion

of locality and parallelism. These objects are tiled array®se
tiles could be tiled and whose components, tiles or the Uyider
scalars, can be accessed using an intuitive notation. ér atbrds,

a hierarchically tiled array can be accessed as a flat n-diimeal
array where the scalar elements are addressed using thenconv
tional subscript notation or as a hierarchy of tiles whosepo-
nents are addressed by a sequence of subscript tuples,raacfo
level of tiling.
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The main motivation behind the design of thésierarchically
Tiled Arraysor HTAs is that, for a wide range of problems, data
tiling has proven to be an effective mechanism for improvieg-
formance by enhancing locality [26] and parallelism [3, 928].
Our objective in this paper is to make a first attempt in thatidie
cation of the set of operations on tiles needed to develogranos
that are at the same time readable and efficient and to shaw tha
such operations facilitate programming of high perforneacem-
putations.

To implement parallel computations for distributed memory
machines, HTA tiles are distributed. Parallel computati@nd
communications are represented by overloaded array opesat
Thus, interprocessor communication operations are reptes by
assignments between HTAs with different distributionsrafel
computations take the form of array (or data parallel) dj@na on
the distributed tiles. HTAs are designed for use by singleated
programs where parallel computations are representedas@y-
erations. As a result, parallelism is highly structuredjolthim-
proves readability over the SPMD paradigm. The use of arpy o
erations to represent parallel computations on a disetbotemory
system is, of course, not new. It was the only mechanism tcessp
parallelism in llliac 1V [5] and other SIMD systems and it Hasen
used in a variety of languages including High Performance Fo
tran [3] and its variants [10] and ZPL [9], X10 [11], and otber
The main contribution of HTA is the use of array operationse
nipulate tiles directly. HTAs are also useful for the deyehent of
efficient programs for shared-memory and uniprocessor atemp
tions because data tiling tends to reduce data traffic in SMP-c
putations and increase locality in sequential computatidtore
specifically, HTAs are a convenient notation to program oote
processors and hybrid parallel machines such as the CELadBro
band Engine [22]. Furthermore, because of their hieraathia-
ture, HTAs can be used to take advantage of the multiple devel
of parallelism that can be exploited by systems such aseckisf
multicore processors as well as multiple levels of memoeyari
chy.

The rest of the paper is organized as follows. In Section 2, we
describe HTAs and the operations on them that we have found
most useful in our studies. In Section 3, we present some code
examples to illustrate how a few important parallel kernes
be implemented with HTAs. Our objective in this Section is to
demonstrate that HTAS can be used to produce elegant ariiil/@tu
formulations of these kernels. In Section 4 we discuss dartsfto
incorporate HTAs in two sequential languages: MATLAB andtfC+
Finally, in Section 5 we compare the HTA approach with other
parallel programming approaches. Finally, Section 6 aales.
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Figure 1. Pictorial view of a Hierarchically Tiled Array.
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F= hta(M, {[1 3 5],[1 3 5]}, [2,2])
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Figure 2. Construction of an HTA by partitioning an array-(a).
Mapping of tiles to processors-(b).

2. A New Programming Paradigm

In this Section we describe the semantics of the Hierartihica
Tiled Arrays (HTA) (Section 2.1), their construction andstdi-
bution (Section 2.2) mechanisms to access the HTA compsnent
(Section 2.3), assignment statements and binary opesafi®ec-
tion 2.4) and other HTA methods (Section 2.5). For simplidit

all the examples in this Section we use the syntax of our MABLA
extension.

2.1 Semantics

Hierarchically Tiled Arrays (HTAS) are arrays partitionetb tiles.
These tiles can be either conventional arrays or lower ldiesiar-
chically Tiled Arrays. Tiles can be distributed across pssors in

a distributed-memory machine or be stored in a single maciin
cording to a user specified layout. We distribute the outstriles
across processors for parallelism and utilize the innes fibr lo-
cality. Figure 1 shows an example of an HTA with two levels of
tiling.

2.2 Construction of HTAs

Two different approaches can be used to create an HTA. The firs
is to tile an existing array using delimiters for each dimensFor
example, i is a6 x 6 matrix, the functiorhta(M, {[1 3 5],[1
3 51}) creates & x 3 HTA resulting from partitioning! in tiles of

2 x 2 elements each, as show in Figure 2-(a). The second parameter

of the HTA constructor is an array of vectors that specifies th
starting location of the tiles. Theth vector contains thpartition
vectorfor thei-th dimension of the source array. The elements of
this partition vector mark the beginning of each sub-tilengl the

C(1:2,3:65—
C{2,1H{1,2}(1,2) or
| > C{2,1}(1,4) or

C{2,1}~_|

Figure 3. Accessing the contents of HTAs.

hta(3,3) creates an HTA witl3 x 3 empty tiles. To complete the
HTA, each tile must be assigned a content after the empty ishel
created.

The tiles of an HTA can be local or distributed across proces-
sors. To map tiles to processors, the topology of the meshosf p
cessors and the type of distribution (block, cyclic, blogklic, or
a user-defined distribution) must be provided. Figure 2stimws
an example where @& x 6 matrix is distributed on & x 2 mesh
of processors. The last parameter of the HTA constructarifipe
the processor topology. In our current implementation,défault
distribution is a cyclic distribution of the tiles on the rhesvhich
corresponds to a block cyclic [3] distribution of the matoan-
tained in the HTA, with the blocks defined by the topmost lefel
tiling.

Notice that, although not illustrated here due to spacetdimi
tions, HTAs can be built with several levels of tiling, likadse
shown in Figure 1.

2.3 Accessing the Componentsof an HTA

Figure 3 shows examples of how to access HTA components. The
expressiorc{2,1} refers to the lower left tile. The scalar element
in the fifth row and fourth column can be referencedcés, 4)
just as ifC were an unpartitioned array. This element can also be
accessed by selecting the leaf tile that contains it anelidive po-
sition within this tile:c{2,1}{1,2} (1, 2). A third expression rep-
resentingC (5,4) selects the top-level tile{2, 1} that contains the
element and theflatters or disregards its internal tiled structure:
c¢{2,1}(1,4). Regions such as(1:2,3:6) can also be accessed
using parenthesis to disregard the tiling of the HTA. Theultesf
such expressions do not keep the tiled structure of the Hi, t
is, C(1:2,3:6) will simply return a plain standar@ x 4 matrix.
If the HTA C is distributed, this output matrix is a replicated local
object that appears in all the processors. Flattening igcpéarly
useful when transforming a conventional program onto d filem
for locality/parallelism or both. During the intermediateeps of
the transformation, regions of the program can remain uiifiedd
and arrays accessed as if they were not partitioned whilghiero
regions, the arrays are manipulated by tiles.

Sets of components may be chosen at any level and along each
dimension using triplets of the forbreginstepend The : notation
can be used in any index to refer to the whole range of possible
values for that index. For example{2,:}(1:2:4,:) refers to
the odd rows of the two lower outer-level tiles@f
We can also use boolean arrays as HTA subscripts When this
logical indexing is applied every true element in the boolagay
used as a subscript designates a tile of the HTA based on the
position of the true elements. As illustrated in Figure 4iday
indexing allows the selection of arbitrary, banded diagonapper

corresponding dimension. In our example, rows 1 , 3 and 5, and triangular tiles of an HTA.

columns 1, 3 and 5 are the partitions points.

Alternatively, an HTA can be built as an empty set of tiles. In
order to create an HTA of this form, the HTA constructor is in-
voked with the number of desired tiles per dimension. Formgta,

2.4 Assignmentsand Binary Operations

We generalize the notion of conformability of Fortran 90. &ih
two HTAs are used in an expression, they must be conformable.



true false true 11 1 123
K =| false false false =12 2 2| J=|1 2 3
true false true 3 3 3] 123
A(K) A(I==) A(J>=l1)
Figure4. Logical indexing in HTA.

:

V{2:3,:}(1,:)=
V{1:2,:)(5,:)

Figure 5. Assignment of all the elements in the last row of each
one of the tiles located in the rows of tiles 1 and 2 to the fivst r
of the corresponding tiles in the rows of tiles 2 and 3.

That is, they must have the same topology (number of levals an
shape of each level), and the corresponding tiles in theldggo
must have sizes that allow the operation to act on them. The op
eration is executed tile by tile, and the output HTA has theesa
topology as the operands.

Also, an HTA and an untiled array are conformable when the
array is conformable with each of the leaf tiles of the HTA. An
HTA and a scalar are always conformable. When an untiled/arra
is operated with an HTA, each leaf tile of the HTA is operatethw
the array. Also, when one of the operands is a scalar, it isaoge:
with each scalar component of the HTA. Again, the output HTA
has the same topology as the input HTA.

Assignments to HTAs must follow similar rules to those of
binary operators. When a scalar is assigned to a range dfquesi
within an HTA, the scalar is replicated in all of them. Wheraaray
is assigned to a range of tiles of an HTA, the array is repitao
create tiles. Finally, an HTA can be assigned to another H¥Aa(
range of tiles of it).

References to local HTAs do not involve communication.
However, in distributed HTAs assignments between tilesctvhi
are in different processors involve communication. Coesid
3 x 3 distributed HTA,V. The assignmenv{2:3,:}(1,:) =
v{1:2,:}(5,:) copies all the elements in the fifth row in the
two first rows of tiles to the first row in the tiles in the twolasws
of tiles as shown in Figure 5. When the tileswfre distributed
across processors, this assignment involves commuricatio

25 Other HTA Methods

We have overloaded frequently-used functions on arrayl asc
circshift, transpose, permute, Of repmat, as well as the
standard arithmetic operators so that when applied to Hhag t
operate at the tile level. For example, the MATLAB function
circshift implements circular shifts for arrays. The overloaded
HTA version shifts instead whole tiles of HTAs, which invels
interprocessor communication when the HTAs are distrithute
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h=hta(1,3 h = transpose(hpr h’ ~
(£.3) h = permute(h,[2,1]) h = dpermuteth,[2,1]
() (b) (c)
Figure6. Permute and dpermute.
X=hta (A, {[1], [1], [partition-z]},
P [1,1,nprocs])
= xX=££ft (X, [1,1)
X=££t (X, [1,2)
g X=dpermute (X, [3,1,2])
5 X=££ft (X, [1,1)
™ o
-
Y dimension P
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Figure7. Data Permutation in FFT.(a)-Pictorial view.(b)-code

We have also implemented methods, only applicable to the HTA
class, that we have found to be useful in many parallel progra
These are methods likeeduceHTA which is a generalized reduc-
tion method that operates on HTA tiles, asukHTA which applies
in parallel the same function to each tile of an HTA.

3. HTA operations

In this Section, we use code examples to illustrate how th& HT
assignments and methods mentioned in the previous sectinbec
used to write parallel programs. The examples are simpleeker
and the NAS parallel benchmarks [2], which we implementéigus
MATLAB extensions. We classify the methods as either comimun
cation operations or global computations.

3.1 Communication Operations

In HTA programs, communication is represented as assigtsoen
distributed HTAs as shown in the example in Figure 5. However
in HTA programs, communications can also be expressed using
methods such asermute, circshift andrepmat. We discuss
them in the next Sections.

3.1.1 PermuteOperations

Figure 6 shows two examples pérmute operations. Figure 6-(b)
shows the HTA that results after applying the overloaded MAB
transpose Of permute operator to the HTA in Figure 6-(a). Fig-
ure 6-(c) shows the HTA that results after applying a new th
calleddpermute, which is a special case of a permutation opera-
tion where only the data are transposed, but the shape obthe c
taining HTA remains the same. That is, the number of tilesaiche
dimension remains constant. Thus, as shown in Figure Gfe),
ter thedpermute operator the data have been transposed, but the
resulting HTA containd x 3 tiles, as in Figure 6-(a).

Thedpermute operator is applied in the NAS FT, and operates
on a 3-D array £) which is partitioned into tiles which are dis-
tributed along the dimension, as shown in Figure 7-(a). To com-
pute the Fourier Transform (FT) along thelimension we need to
bring the blocks from the distributed dimension to the umitiated
ones so that the FT can be locally applied. Figure 7-(b) staws
outline of the NAS FT. The FT along the first and second din@mnsi
of an HTA is computed using the overloaded version of thedsteth
MATLAB fft operator which applies the standard MATLAE t



function C = cannon(A,B,C)

for i=2:m
A{i,:} = circshift(A{i,:}, [0, -Gi-1)]);
B{:,i} = circshift(B{:,i}, [-(i-1), 01);
end
for k=1:m-1
C=C+ A x B;
A = circshift(A, [0, -11);
B = circshift(B, [-1, 0]);
end

Figure8. Cannon’s algorithm using HTAs.

function C = matmul (A, B, C)
if (level(A) == 0)
C=C+ A x B;
else
for i=1:size(A,1)
for k=1:size(A,2)
for j=1:size(B,2)
c{i, j} = matmul(A{i,k}, B{k,j}, C{i,j});
end
end
end
end

Figure 9. Recursive matrix-matrix multiplication that exploits
cache locality.

to each of the tiles of the HTA along the dimension specified in
the third parameter. To apply theft along the third dimension,
we need to make this dimension local to a processor. Fort,
transpose the HTA using the HTdpermute operator explained
above. Notice that when programming with HTAs it is possible
determine where communication occurs if the distributibtiles
across the processors is known.

3.1.2 Circular Shift

The communication pattern of the circular shfi ¢cshift) oper-
ator appears in Cannon’s algorithm [7], which is shown iruirégB.
HereA andB arem x m HTASs tiled along both dimensions and
mapped onto a mesh af x n processors. To implement Cannon’s
algorithm, the first loop shifts circularly the tiles irandB to place
them in the appropriate position. To this end, tiles in riogf A are
circularly shiftedi-1 times to the left. Similarly, tiles in columiof

B are circularly shifted up-1 times. In each iteration of the main
loop, each server executes a local matrix-matrix multgslan of
the tiles ofA andB which each processor owns. The result is ac-
cumulated into a local tile of the resulting HTA, Then tiles ofa
andB are circularly shifted once. Tiles af are circularly shifted

to the left, and tiles oB are circularly shifted up. At the end of
the main loop, the result of the matrix multiplication is tH&A C
which is distributed across processors with the same mgpyia
andB. A more conventional implementation of Cannon’s algorithm
will shift rows of matrixA and columns of the matric@&instead of
shifting tiles and the multiplication will be element by elent, not

a matrix-matrix multiplication of tiles as in our HTA impleanta-
tion. (The MATLAB * operator has been overloaded such that it
performs a tile-by-tile matrix multiplication). The maidweantages

of the tiled approach is aggregation of data into a tile fanowu-
nication and the increased locality resulting from a sirmgkrix-
matrix multiplication over the element by element muliggliion.
We can further increase cache locality by using HTAs with two
more levels of tiling. Thus, the tiled matrix-matrix muliigation

function C = summa (A, B, C)

for k=1:m
Tl = repmat(A{:, k}, 1, m);
T2 = repmat(B{k, :}, m, 1);
C=C+ Tl *x T2;

end

Figure 10. SUMMA Matrix Multiplication using HTAs.

matmul of Figure 9 can be applied to each pair of corresponding
tiles by writingC = parHTA (@matmul, A, B, C) in the Can-
non’s algorithm of Figure 8. By usingarHTA (discussed in Sec-
tion 3.2), thematmul function is applied in parallel to all the tiles
of HTAs 4, B andC. In Figure 9 thelevel (A) function will return

0 whenaA is either a scalar or a matrix. Afis not a scalar or a matrix
we have to recursively proceed down into the HTA hierarchyl un
we reach the leaf tile of the HTA. The functieize (H, i) returns
the number of tiles of an HTA H along theth dimension. Notice
that the implementation of Cannon’s algorithm that usesmul
works correctly regardless of the number of levels of tileshe
hierarchy.

3.1.3 Repmat

Another important type of communication is replicatiaremat)
which appears in the SUMMA Matrix algorithm [13] shown in Fig
ure 10. This algorithm is based on the outer product versidheo
matrix multiplication. In SUMMA, the resulc of the multiplica-
tion of the matrices andB is computed as the addition ofwith
the outer product of columk of A and rowk of B, for each possible
value ofk. In our implementation, matricesandB are tiled and
distributed one tile per processor across a two-dimenbkmoaes-
sor mesh. The column of tileg{ : ,k} is replicated on all columns
of processors and the row of til&{k, : } is replicated along all
rows of processors. This replication is achieved with arrloagled
version of therepmat vector operator.

3.1.4 Logical Indexing

A more complex pattern of communication appears in parallel
wavefront computations. This type of computations resiutis
the parallelization of codes where the value of an elemepeigs
on the value or values of neighbors elements computed inqugv
iterations. These codes can be efficiently parallelized dwyput-
ing in parallel the element of each diagonal of the matrixemeh
the angle of the diagonal is a function of the dependences piidr
cessors compute local data before sending them to the parses
containing the dependent data. Wavefront computationslsarbe
parallelized in a tiled fashion, and for that we used logindex-
ing. Figure 11-(a) shows a Fortran code with a 2D wavefroni-co
putation. The tiled HTA version is shown in Figure 11-(c),em
logical indexing is used to determine the tiles that can ajgein
each iteration of th& loop. Those tiles where the conditida+y

== k) is true will locally compute the 2D wavefront computation.
A pictorial view of how the computation advances acrosstite
shown in Figure 11-(b), where the values of thandy matrices
are also shown. In the Figurg,is am x n HTA, distributed on a
m X 1 processor mesh, so that rows of tiles are mapped to the same
processor. The last two statements in Figure 11-(c) copyatte
row and column of tiles that finished the computation in itiera

k to the first row and column of the tiles that are going to staet t
computation in the iteratiok + 1. A parallel wavefront similar to
the one shown in Figure 11 appears in the LU NAS code.



for i=2:m-1
for j=2:n-1 for k=2.:m+n )
A(i,j)= A(i-1,3) + for i=2:dimx-1
A(i, §-1); for j=2:dimy-1
' ’ A{xty == k} (i, j) = A{xty == k}(i-1, J) +
end Af{x+y == k} (i, j-1);
end end
1111 1234 end
x=|2222y=|1234 A{x+y == k+1 & x>1}(1, :) = A{x+y == k & x<m} (dimx-1,:);
3333 1234 end1-\{x+y == k+1 & y>1}(:, 1) = A{x+y == k & y<n}(:, dimy-1);

(a) (b)

(c)

Figure 11. 2-D wavefront computation.(a) Fortran code. (b) Pictoviaiv. (c) HTA code using logical indexing.

3.1.5 Redistribution

A different pattern of communication appears in a type of sci
entific applications that use Adaptive Mesh Refinement, wizer
portion of the mesh needs to be re-distributed across theegro
sors. Redistribution can be done by selecting the sectiotinef
array underlying the HTA and specifying a new distributian:
= hta(H(x1:x2, yl:y2), {partition vectors}, [m nl),
where HTAH contains the regioix1:x2, y1:y2), that we want
to redistribute. The region of interest is selected firstnth stan-
dard non-partitioned matrix is generated. This matrix msturn,
partitioned using the appropriate partition vectors, ideorto dis-
tribute the resulting tiles ona x n processor mesh.

3.2 Global Computations

The simplest form of global computation is achieved by ofyega
in parallel on a set of tiles from an HTA distributed acrossieafiel
machine. This can be accomplished withrHTA (@func, H) that
applies the functiofiunc. In MATLAB @func represents a pointer
to functionfunc. Many global computations take the form of re-
duction operations where the operator casig max, or a user de-
fined function. These operations can be expressed in HTA@neg)
with thereduceHTA method. Figure 12 shows a matrix-vector mul-
tiplication where thereduceHTA method is appliedd is an HTA
containing the matri¥X which is distributed across x n proces-
sors and tiled as specified pgrtition_A. B is a two-dimensional
HTA obtained by replicating the htéa which contains the vector
VX to multiply. The HTAV is replicatedn times as specified by the
operatorrepmat (V,m, 1). SinceV is a distributed HTA replication
takes place along the vertical dimension of the processehniée
matrix-vector multiplicationA * B takes place locally and each
processor multiplies its portion of the matrixby its portion of
the vector inB. Notice that the row vectoB has been first trans-
posed within each processor pyrHTA(@transpose,B) into a
column. After the multiplication, a reduction along the \the
second dimension as specified in the 3rd parametesdiceHTA)
will generate the resulting HTA which consists of a column vec-
tor distributed across the: rows of ourm x n mesh and repli-
cated along it3: columns of processors. This vector is replicated
because theeduceHTA operator was invoked with the last param-
eter set totrue, which indicates that it is an all-to-all reduction.
The core computation of NASG benchmark is a sparse matrix-
vector multiplication. Notice that the code is highly siifipld by
the overloading of array operators so that they also apphpéwse
arrays.

4. Two Implementations

We have developed implementations of the HTA class for two
sequential languages: MATLAB and C++. We have also imple-
mented an extension of the X10 parallel language developed b
IBM in which HTAs replace distributed arrays. We implemehte

= hta(MX, {partition_A},
hta(VX, {partition_B},
repmat(V, m, 1)
parHTA (@tranpose, B)
reduceHTA(’sum’, A * B, 2, true);

[m nl);
[m nl);

QWwm< >
]

Figure12. HTA code for matrix-vector multiplication

HTAs as a class using the OO capabilities of each of these two
languages. Although a single implementation could be ussuba
languages, we decided to develop a different implememdto
each one of these languages mainly because our first imptamen
tion, developed for MATLAB , demonstrated that, for many eom
putations it is difficult to obtain reasonable absolute eniance.
To avoid the inefficiencies of MATLAB , we reimplemented the
library in C++ and X10. To obtain the syntax of HTA shown in
the previous sections, we applied the operator overloachpgbil-
ities of MATLAB . So far, we have not taken advantage of oparat
overloading in our C++ implementation and, as a result, tre c
rent notation is somewhat verbose, but this will be fixed.oBel
we briefly discuss the MATLAB and C++ implementations.

41 MATLAB

The purpose of our first implementation on MATLAB was to
demonstrate that a conventional sequential language teuhs-
ily extended for parallel computation using HTAs. MATLAB wa
a natural choice for this experiment because of its arrajasyaind
OO capabilities. We found that MATLAB ’s syntax for cell ayra
accesses, generalized with triplet notation and extenoedidw
operations between components, was convenient to repid3an
accesses and therefore we adopted it. HTAs were implemasted
a MATLAB toolbox programmed in both C and MATLAB with
invocations to MPI primitives. The MATLAB toolbox mechanis
proved adequate to implement with reasonable efficiencynatd
ural syntax all needed HTA operations except fortheall array
operation. However, we were able to develop an elegant imgrhe
tation of all the codes we studied withafdrall.

Our first MATLAB implementation of HTAs followed the
client/server model in which the main thread is executed work-
station and HTAs are stored and manipulated in a distribsysel
tem that operates as a co-processor. Although this appfeaiti
tates program understanding, it requires too much comratiait
between the workstation and the processors in the backdnoamn
allel machine. We decided to change the implementatiortimia
SPMD execution model although the programmer could siitikh
in terms of the client-server model to understand the foneti be-
havior of the program (but, of course, not to analyze peréoroe).
This was achieved by executing the program on all processats
replicating on each processor scalar variables, arrays,nan-
distributed HTAs. All processors redundantly execute thgu-



Nprocs EP (CLASS C) FT (CLASS B) CG (CLASS C) MG (CLASS B) LU (CLASS B)
Fortran+ | Matlab + || Fortran + | Matlab + || Fortran + | Matlab + || Fortran + | Matlab + || Fortran + | Matlab +

MPI HTA MPI HTA MPI HTA MPI HTA MPI HTA
1 901.6 3556.9 136.8 657.4 3606.9 3812.0 26.9 828.0 15.7 245.1
4 273.1 888.8 109.1 274.0 362.0 1750.9 17.0 273.8 6.3 60.5
8 136.3 447.0 65.5 159.3 123.4 823.6 9.6 151.3 2.9 29.9
16 68.6 224.8 37.2 87.2 89.5 375.2 4.8 87.0 1.2 16.0
32 34.7 112.0 20.7 42.9 48.4 250.3 3.3 54.9 1.1 9.8
64 17.1 56.7 10.4 24.0 44.5 148.0 1.6 50.4 1.3 7.1
128 8.5 29.1 5.9 15.6 30.8 123.0 1.4 38.5 1.6 N/A

Table 1. Execution times in seconds for some of the applications élNAS benchmarks for Fortran+MPI versus MATLAB +HTA. The
execution time for 1 processor corresponds to the seridicapipn in Fortran or MATLAB , without MPI or HTAs.

tation not involving distributed HTA operations. Since @ddita are
replicated, the behavior in each processor is exactly theesas
what would be the behavior of the client except that no commun
cation is necessary to use data from the main thread in dpesat
on distributed HTAs. On invocation of a method on a distréolt
HTA, each processor applies the corresponding operatiadheo
tiles of the HTA it owns.

The incorporation of HTAs in MATLAB produced an explicitly
parallel programming extension of MATLAB that integratessn-
lessly with the language. Most other parallel MATLAB extiems
either make use of extraneous primitives (MultiMATLAB [24)r
do not allow explicit parallel programming (Matlab*P [17Also,
the incorporation of HTA gives MATLAB a mechanism to access
and operate on tiles much more powerful than that providetiéiy
native cell arrays. The main disadvantage of the implementa-
tion is that the immense overhead of the interpreted MATLAB |
its the efficiency of many applications. The three main sesimf
this overhead are:

e Excessive creation of temporary variablBBATLAB creates tem-
poraries to hold the partial results of expression, whigmni§i
cantly slows down the programs.

e Frequent replication of dataMATLAB passes parameters by
value and assignment statements replicate the data, and

e Interpretation of instructionsThe overhead resulting from the in-
terpretation of instructions is more pronounced when thapme
tation relies mainly on scalar operations.

Table 1 presents the execution time for Fortran+MPI and our
MATLAB +HTA implementations of most of the NAS bench-
marks. The table shows the execution times in seconds wlgen th
applications execute on a cluster of up-to 128 processaih gro-
cessor is a 3.2 GHz Intel Xeon connected through a GigabérEth

the parallel MATLAB does not improve upon the serial Fortran
version. Similarly, for BT (not shown) the serial MATLAB \&bn
runs so slow that, even the parallel version is not comparaith
its sequential Fotran counterpart. Overall, for EP, FT aGdidere
the sequential MATLAB version runs 1 to 5 times slower tham th
Fortran version, the parallel MATLAB implementation does+
sonably well improving upon the serial Fortran version. hege
cases, it could be said that parallelism at least compen&at¢he
interpretation overhead. For 128 processors the paraldIlMAB
obtains speedups of 30.9, 8.8 and 29.3 over the sequentiaafro
counterpart for EP, FT and CG, respectively.

42 C++

In the C++ implementation, HTAs are represented as compos-
ite objects with methods to operate on both distributed amt n
distributed HTAs. As in the case of MATLAB , MPI is used
for communication and, while the programming model is @ngl
threaded, HTA C++ programs execute in SPMD form. To facil-
itate programming, our C++ implementation enforces ancalo
tion/deallocation policy through reference counting dk¥es: (1)
HTAs are allocated through factory methods on the heap. The
methods return a handle which is assigned to a (stack afidrat
variable. (2) All accesses to the HTA occur through this hend
which itself is small in size and typically passed by valueoas
procedure boundaries. (3) Once all handles to an HTA disappe
from the stack, the HTA and its related structures are auicaily
deleted from memory. This design permits sharing of substre
among HTAs and also precludes deallocation errors. Morethve
temporary arrays that are for instance created during thigapa
evaluation of expressions, are handled through this mésinaand
deleted automatically as early as possible.

Performance is one of the main goals of our C++ implementa-
tion. Methods were optimized and whenever possible speedl

net. For the NAS benchmarks we used the version 3.1, and com-for specific cases. Also, the user is given control over theorg

piled them with the INTEL ifort compiler, version 8.1, anddla
-03. For MATLAB we used the version 7.0.1 (R14). Finally, for
MPI we used MPI-LAM [6].

layout of non-distributed HTAs. In MATLAB the layout was ihe
hands of the system and the user had no way of influencing-it. Fi
nally, to enable efficient access to scalar components ofsiife

The execution time for 1 processor corresponds to the serial implementation was organized to guarantee that hot metheds

execution of the pure Fortran or MATLAB code without MPI or
HTAs. Results in Table 1 correspond to the class C input for EP
and CG, and class B for MG, FT and LU.

inlined. This last strategy enabled the codes written usiegli-
brary to have performance similar to that of traditional(dTAS)
implementations. For example, the code in Figure 13 reptesike

As can be seen in the table, in the case of EP and FT the parallelmultiplication of two two-dimensional arrays recursivéiled. The

MATLAB code takes advantage of parallelism leading to exiecu
times that are of the same magnitude as those of the Fortrah+M
code. In the case of CG our parallel MATLAB does reasonably
well, although not as well as the Fortran+MPI version that ob
tains super-linear speedups when the number of processe4sor
smaller. However, for MG and LU the performance of the sequen
tial MATLAB implementation was slow and, in the case of MG,

code is similar to the MATLAB code shown Figure 8.

The code in Figure 13 shows the declaration of the HEAB,
andcC. The functionalloc is the factory method that creates the
HTAs. It takes as input the complete tiling information fach
HTA, number of tiles in each dimensiofxtiles,ytiles), tile
size (tile_size x, tile_size_y), and memory layoutRQw,
COLUMN, or TILE). The functionmult is recursive. When the input



typedef Tuple<2> T;

HTA<double, 2, 1> A, B,C;

A =HTA<double, 2, 1>::alloc((T(xtiles, ytiles),
T(tile_sz_x,tile_sz_y)) ,ROW);

B =HTA<double, 2, 1>::alloc((T(xtiles, ytiles),
T(tile_sz_x,tile_sz_y)) ,ROW);

C =HTA<double, 2, 1>::alloc((T(xtiles, ytiles),
T(tile_sz_x,tile_sz_y)) ,ROW);

template <int LEVEL> void mult(
HTA<double, 2, LEVEL> A,
HTA<double, 2, LEVEL> B,
HTA<double, 2, LEVEL> C) {

int M = A.shape() [0].size();
int N = B.shape() [0].size();
int Q = B.shape() [1].size();

for (int i = 0; i< M; i++) {
for (int k = 0; k < N; k++) {
for (int j = 0; j< Q; j++) {
mult (A[T(i,k)], BIT(k,j)], CIT(i,j)1);
i3
}

void mult(double& A,double& B,double& C)
{

C += A x B;
}

Figure 13. Recursive matrix multiplication in C++ using HTAs

template <> void mult(

HTA<double, 2, 0> A,

HTA<double, 2, 0> B,

HTA<double, 2, 0> C){
int M = A.shape() [0].size();
int N = B.shape() [0].size();
int Q = B.shape() [1].size();

for (int i = 0; i< M; i++) {
for (int k = 0; k < N; k++) {
for (int j = 0; j< Q; j++) {
C[T(i,j)1+=A[T(i,k)I*B[T(k,j)]1;
i3

Figure 14. Specialization ofiult for Leaf HTAs

HTAs have 1 or more levels the genetallt function is called.
When the recursion reaches the scalars finally, the funetion
for scalars is called.

Itis possible to specializealt and terminate the recursion at a
different level. For example in Figure 14, the recursionsaidevel
0. At this point, an optimized library generated code cao his
used to perform the matrix-matrix multiplication. For exam in
Figure 15 the mini-MMM code generated by ATLAS [25] is used.
The mini-MMM code is optimized for matrix-matrix multiplée
tion of smaller matrices that fits into the cache. It benefitenf
optimizations like register-level tiling, unrolling andgfetching.
In all the figures,T(i, j) represents the subscript pdit, j).
The code of Figure 13- 15 can be tuned for practically any nigmo
hierarchy configuration. This can be accomplished with mati
modifications to the source code, by changing the numbewrefde
and sizes of the tiles in the HTA constructor.

template <> void mult(

HTA<double, 2, 0> A,

HTA<double, 2, 0> B,

HTA<double, 2, 0> C){
ATL_Mini_MMM(A, B, C);

}

Figure 15. Specialization with a call to a wrapper function that in
turn calls the mini-MMM code generated by ATLAS.

Control

MT | ST |
v
V

Approach Implementation
Language| Library
CAF v
GAS Vi
HPF Vi
HTA
MPI/PVM
POET
POOMA
Titanium
UPC
X10
ZPL

Address Space
Global | Local

v
v

<<

PO SO O NI OSIN N

<IN
RO GOSN SN

Table 3. Characterization of parallel programming infrastructure

To give an indication of the overhead of our current C++ imple
mentation, we show in Table 2 the performance results in ME&O
for matrix-matrix multiplication (MMM). Results are showfor
different matrix sizes and six different versions: a naifuplemen-
tation of MMM with 3 nested loopsSNaive 3 loops), atiled ver-
sion with 6 loops Tiled 6 loops), our HTA matmul implemen-
tation in Figure 13TA naive), an HTA matmul implementation
where the MMM code for level 0 has been implemented using the
mini-MMM code generated by ATLAS [25HTA+ATLAS), ATLAS
and theINTEL MKL library [1]. For ATLAS we used the MMM
code with the parameter values that ATLAS found to be optimal
for tile size, and register blocking parameters, amongretHgo-
tice that SSE multimedia extensions were not usedTarATLAS.

For the tiled implementations (all exceéptive 3 loops)we used

a square tile 086 x 36, which is the value that we found to be the
optimal for the machine where we ran the experiments (an INTE
Pentium 4 with 3.0 Gz and 8KB in L1). Falaive 3 loops and
Tiled 6 loops we show results using the gcc compiler, version
3.2.3. For the HTA implementations we used g++, version33.2.
since our HTA implementation has been done in C++. For ATLAS
we used the version 3.6.0 and for the INTEL MKL library we used
the version 8.0. Notice that INTEL MKL runs faster than thb-ot
ers because it uses INTEL SSE2 vector extensions, whildeall t
other versions use scalar code. As can be seen by compaéng th
HTA+ATLAS with the ATLAS column, the overhead introduced
in our current implementation by one level of HTA is between
and13.5%.

5. HTAsand Other Parallel Programming
Infrastructures

In this section, we compare the HTA approach with some of the
other parallel programming infrastructures. Table 3 presa sum-
mary of the main characteristics of the programming infragtires
discussed in this section. The first column classifies thgraro-
ming infrastructure according to the type of implementati¢l)
libraries containing operations that represent commtioicaand



[[ Matrix Size ][ Naive 3loops]| Tiled 6 loops [ HTA naive | HTA+ATLAS [ ATLAS [ Intel MKL(1) ||

504 161 657 675 2069 2387 3624
1008 150 649 679 2192 2384 3762
2016 133 632 675 2216 2492 3821
3024 135 644 668 2245 2509 3716
4032 36 588 613 2217 2519 3752

Table 2. Performance in MFLOPS for different versions of matrix-mamultiplication. (1) MKL uses SSE2 vector extension.

data sharing on programs where the rest of the operatiome e
sented in conventional, sequential constructs and (2)ranagning
language constructs or directives designed to represeaiiglsm
implicitly or explicitly. The second column classifies timérastruc-
tures according to the address space seen by each compbtient o
parallel program. Except for the message-passing libqagpyaach,
where a thread of execution is only allowed to reference Wata
cated in the node where it is running (local view), all othes-p
gramming models allow the threads to access data locateayin a
node (global view). The third column distinguishes betwtase
approaches where the operations of each individual threast m
be specified separately (multiple-threaded or MT) and tdsieh
provide a single-threaded (ST) view of the computation. \&& n
compare the library and language approaches in three sesaia
sections: discussing the HTA approach, other library agqines,
and the language extension approach.

5.1 TheHTA library

As we have seen in Section 4, the HTA class can be integrated
in a very natural way in different languages thanks to operat
overloading and the polymorphic features of current OO lzigygs.
Thus, the resulting programs tend to be more readable tlwse th
based on conventional libraries. As mentioned in the intotidn,
the most important characteristic that distinguishes Hffém all
other approaches is the consideration of the tile and itsiples
hierarchical decomposition as first-class concepts. Tlakas the
HTAs ideal to design and write programs that can be naturally
expressed in terms of blocks (e.g.. several matrix mudtipion
algorithms -Cannon [7], Summa [13]-, solvers such as LU,)etc
or which can be solved recursively (e.g., FT). Such blocks ca
be used to achieve parallelism or data locality or both, ipbss
using several levels of tiling for different purposes. WithAs it is
easy to adjust the point where recursive computations eddren
iterative solutions start by changing the number of levéliiag.

As shown in Table 3, HTA and POOMA [23] are the only
library-based approaches that provide a global view of e end
follow a single threaded programming approach. This coatinn
helps programmers’ productivity in at least two ways. Fipsb-
grammers can use familiar sequential programming langy)@oe
reuse sequential modules, perhaps with small changesefbher
programmers can write parallel programs practically in shee
way they write sequential programs. Second, the singleatted
semantics of HTAs eases the transition from sequential te pa
allel because programmers need not be concerned with the pro
gram’s behavior on a per processor basis, deadlocks, ramh-co
tions, etc., since parallelism and synchronization ardigitpThe
single-threaded property also improves readability. karrnore, in
the case of HTA, flattening enables gradual migration of eatjal
applications to parallel form. This was the approach wefedd in
our translation of the NAS benchmarks from sequential MABLA
to the HTA-based parallel version.

A good indication of the benefit of the single-threaded fosm i
obtained by comparing the number of lines of code of the HTwi
those of MPI programs. Although the number of lines of codets
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Figure 16. Linecount of key sections of HTA and MPI programs.

the best metric to measure ease of programming, it can givegir
estimate of program complexity. The plot in Figure 16 shokes t
lines of code for HTA and MPI codes. Since MATLAB language
does not have declarations, we ignored those lines from @R-F
TRAN/MPI codes as well. Each bar shows the lines of code fer th
computation, communication and data decomposition sectid
the codes. The difference in the number of lines of compuras
not relevant to our discussion here since it is due to theacieris-
tics of the MATLAB language, especially the availability#ctor
operations. However, the other two numbers are good inditat
of ease of programming and clearly show the advantages oEHTA
Thus, the lines of code for communication are significarlyer

in HTA programs. The reason is that HTA programs only need
assignment instructions to perform communication, whild/iPI
programs, in addition to the send and receive instructipasking
and unpacking data and checking boundary conditions indhe ¢
munication are also needed. HTA programs also have significa
fewer data decomposition instructions. HTAs are partéiband
distributed using the single HTA constructor, while MPI grams
need to compute the limits of data owned by each processgh-ne
bors of a given processor, active set of processors in a giegnof
the program, etc.

A downside of the single-threaded approach is that asyn-
chronous overlap is not easy to express explicitly. Howeweich
of this overlap can be achieved automatically with the appate
implementation.

A valuable property of a programming approach is the akitity
convey to the programmers the cost of the execution of tioelec
This is particularly true in the case of parallel environtsewhere
communication costs can easily dominate the execution tithas
are faithful to this idea: the statements that require datansuni-
cation are clearly identified in the code either becauseefifage



of different indexes in the tiles, or because of the invaratf func-
tions that involve data communication (transpositiom;uir shift,
etc.).

HTAs have also drawbacks. For example, just as the other

global-view approaches [12], they only allow limited form$
task-parallelism. Other limitations are due to the implatagon.
For example, our current implementation as a library fotoasse
dynamic analysis technigues to determine the communicaii-

terns required when data is to be shuffled among processors. A

compiler could calculate statically those patterns wheay thre
regular enough, and generate a code with less overhead.

5.2 Other Library Approaches
The most popular parallel programming approach for disteb-

5.3.2 Single-Threaded L anguages

In single-threaded languages, communication and synidaton
are no longer responsibility of the programmer, but of themco
piler. Programs written in this model tend to be shorter aast e
ier to understand and maintain than those expressed in\asal
languages, which increases programmers’ productivitg ddwn-
sides of these languages are their limited ability to expisgular
parallelism and the responsibility they put on compilehteadogy,
which may not be developed enough to generate efficient dades
some situations.

Different strategies have been studied to provide paretides
with a global view of the algorithms to execute. For example,
High Performance Fortran (HPF) [16, 18] annotates secalenti
Fortran codes with directives that specify array distiimtloop
scheduling, etc. These directives are optional, and thetatle

memory systems is the use of a message passing library such asformation about how the compiler will translate them. Thek

MPI [15] or PVM [14]. In this approach, the programmer has-a lo
cal view of the data structures and must write programs tteatige
in a SPMD fashion. The communication and computation state-
ments can be interleaved in an unstructured manner, palignti
leading to programs that are difficult to understand and taain

Animprovement over this approach is the usage of librahat t
while requiring SPMD programming, provide the user withabgll
view of the data structures. This is the case of the Globahysr
library [20] or the POET framework [4]. However, the SPMD
programming style and the requirement of explicit synctration
complicates programming.

Other libraries like POOMA [23] integrate their classes hoat
OO language, and exploit operator overloading and polythisnp
in order to provide a global view of the data and a singleatesl
view of the computation, as our HTA library. However, POOMA
differs in fundamental ways from our approach. For examplele
POOMA'’s arrays can be distributed in tiles, the library pdes
no easy means to explicitly refer to those tiles. Also, highizal
decomposition is not natural to POOMA's arrays, while it is a
defining property of HTAs.

5.3 Language/Compiler Based Approaches

Several infrastructures are based on new languages witltiraots
to control concurrency and distribution. As we can see inéfab
all the language-based approaches provide a global vieweof t
data, but they can be classified in two groups according to the
view of the control flow: The multiple-threaded languagés Co-
Array Fortran (CAF) [21], Titanium [27],UPC [8] or X10 [11&nd
single threaded form like High Performance Fortran HPF 8],

of a clear performance model makes it difficult for programsrie
reason about an algorithm’s performance.[19].

Another approach is design a language from scratch, which
is the case of ZPL [9]. This language is designed in order to
minimize the effort of the compiler. Its syntax allows to iy
the operations that generate communication and their tgtiaé
cost in a similar way to our HTAs.

6. Conclusions

In this paper we have introduced Hierarchically Tiled Asay
(HTAs). Our experience with the implementation of the NAS
benchmarks and a few kernels using this new data type irdicat
that HTAs are an effective device for the development of fugh
formance programs that are readable, easy to develop antainai
During this study we determined that well-known array ofieres
can be overloaded to represent communication and paraitet c
putation and that, at least for the NAS benchmarks and theeker
we considered, are sufficient to represent efficient impigatsn

of parallel algorithms and algorithms with a high degreeaufal-
ity. We expect that the study reported in this paper will lead
useful portable libraries and provide insights useful fa turther
development of vector constructs and vector languages [abt
issue is particularly important since vector operatiores apow-
erful mechanism to express parallelism in a structured afor
many classes of algorithms.
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